Answer:
it’s 2.5 m/s
Explanation:
i’m too lazy but trust
This question can be solved by using the law of conservation of momentum.
The final speed of the lighter 2 kg train is " 2.5 ".
When two moving objects collide with each other, the law of conservation of momentum can be applied to them as follows:
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2[/tex]
where,
m₁ = mass of heavier train = 3 kg
m₂ = mass of lighter train = 2 kg
u₁ = initial speed of heavier train = 2.8
u₂ = initial speed of lighter train = 1.6
v₁ = final speed of heavier train = 2.2
v₂ = final speed of lighter train = ?
Therefore,
(3 kg)(2.8) + (2 kg)(1.6) = (3 kg)(2.2) + (2 kg)(v₂)
[tex]v_2 = \frac{5 kg}{2 kg}[/tex]
v₂ = 2.5
Learn more about the law of conservation of momentum here:
https://brainly.com/question/1113396?referrer=searchResults
The attached picture illustrates the law of conservation of momentum.
Visualizing yourself crossing the finish line and how'd you'd feel is
a method of blocking unwanted feelings
a way to cope with stress
utilizing positive values
O a method of influence on others
Answer:
I believe you put how you think you'd feel it's that simple
Answer:
utilizing positive values
Explanation:
Which of the following helps prevent and cope with heat-related conditions?
Drinking water
Wear proper clothing
Rest frequently
all of the above
An action which would help in preventing and coping with heat-related conditions is: A. Drinking water.
What is heat?Heat can be defined as a form of energy that is transferred from a physical object (body) to another, as a result of a difference in temperature. Also, heat is a condition of weather that is generally characterized by a high degree of temperature.
This ultimately implies that, heat is most likely to cause dehydration and high body temperature.
In order to prevent and cope with heat-related conditions, you should ensure that you drink water at regular intervals for hydration.
Read more on heat here: brainly.com/question/12072129
YALL PLEASE HELP I BARELY HAVE TIME
Which of the following is not a property of light?
Light travels in a straight line.
Light travels through empty space.
Light moves in a compressional wave.
All options are true
Answer:
All of then are true
I need brainliest so I can rank up
Explanation:
Answer:
I think all options are true is the right answer
Explanation:
Mark me the brainliest plzzz
The blood pressure at your heart is approximately 100 mm Hg. As blood is pumped from the left ventricle of your heart, it flows through the aorta, a single large vessel with a diameter of about 2.5 cm. The speed of blood flow in the aorta is about 60 cm/s. Any change in pressure as blood flows in the aorta is due to the change in height: the vessel is large enough that viscous drag is not a major factor into successively smaller and smaller blood vessels until it reaches the capillaries. Blood flows in the capillaries at the much lower speed of approximately 0.7 mm/s. The diameter of capillaries and other small blood vessels is so small that viscous drag is a major factor..Because the flow speed in your capillaries is much less than in the aorta, the total cross-section area of the capillaries considered together must be much larger than that of the aorta. Given the flow speeds noted, the total area of the capillaries considered together is equivalent to the cross-section area of a single vessel of approximately what diameter?
a. 25 cm
b. 50 cm
c. 75 cm
d. 100 cm
Answer:
The correct option is c. 75 for this question
Explanation:
The correct option is c. 75 for this question:
Let's see how.
Continuity Equation is given as:
AcVc = AaVa
Where,
Aa = Area of Aorta
Ac = Area of the capillary
Va = Fluid speed in Aorta
Vc = Fluid speed in Capillary
So,
Assuming the fluid is the ideal one/
[tex]\pi[/tex]/4 [tex]Dc^{2}[/tex] Vc= [tex]\pi[/tex]/4 [tex]Da^{2}[/tex] Va
[tex]Dc^{2}[/tex] Vc= [tex]Da^{2}[/tex] Va
Dc = Da x [tex]\sqrt{\frac{Va}{Vc} }[/tex]
Dc = 2.5 cm x [tex]\sqrt{\frac{60 cm}{0.07 cm } }[/tex]
Dc = 73.192 cm
Dc = 75 approximately
Hence, the diameter of the capillary = 75 cm approximately
10. A change in
indicates the acceleration of an object
O A the time of travel
OB the distance from a given point
O c displacement
OD velocity
Answer:
d velocity will be the one according to me
As mentioned in the text, the tangent line to a smooth curve r(t) = ƒ(t)i + g(t)j + h(t)k at t = t0 is the line that passes through the point (ƒ(t0), g(t0), h(t0)) parallel to v(t0), the curve’s velocity vector at t0. In Exercises 23–26, find parametric equations for the line that is tangent to the given curve at the given parameter value t = t0.
