HELP PLEASE!!!!!!!!!!! ILL MARK BRAINLIEST
The rational number - 91 / 200 is a number between the decimal numbers - 0.45 and - 0.46.
How to determine a rational number between two decimal numbers
In this problem we find two decimal numbers, of which we need to find a rational number between these numbers. Please notice that the decimal numbers are also rational numbers. First, we transform each decimal number into rational numbers:
- 0.45 = - 45 / 100
- 0.46 = - 46 / 100
Second, find a possible rational number between the two ends by the midpoint formula:
x = (1 / 2) · (- 45 / 100) + (1 / 2) · (- 46 / 100)
x = - 45 / 200 - 46 / 200
x = - 91 / 200
Then, the rational number - 91 / 200 is a number between - 0.45 and - 0.46.
To learn more on rational numbers: https://brainly.com/question/24398433
#SPJ1
find the equation of the line?
Let's calculate the straight line equation
To do this we will take two points from the graph
A = (0,3)
B= (2,0)
For them we will first calculate the slope of the curve
[tex]m=\frac{y2-y1}{x2-x1}[/tex][tex]\begin{gathered} m=\frac{0-3}{2-0} \\ m=\frac{-3}{2} \end{gathered}[/tex]Now let's calculate the y-axis intersection
[tex]\begin{gathered} b=y-mx \\ b=3-m\cdot0 \\ b=3 \end{gathered}[/tex]The equation of the line in the slope-intercept form is
[tex]y=-\frac{3}{2}x+3[/tex]A rectangular board is 1200 millimeters long and 900 millimeters wide what is the area of the board in square meters? do not round your answer
Answer: Area of the rectangular board is 1.08 square meters
The length of the rectangular board = 1200 milimeters
The width of the rectangular board = 900 milimeters
Area of a rectangle = Length x width
Firstly, we need to convert the milimeter to meters
1000mm = 1m
1200mm = xm
Cross multiply
x * 1000 = 1200 x 1
1000x = 1200
Divide both sides by 1000
x = 1200/100
x = 1.2 meters
For the width
1000mm = 1m
900mm = xm
cross multiply
1000 * x = 900 * 1
1000x = 900
Divide both sides by 1000
x = 900/1000
x = 0.9m
Length = 1.2 meters
Width = 0.9 meter
Area = length x width
Area = 1.2 x 0.9
Area = 1.08 square meters
Given that 1 inch = 2.54 centimeters how many centimeters are in 6 feet?
Answer:
182.88 centimeters are in 6 feet!
Step-by-step explanation:
I hope this helped! c:
Answer:
182.88 centimetersStep-by-step explanation:
If
1 in. = 2.54 cm.
and
12 in. = 1 ft.
lets convert cm into feet
1 * 12 = 12 (how many inches are in a foot )
2.54 * 12 = 30.48 (how many centimeters are in a foot)
so now that we know how many centimeters are in a foot, we can find out how many centimeters are in 6 feet
30.48 * 6 = 182.88
182.88 centimeters are in 6 feetsystem by applications i belive the answer is A can you check?
Let's use the variable x to represent the cost of a senior ticket and y to represent the cost of a child ticket.
If the cost of 1 senior ticket and 1 child ticket is $18, we have:
[tex]x+y=18[/tex]If 2 senior tickets and 1 child tickets cost $27, we have:
[tex]2x+y=27[/tex]Subtracting the first equation from the second one, we can solve the result for x:
[tex]\begin{gathered} 2x+y-(x+y)=27-18 \\ 2x+y-x-y=9 \\ x=9 \end{gathered}[/tex]Now, solving for y:
[tex]\begin{gathered} x+y=18 \\ 9+y=18 \\ y=18-9 \\ y=9 \end{gathered}[/tex]Therefore the cost of one senior ticket is $9 and the cost of one child ticket is $9.
Correct option: D.