Answer:
[tex]x = t[/tex]
[tex]y = \frac{1}{3}t[/tex]
[tex]z =t[/tex]
Explanation:
Given
[tex]r(t) = f(t)i + g(t)j + h(t)k[/tex] at [tex]t = 0[/tex]
Point: [tex](f(t0), g(t0), h(t0))[/tex]
[tex]r(t) = ln\ t_i + \frac{t-1}{t+2}j + t\ ln\ tk[/tex], [tex]t0 = 1[/tex] -- Missing Information
Required
Determine the parametric equations
[tex]r(t) = ln\ ti + \frac{t-1}{t+2}j + t\ ln\ tk[/tex]
Differentiate with respect to t
[tex]r'(t) = \frac{1}{t}i +\frac{3}{(t+2)^2}j + (ln\ t + 1)k[/tex]
Let t = 1 (i.e [tex]t0 = 1[/tex])
[tex]r'(1) = \frac{1}{1}i +\frac{3}{(1+2)^2}j + (ln\ 1 + 1)k[/tex]
[tex]r'(1) = i +\frac{3}{3^2}j + (0 + 1)k[/tex]
[tex]r'(1) = i +\frac{3}{9}j + (1)k[/tex]
[tex]r'(1) = i +\frac{1}{3}j + (1)k[/tex]
[tex]r'(1) = i +\frac{1}{3}j + k[/tex]
To solve for x, y and z, we make use of:
[tex]r(t) = f(t)i + g(t)j + h(t)k[/tex]
This implies that:
[tex]r'(1)t = xi + yj + zk[/tex]
So, we have:
[tex]xi + yj + zk = (i +\frac{1}{3}j + k)t[/tex]
[tex]xi + yj + zk = it +\frac{1}{3}jt + kt[/tex]
By comparison:
[tex]xi = it[/tex]
Divide by i
[tex]x = t[/tex]
[tex]yj = \frac{1}{3}jt[/tex]
Divide by j
[tex]y = \frac{1}{3}t[/tex]
[tex]zk = kt[/tex]
Divide by k
[tex]z = t[/tex]
Hence, the parametric equations are:
[tex]x = t[/tex]
[tex]y = \frac{1}{3}t[/tex]
[tex]z =t[/tex]
A toy car can go 5 mph. How long would it take to go 12 miles?
20. For each improvement in glider design, engineers follow
O A. the written instructions that are provided in the hang glider build kit.
O B. an iterative process of testing, modifying, retesting, and modifying again.
O C. a complicated process of checks and balances while obtaining financing.
O D. a mathematical process, rejecting designs that don't follow blueprint dimensions.
Turn In
Potential energy is energy due to the:
a. motion of an object.
b. height of an object.
c. temperature of an object.
d. speed of an object.
Answer:I will say d
Explanation: because Potential energy is the energy stored within an object, due to the object's position, arrangement or state. Potential energy is one of the two main forms of energy, along with kinetic energy.
A Van de Graaff generator is one of the original particle accelerators and can be used to accelerate charged particles like protons or electrons. You may have seen it used to make human hair stand on end or produce large sparks. One application of the Van de Graaff generator is to create x-rays by bombarding a hard metal target with the beam. Consider a beam of protons at 1.10 keV and a current of 4.65 mA produced by the generator.
(a) What is the speed of the protons?
(b) How many protons are produced each second?
Solution :
Given that :
The energy of the protons, K.E. = 1.10 keV
[tex]$= 1.10 \times 10^3 \ eV $[/tex]
The current produced by the generator is I = 5 mA
[tex]$= 5 \times 10^{-3} \ A$[/tex]
Now [tex]$1 \ eV = 1.6 \times 10^{-19 }\ J$[/tex]
Mass of the proton, m = [tex]$1.67 \times 10^_{-27} $[/tex] kg
Charge of the proton, [tex]$q_p = 1.6 \times 10^{-19} \ C$[/tex]
a). Therefore using the formula for K.E. we can find out the velocity of the proton.
[tex]$K.E. =\frac{1}{2}mv^2$[/tex]
[tex]$v=\sqrt{\frac{2K.E.}{m}}$[/tex]
[tex]$v=\sqrt{\frac{2\times 10^3 \times 1.6 \times 10^{-19}}{1.67 \times 10^{-27}}}$[/tex]
[tex]$= 4.38 \times 10^5 \ m/s$[/tex]
b). We know that the current is :
[tex]$I=\frac{\Delta Q}{\Delta t}$[/tex]
Therefore, the total charge in one second is given by :
[tex]$\Delta Q = I \times \Delta t$[/tex]
[tex]$= 5 \times 10^{-3} \times 1$[/tex]
[tex]$= 5 \times 10^{-3}\ C$[/tex]
So, the number of protons in this charge is given by :
[tex]$n = \frac{\Delta Q}{q_p}$[/tex]
[tex]$=\frac{5 \times 10^{-3} }{1.6 \times 10^{-19}}$[/tex]
[tex]$= 3.13 \times 10^{16}$[/tex] protons
A crate rests on a flatbed truck which is initially traveling at 13.6 m/s on a level road. The driver applies the brakes and the truck is brought to a halt in a distance of 38.1 m. If the deceleration of the truck is constant, what is the minimum coefficient of friction between the crate and the truck that is required to keep the crate from sliding
Answer:
0.248
Explanation:
Initial speed u = 13.6
Final speed v = 0
Distance s = 38.1
We have umg = ma
We make u subject of the formula
u = a/g
V² = u² + 2as
a = v²-u²/2s
We substitute the values into the above
a = 0-(13.6)²/2*38.1
a = 184.96/76.2
a = 2.427m/sec
Remember that
u = a/g
u = 2.427/9.8
= 0.2476
This is approximately 0.248
This is the minimum coefficient of friction required to keep the crate from sliding.
A 1 m3tank containing air at 10oC and 350 kPa is connected through a valve to another tank containing 3 kg of air at 35oC and 150 kPa. Now the valve is opened, and the entire system is allowed to reach thermal equilibrium with the surroundings, which are at 20oC. Determine the volume of the second tank and the final equilibrium pressure of air.
Answer:
- the volume of the second tank is 1.77 m³
- the final equilibrium pressure of air is 221.88 kPa ≈ 222 kPa
Explanation:
Given that;
[tex]V_{A}[/tex] = 1 m³
[tex]T_{A}[/tex] = 10°C = 283 K
[tex]P_{A}[/tex] = 350 kPa
[tex]m_{B}[/tex] = 3 kg
[tex]T_{B}[/tex] = 35°C = 308 K
[tex]P_{B}[/tex] = 150 kPa
Now, lets apply the ideal gas equation;
[tex]P_{B}[/tex] [tex]V_{B}[/tex] = [tex]m_{B}[/tex]R[tex]T_{B}[/tex]
[tex]V_{B}[/tex] = [tex]m_{B}[/tex]R[tex]T_{B}[/tex] / [tex]P_{B}[/tex]
The gas constant of air R = 0.287 kPa⋅m³/kg⋅K
we substitute
[tex]V_{B}[/tex] = ( 3 × 0.287 × 308) / 150
[tex]V_{B}[/tex] = 265.188 / 150
[tex]V_{B}[/tex] = 1.77 m³
Therefore, the volume of the second tank is 1.77 m³
Also, [tex]m_{A}[/tex] = [tex]P_{A}[/tex][tex]V_{A}[/tex] / R[tex]T_{A}[/tex] = (350 × 1)/(0.287 × 283) = 350 / 81.221
[tex]m_{A}[/tex] = 4.309 kg
Total mass, [tex]m_{f}[/tex] = [tex]m_{A}[/tex] + [tex]m_{B}[/tex] = 4.309 + 3 = 7.309 kg
Total volume [tex]V_{f}[/tex] = [tex]V_{A}[/tex] + [tex]V_{B}[/tex] = 1 + 1.77 = 2.77 m³
Now, from ideal gas equation;
[tex]P_{f}[/tex] = [tex]m_{f}[/tex]R[tex]T_{f}[/tex] / [tex]V_{f}[/tex]
given that; final temperature [tex]T_{f}[/tex] = 20°C = 293 K
we substitute
[tex]P_{f}[/tex] = ( 7.309 × 0.287 × 293) / 2.77
[tex]P_{f}[/tex] = 614.6211119 / 2.77
[tex]P_{f}[/tex] = 221.88 kPa ≈ 222 kPa
Therefore, the final equilibrium pressure of air is 221.88 kPa ≈ 222 kPa
What is the correct coefficient for 2H2 + O2 →2H2O
Explanation:
2forH2,1for02,and2forH20
a 2,400 kg car drives north towad a 60kg shopping cartthat has a velocity of zero the two objects collide giving the car a final velocity 4.33m/s north and the shopping cart 8.88m/s north what is the in itial velocity of the car
Answer:
4.552m/s
Explanation:
[tex]V=\frac{m_{1}v_{1}+m_{2}v_{2}}{m_{1} } =\frac{2400*4.33+60*8.88}{2400}=4.552m/s[/tex]
Two students are on a balcony a distance h above the street. One student throws a ball vertically downward at a speed vi; at the same time, the other student throws a ball vertically upward at the same speed. Answer the following symbolically in terms of vi, g, h, and t. (Take upward to be the positive direction.)