In terms of trigonometry ratios for triangle BCE what is the length of line CE. Insert text on the triangle to show the length of line CE.When you are done using the formula for the triangle area Area equals 1/2 times base times height write an expression for the area of triangle ABC Base your answer on the work you did above
CE can be written as:
[tex]\frac{BE}{CE}=\frac{CE}{AE}[/tex]Solve for CE:
[tex]\begin{gathered} CE^2=BE\cdot AE \\ CE=\sqrt[]{BE\cdot AE} \end{gathered}[/tex]The area is:
[tex]\begin{gathered} A=\frac{b\cdot h}{2} \\ _{\text{ }}where\colon \\ _{\text{ }}b=AB \\ h=CE=\sqrt[]{BE\cdot AE} \\ so\colon \\ A=\frac{AB\cdot\sqrt[]{BE\cdot AE}}{2} \end{gathered}[/tex]Space shuttle astronauts each consume an average of 3000 calories per day. One meal normally consists of a main dish, a vegetable dish, and two different desserts. The astronauts can choose from 11 main dishes, 7 vegetable dishes, and 12 desserts. How many different meals are possible?
Okay, here we have this:
Considering the provided information, we are going to calculate how many different meals are possible, so we obtain the following:
There are 11 ways to choose a main dish, 7 ways to choose a vegetable, 12 ways to choose the first dessert, and 11 ways to choose the second dessert. Then:
We multiply to find the possible number of combinations:
[tex]\begin{gathered} 11\cdot7\cdot12\cdot11 \\ =10164 \end{gathered}[/tex]Finally we obtain that there are 10164 different meals possible.
5000 + 300 + 8 in standard form
The given arithmetic expression is:
5000 + 300 + 8
This sum can be computed as shown below:
Therefore, 5000 + 300 + 8 = 5308
Convert 5308 to standard form
[tex]5308\text{ = 5.308 }\times10^3[/tex]
Write this algebraic expression into a verbal expression: 1/3 ( h - 1 )
Answer:
One-third of the difference of h and 1
A baker has 85 cups of flour to make bread. She uses 6 1/4 cups of flour for each loaf of bread. How many loaf of bread can she make
Answer;
The number of loaf of bread she can make is;
[tex]13\text{ loaves}[/tex]Explanation:
Given that a baker has 85 cups of flour to make bread.
[tex]A=85\text{ cups}[/tex]And for each bread she uses 6 1/4 cups of flour.
[tex]r=6\frac{1}{4}\text{ cups}[/tex]The number of loaf of bread she can make can be calculated by dividing the total amount of flour by the amount of flour per bread;
[tex]\begin{gathered} n=\frac{A}{r}=\frac{85}{6\frac{1}{4}}=\frac{85}{6.25} \\ n=13.6 \end{gathered}[/tex]Since it will not complete the 14th loaf of bread.
So, the number of loaf of bread she can make is;
[tex]13\text{ loaves}[/tex]Miguel Valdez sells appliances. He is paid an 8% commission on the first $5,000 worth of sales, 10% on the next $5,500, and 15% on all sales over $10,500. What is his commission on $14,910 worth of sales?
Total Sales = 14910
8% on 5000
10% on 5500
15% on
14910 - 10500 = 4410
So,
15% on 4410 [this is the excess of 10,500]
Converting percentages to decimal:
8% = 8/100 = 0.08
10% = 10/100 = 0.1
15% = 15/100 = 0.15
Total Commission
[tex]0.08(5000)+0.1(5500)+0.15(4410)=1611.5[/tex]$1611.50Which of these tables doesn't show a proportional relationship? MY 2 B 4 12. 18 X 1 2 2 4 3 6 X Y 0 - 2 1 에 1 2 4 X Y 0 0 1 1 2 2
Answer:
The third table.
Explanation:
In a proportional relationship, the and y values are in a constant ratio.
(1) Which of the following statements are true? Select all that apply.
A. The data suggest that a linear model would be appropriate.
B. The data increase by a fixed amount each year.
Relative Change
XXXXX
C. The data suggest that an exponential model would be appropriate.
D. The data show a constant growth rate.
E. No model can be inferred from the data provided.
Which of the following functions is graphed below?
So, y is a system two distinct exponential functions.
The function on the bottom is a cubic function with a y-intercept of -3, and the full dot means that point is included in the domain.
y = x^3 - 3, x ≤ 2
The other function is a quadratic function with a currently unknown y-intercept. The hollow dot on point 2 means that the point is not included in the domain of the function.
y = x^2 + b, x > 2
So, given that there is only one option that matches this, even with the unknown b value, we know:
[tex]y = \left \{ {{x^3 - 3, x\leq 2} \atop {x^2 + 6, x > 2}} \right.[/tex]
So the answer is C.