(a) What is the time interval between when the first ball strikes the ground and the second ball strikes the ground?
?t = ______
(b) Find the velocity of each ball as it strikes the ground.
For the ball thrown upward vf = ______
For the ball thrown downward vf = ______
(c) How far apart are the balls at a time t after they are thrown and before they strike the ground?
d = _______
Answer:
Explanation:
a )
Time for first ball to reach top position
v = u - gt
0 = vi - gt
t = vi / g
Time to reach balcony while going downwards
= vi /g
Total time = 2 vi / g
Time to go down further to the ground = t₁
Total time = 2 vi / g + t₁
Time for the other ball to go to the ground = t₁
Time difference = ( 2 vi / g + t₁ ) - t₁
= 2vi / g .
( b )
v² = u² + 2gh
For both the throw ,
final displacement = h , initial velocity downwards = vi
( For the first ball also , when it go down while passing the balcony , it acquires the same velocity vi but its direction is downwards.)
vf² = vi² + 2gh
vf = √ ( vi² + 2gh )
(c )
displacement of first ball after time t
s₁ = - vi t + 1/2 g t² [ As initial velocity is upwards , vi is negative ]
displacement of second ball after time t
s₂ = vi t + 1/2 g t²
Difference = d = s₂ - s₁
= vi t + 1/2 g t² - ( - vi t + 1/2 g t² )
d = 2 vi t .
This is the build up of substance such as pesticides in an organism and occurs when an organism absorb a substance at a rate faster than that at which the substance is lost
Answer:
which the substance is lost by catabolism and excretion.
Explanation:
a car acceleration from rest to 90km/h in 10 seconds. what is its acceleration in meter per second square?
Answer:
2.5 m/s^2
Explanation:
First, convert 90 km/hr into m/s:
90/3.6 = 25 m/s
vf = final velocity = 25 m/s
vi = initial velocity = 0 m/s
t = time = 10 seconds
a = acceleration, unknown
Then, find a using the following equation:
(vf - vi)/t = a
(25 m/s)/10 s = 2.5 m/s^2
a = 2.5 m/s^2
Hope this helps!! :)
Someone help please
Answer:
it would be downwards due to gravitational force
PLEASE HELP ASAP! WILL GIVE BRAINLIEST TO CORRECT ANSWER! HELP!! HELP!!
The diagram shows the structure of an animal cell.
The image of an animal cell is shown with some organelles labeled numerically from 1 to 6. The outer double layer boundary of the cell is labeled 1. A stacked disc like structure is labeled 2. A broad rod shaped structure with an irregular shape inside it is labeled 3. The entire plain section that forms the background of the cell and is within the outer boundary is labeled 4. A small circular shape within the large circular shape is labeled 5. The large central circular shape is labeled 6.
Which number label represents the cell membrane?
1
2
4
6
(this is middle school science)
Answer:
1. cell membrane
2. golgi body
3. mitochondrion
4. cytoplasm
5. nucleolus
6. nucleus
Explanation:
The correct answer to this question is Option A; 6.
Why?
In a plant cell, the nucleus surrounds the nucleolous, which would be number 5. Therefore, number 6 would be your correct answer.
~Thank you~
While talking to a friend, a construction worker momentarily set her cell phone down on one end of an iron rail of length 7.50 m. At that moment, a second worker dropped a wrench so that it hit the other end of the rail. The person on the phone detected two pulses of sound, one that traveled through the air and a longitudinal wave that traveled through the rail. (Assume the speed of sound in iron is 5,950 m/s and the speed of sound in air is 343 m/s).
A) Which pulse reaches the cell phone first?
B) Find the separation in time (in s) between the arrivals of the two pulses.
Answer:
A)
The impulse that reaches the cell phone first is the Longitudinal wave
B) 0.0206 seconds
Explanation:
length of Iron rail = 7.5 m
speed of sound in Iron = 5950 m/s
speed of sound in Air = 343 m/s
A) Determine which pulse reaches the cell phone first
The impulse that reaches the cell phone first is the Longitudinal wave
Time for longitudinal pulse to be detected = 7.5 / 5950 = 0.00126 s
Time for pulse through air to be detected = 7.5 / 343 = 0.02186 s
B) separation in time between the arrivals of the two pulses
ΔT = 0.02186 - 0.00126 = 0.0206 seconds
A cyclist cover 6km in 20minutes. His speed is
Answer:
The speed of a cyclist is 0.3 km/min.
Explanation:
Given
The distance d = 6km Time t = 20 minutesTo determine
We need to determine the speed of a cyclist.
In order to determine the speed of a cyclist, all we need to do is to divide the distance covered by a cyclist by the time taken to cover the distance.
We know the formula involving speed, time, and distance
[tex]s=\frac{d}{t}[/tex]
where
s = speedd = distance coveredt = time takensubstitute d = 6, and t = 20 in the formula
[tex]s=\frac{d}{t}[/tex]
[tex]s=\frac{6}{20}[/tex]
Cancel the common factor 2
[tex]s=\frac{3}{10}[/tex]
[tex]s=0.3[/tex] km/min
Thus, the speed of a cyclist is 0.3 km/min.
Which of the following does NOT have a positive impact on your position on the
health continuum?
avoiding risk behaviors
having a positive social environment
eating nutritious foods
O having a chronic disease
Answer:
Having a chronic disease
Explanation:
If your mass is 63.7kg and standing 7.5m away from a boulder with a mass of 9750.6kg what is the gravitational force?
The gravitational force is determined as 7.37 x 10⁻⁷ N.
What the gravitational force?
The gravitational force is determined by applying Newton's law of universal gravitation.
Mathematically, the formula for the Newton's law of universal gravitation is given as;
Fg = ( Gm₁m₂ ) / ( r² )
where;
G is universal gravitation constantm₁ is your massm₂ is the mass of the boulderr is the distance between you and the boulderFg = ( 6.67 x 10⁻¹¹ x 63.7 x 9750.6 ) / ( 7.5² )
Fg = 7.37 x 10⁻⁷ N
Learn more about gravitational force here: https://brainly.com/question/72250
#SPJ1
Which two statements below are central ideas in the article, "How Gross Is Your Bathroom"?
a. What you can't see might hurt you.
b. Different numbers of bacteria are hiding on various surfaces around your bathroom.
c. Most bacteria are harmless, and some are even good for you.
d. Your bathroom is filled with germs that you might not know anything about, including
viruses and bacteria.
Two strings with linear densities of 5 g/m are stretched over pulleys, adjusted to have vibrating lengths of 0.50 m, and attached to hanging blocks. The block attached to string 1 has a mass of 20 kg and the block attached to string 2 has a mass of M. Listeners hear a beat frequency of 2 Hz when string 1 is excited at its fundamental frequency and string 2 is excited at its third harmonic. What is one possible value for mass M
Answer:
2.18 kg
Explanation:
The frequency of a wave in a stretched string f = n/2L√(T/μ) where n = harmonic number, L = length of string, T = tension = mg where m = mass of object on string and g = acceleration due to gravity = 9.8 m/s² and μ = linear density of string.