If f(x) = sin(x ^ 5) , find f^ prime (x)
Solution
Step 1
Write the function.
[tex]f(x)\text{ = sin\lparen x}^5)[/tex]Step 2
Use the chain rule to find f'(x)
[tex]\begin{gathered} f^{\prime}(x)\text{ = }\frac{df}{du}\times\frac{du}{dx} \\ \\ u\text{ = x}^5 \\ \\ \frac{du}{dx}\text{ = 5x}^4 \\ f(x)\text{ = sinu} \\ \\ \frac{df}{du}\text{ = cosu} \end{gathered}[/tex]Step 3
[tex]\begin{gathered} f^{\prime}(x)\text{ = 5x}^4\text{ }\times\text{ cosu} \\ \\ f^{\prime}(x)\text{ = 5x}^4cos(x^5) \end{gathered}[/tex]Step 4
Substitute x = 4 to find f'(4).
[tex]\begin{gathered} f^{\prime}(4)\text{ = 5}\times4^4\times cos(4^5) \\ \\ f^{\prime}(4)=\text{ 1280}\times cos1024 \\ \\ f^{\prime}(x)\text{ = 715.8} \end{gathered}[/tex]Final answer
how do I solve (4w+3x+5)-(4w-3x+2)
Answer:
6x + 3
Explanation:
To solve the initial expression, we need to write it without the parenthesis as:
( 4w + 3x + 5 ) - ( 4w - 3x + 2)
4w + 3x + 5 - 4w + 3x - 2
Then, we need to identify the like terms as:
4w and -4w are like terms
3x and 3x are like terms
5 and -2 are like terms
Now, we can organize the terms as:
4w - 4w + 3x + 3x + 5 - 2
Adding like terms, we get:
(4w - 4w) + (3x + 3x) + (5 - 2)
0 + 6x + 3
6x + 3
Therefore, the answer is 6x + 3
A random sample of 41 people is taken. What is the probability that the main IQ score of people in the sample is less than 99? Round your answer to four decimal places if necessary(See picture )
Solution:
Given:
[tex]\begin{gathered} \mu=100 \\ \sigma=15 \\ n=41 \\ x=99 \end{gathered}[/tex]From the Z-scores formula;
[tex]\begin{gathered} Z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}} \\ Z=\frac{99-100}{\frac{15}{\sqrt{41}}} \\ Z=-0.42687494916 \\ Z\approx-0.4269 \end{gathered}[/tex]From Z-scores table, the probability that the mean IQ score of people in the sample is less than 99 is;
[tex]\begin{gathered} P(xTherefore, to 4 decimal places, the probability that the mean IQ score of people in the sample is less than 99 is 0.3347
Special right trianglesFind the exact values of the side lengths c and a
Since it is a right triangle, we can use the trigonometric ratio cos(θ) to find the length c.
[tex]\cos(\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}}[/tex]So, we have:
[tex]\begin{gathered} \cos(\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ \cos(45°)=\frac{c}{7} \\ \text{ Multiply by 7 from both sides} \\ \cos(45\degree)\cdot7=\frac{c}{7}\cdot7 \\ 7\cos(45\degree)=c \\ \frac{7\sqrt{2}}{2}=c \end{gathered}[/tex]Second triangleSince it is a right triangle, we can use the trigonometric ratio cos(θ) to find the length a.
So, we have:
[tex]\begin{gathered} \cos(\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ \cos(60°)=\frac{a}{2} \\ \text{ Multiply by 2 from both sides} \\ \cos(60°)\cdot2=\frac{a}{2}\cdot2 \\ 2\cos(60\degree)=a \\ 2\cdot\frac{1}{2}=a \\ 1=a \end{gathered}[/tex]Answer[tex]\begin{gathered} c=\frac{7\sqrt{2}}{2} \\ a=1 \end{gathered}[/tex]I need help with math. I have a big exam coming up but I do t understand this lesson at all. Can I have help answering all the questions?
Step 1
Given;
[tex]\begin{gathered} Head\text{ represent male} \\ Tail\text{ represent female} \end{gathered}[/tex]The total number of puppies is 4 represented by 4 coins.