For string 1, its fundamental frequency f is when n = 1. So,
f = 1/2L√(T/μ) = 1/2L√(mg/μ)
Now for string 1, L = 0.50 m, m = 20 kg and μ = 5 g/m = 0.005 kg/m
substituting the values of the variables into f, we have
f = 1/2L√(mg/μ)
f = 1/2 × 0.50 m√(20 kg × 9.8 m/s²/0.005 kg/m)
f = 1/1 m√(196 kgm/s²/0.005 kg/m)
f = 1/1 m√(39200 m²/s²)
f = 1/1 m × 197.99 m/s
f = 197.99 /s
f = 197.99 Hz
f ≅ 198 Hz
For string 2, at its third harmonic frequency f' is when n = 3. So,
f' = 3/2L√(T/μ) = 3/2L√(mg/μ)
Now for string 2, L = 0.50 m, m = M kg and μ = 5 g/m = 0.005 kg/m
substituting the values of the variables into f, we have
f' = 3/2L√(Mg/μ)
f' = 3/2 × 0.50 m√(M × 9.8 m/s²/0.005 kg/m)
f' = 3/1 m√(M1960 m²/s²kg)
f' = 3/1 m√M√(1960 m²/s²kg)
f' = 3/1 m √M × 44.27 m/s√kg
f' = 132.81√M/s√kg
f' = 132.81√M Hz/√kg
Since the frequency of the beat heard is 2 Hz,
f - f' = 2 Hz
So, 198 Hz - 132.81√M Hz/√kg = 2 Hz
132.81√M Hz/√kg = 198 Hz - 2 Hz
132.81√M Hz/√kg = 196 Hz
√M Hz/√kg = 196 Hz/138.81 Hz
√M/√kg = 1.476
squaring both sides,
[√M/√kg] = (1.476)²
M/kg = 2.178
M = 2.178 kg
M ≅ 2.18 kg
To fully describe velocity you must have a _____
A. Magnitude and unit
B. Speed and unit
C. Average speed and position
D. Magnitude and direction
In an experiment similar to the one pictured below, an electron is projected horizontally at a speed vi into a uniform electric field pointing up. The magnitude of the total vertical deflection, ye, of the electron is measured to be 1 mm. The same experiment is repeated with a proton (whose mass is 1840 times that of the electron) that is also projected horizontally at a speed vi into the same uniform electric field. What is the magnitude of the total vertical deflection, yp, for the proton
I think you need Graph to figure it out
Using Newton's second law and kinematic projectile motion we can find the proton deflection y = 5.43 10⁻⁷ m, in the opposite direction to the electron deflection.
given parameters
The deflection of the electorn y₁ = 1 mm = 0.001 m The initial velocity of the electron and proton v_i The mass of the proton m_p = 1840 meto find
deflection of the protonFor this exercise we will use Newton's second law where the force is electric
F = ma
F = q E
where F is the force, q the charge, E the electric field, m the mass and the acceleration of the particle
q E = m a
a = q / m E
This acceleration is the direction of the electric field that is perpendicular to the initial velocity (v_i)
Having the acceleration we can use the kinematics relations
If we make the direction of the initial velocity coincide with the x-axis
v_i = cte
v_i = x / t
t = x/ v_i
on the y-axis is in the direction of the electric field
y = v_{iy} t + ½ a t²
on this axis the initial velocity is zero
y = [tex]\frac{1}{2} (\frac{q}{m} E) \ t^2[/tex]
subtitute
y = (1)
Electron motion.
Let us propose the expression for the electron situation, the length of the displacement must be the same for electron and proton, suppose that it is x = L
In this case the charge q = -e and the mass m = m_e
its substitute in equation 1
y₁ = [tex]\frac{1}{2} \ ( \frac{-e}{m_e} E) \ \frac{x^2}{v_i^2}[/tex]
where y₁, is the lectron deflection.
Proton motion
Between the proton and the electron we have some relationships
q_p = -e
m_ = 1840 m_e
we substitute in the equation 1
y₂ = ½ e / 1840 me E x² / vi²
y₂ =
y₂ = - y₁ / 1840
y₂ = - 0.001 / 1840
y₂ = - 5.43 10⁻⁷ m
The negative sign indicates that the deflection of the proton is in the opposite direction to the deflection of the electron.
In conclusion they use Newton's second law and kinematics we can find the proton deflection is y = 5.43 10⁻⁷ m
learn more about electric charge movement here: https://brainly.com/question/19315467
The new springs will be identical to the original springs, except the force constant will be 5655.00 N/m smaller. When James removes the original springs, he discovers that the length of each spring expands from 8.55 cm (its length when installed) to 12.00 cm (its length with no load placed on it). If the mass of the car body is 1355.00 kg, by how much will the body be lowered with the new springs installed, compared to its original height
Answer:
Explanation:
For original spring , compression in spring due to a load of 1355 kg is
x = 12 - 8.55 = 3.45 cm = .0345 m
spring constant = W / x
= 1355 x 9.8 / .0345
= 384898.55 N /m
Spring constant of new spring
k = 384898.55 - 5655 = 379243.55 N /m
New compression for new spring
= W / k
= 1355 x 9.8 / 379243.55
= .035 m
= 3.50 cm
Difference of compression = 3.50 - 3.45
= .05 cm .
In later case , car will be more lowered by .05 cm .
Sketch the resultant field pattern around the following current carrying conductors and
show the direction of the forces acting on the conductor.
what element is produced when a gold nucleus loses a proton?