Step 2
Find the experimental probability that exactly 3 of the puppies will be female
[tex]\begin{gathered} From\text{ table we find that THTT, TTHT, HTTT and HTTT are the only outcomes that } \\ \text{show exactly 3 females} \\ Remember\text{ tail\lparen t\rparen is for female puppies} \end{gathered}[/tex]Therefore, the total number of samples/coin tosses=20
The formula for probability is;
[tex]Pr\left(event\right)=\frac{Numberofrequiredevent}{Total\text{ number of events}}[/tex]Total number of events =the total number of samples/coin tosses=20
Number of required events= outcomes with 3 T's from the tab;e=4
Hence.
[tex]=\frac{4}{20}=0.2=0.2\times100=20\text{\%}[/tex]Answer;
[tex]\frac{4}{20}=0.20=20\text{\%}[/tex]Subtract the following polynomials 1) (2x + 43) - (-3x-9)2) (f+9) - (12f 79)3) (75 X²)+ 23 + 13) - (15 X² - X + 40)
for 1.
2x+43+3x+9=5x+52
2.
f+9-12f+9=f-12f+9-9=-11f
3.
75x^2 +23x+13-15x^2+x-40=
=60x^2+24x-27
for 2)
23d^3+(7g^9)^13
remember that power to the power means that you need to multipy the exponents
=23d^3+7^13g^117
34x(2x-11)=68x^2-374x
2m(m+3n)=2 m^2+6mn
we have lenght
l=2x+5
w=x+7
area, A= lxw
A= (2x+5)(x+7)
this is the polynomial for the area
if we have x=12
l= (2*12)+5=24+5=29
w=12+7=19
A=29*19=551 ft^2
find the measures of the angles of a right triangle where one of the acute angles is *3.5* times the other
Lets draw a picture of our problem:
where x denotes the measure of the base angle.
Since interior angles of any triangle add up to 180, we have
[tex]x+3.5x+90=180[/tex]which gives
[tex]4.5x+90=180[/tex]By subtracting 90 to both sides, we have
[tex]\begin{gathered} 4.5x=180-90 \\ 4.5x=90 \end{gathered}[/tex]Finally, by dividing both sides by 4.5, we get
[tex]\begin{gathered} x=\frac{90}{4.5} \\ x=20 \end{gathered}[/tex]Then, the base angle measures 20 degrees and the upper angle measure
[tex]3.5\times20=70[/tex]Therefore, the searched angles measure
[tex]20,70\text{ and 90}[/tex]12. Find DC.
A
20
54°
B
D
28°
C
The measure of the DC is 30.43 units after applying the trigonometric ratios in the right-angle triangle.
What is the triangle?In terms of geometry, a triangle is a three-sided polygon with three edges and three vertices. The triangle's interior angles add up to 180°.
It is given that:
A triangle is shown in the picture.
From the figure:
Applying sin ratio in triangle ADB
sin54 = BD/20
BD = 20sin54
BD = 16.18
Applying the tan ratio in triangle CDB
tan28 = 16.18/DC
DC = 30.43 units
Thus, the measure of the DC is 30.43 units after applying the trigonometric ratios in the right-angle triangle.
Learn more about the triangle here:
brainly.com/question/25813512
#SPJ1
I need help solving this and figuring out the plotting points.
SOLUTION
It is gien that the monthly salary is $2200
It is given that Keren receives additional $80 for every copy of English is fun she sells.
Let the number of English is fun she sells be n and let the total amount earned in the month be s
Thus the equation representing the total amount earned is:
[tex]s=2200+8n[/tex]The graph of the equation is shown:
In mid-2019, Coca-Cola Company had a share price of $39. Its dividend was $1.00 per year, and you expect Coca-Cola to raise this dividend by approximately 7% per year in perpetuity. If Coca-Cola’s equity cost of capital is 8%, what share price would you expect based on your estimate of the dividend growth rate?
The share price I would expect based on the estimate of the dividend growth rate is $10.70.
What is the share price?In order to determine the share price, the constant growth dividend model would be used. According to the model, the share price is a function of the cost of equity, dividend paid and growth rate.
Share price = next dividend / (cost of equity - growth rate)
Next dividend = current dividend x (1 + growth rate)
$1 x (1 + 0.07)
$1 x 1.07 = $1.07
Share price = $1,07 / (0.08 - 0.07)
$1.07 / 0.01 = $10.70
To learn more about share price, please check: https://brainly.com/question/14987553
#SPJ1
What is the product of 3√6 and 5√12 in simplest radical form?
In order to calculate and simplify this product, we need to use the following properties:
[tex]\begin{gathered} \sqrt[]{a}\cdot\sqrt[]{b}=\sqrt[]{a\cdot b} \\ \sqrt[c]{a^b}=a\sqrt[c]{a^{b-c}} \end{gathered}[/tex]So we have that:
[tex]\begin{gathered} 3\sqrt[]{6}\cdot5\sqrt[]{12} \\ =(3\cdot5)\cdot(\sqrt[]{6}\cdot\sqrt[]{2\cdot6}) \\ =15\cdot\sqrt[]{2\cdot6^2} \\ =15\cdot6\cdot\sqrt[]{2} \\ =90\sqrt[]{2} \end{gathered}[/tex]So the result in the simplest radical form is 90√2.
I have tried multiple times but still could not get the correct answer or at least accurate answers
Given:
R is the midpoint of QS.
[tex]RS=5\text{,RT}=13[/tex]The midpoint is the point on a line segment equally distant from the two endpoints.
It gives,
[tex]\begin{gathered} QR=RS\ldots\ldots\text{. R is midpoint of QS} \\ \Rightarrow QR=5 \end{gathered}[/tex]Also,
[tex]\begin{gathered} RS+ST=RT \\ 5+ST=13 \\ ST=13-5 \\ ST=8 \end{gathered}[/tex]So, QT is calculated as,
[tex]\begin{gathered} QT=QR+RE+ST \\ QT=5+5+8=18 \end{gathered}[/tex]Answer: QT = 18
Which of the following shows a matrix and its inverse?
To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be the inverse matrix.
[tex]\mleft[\begin{array}{cc|cc}-2 & 1 & 1 & 0 \\ 0 & -3 & 0 & 1\end{array}\mright][/tex][tex]\begin{gathered} R_1=\frac{R_{1}}{2}\mleft[\begin{array}{cc|cc}1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -3 & 0 & 1\end{array}\mright] \\ R_2=\frac{R_{2}}{3}\mleft[\begin{array}{cc|cc}1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & -\frac{1}{3}\end{array}\mright] \\ R_1=R_1+\frac{R_{2}}{2}\mleft[\begin{array}{cc|cc}1 & 0 & \frac{1}{2} & \frac{1}{6} \\ 0 & 1 & 0 & \frac{1}{3}\end{array}\mright] \end{gathered}[/tex]These corresponds to:
[tex]\mleft[\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\mright]\mleft[\begin{array}{cc}\frac{1}{2} & \frac{1}{6} \\ 0 & \frac{1}{3}\end{array}\mright][/tex]Which expression simplifies to 5. A. 27/3 - 14. B. 27/3+4. C. -27/3-4. D. -27/3+14
Which statements about the graph of the exponential function f(x) are TRUE?The x-intercept is 1.The y-intercept is 3.The asymptote is y = -3The range is all real numbers greater than -3The domain is all real numbers.f(x) is positive for all x-values greater than 1As x increases, f(x) approaches, but never reaches, -3.
1 The x-intercept is the value of x where the graph intersects the x-axis. The graph crosses the x-axis at x = 1. This statement is true.
2 The y-intercept is the value of y where the graph intersects the y-axis. The graph crosses the y-axis at y = -2. This statement is false.
3 The horizontal asymptote is the value of y to which the graph approaches but never reaches. This value seems to be y = -3, thus this statement is true.
4 The range is the set of values of y where the function exists. The graph exists only for values of y greater than -3. This statement is true.
5 We can give x any real value and the function exists, i.e., any vertical line would eventually intersect the graph. This statement is true.
To find the domain of a function when we are given the graph, we use the vertical line test. This consists of drawing an imaginary vertical line throughout the x-axis. If the line intersects the graph, that value of x is part of the domain.
This imaginary exercise gives us the centainty that there is no value of x that won't intercept the graph, thus the domain is the set of all the real values.
6 We can see the graph is positive exactly when the function has its x-intercept, thus This statement is true.
7 As x increases, y goes to infinity. The value of -3 is not a number where f(x) approaches when x increases, but when x decreases. This statement is false.
Write an equation in the form r(x) = p(x) / q(x) for each function shown below.Pls see pic for details
c.
The line equation is of the form
[tex]y=mx+c\ldots(1)[/tex]From the graph, we observe and find these points
(1,5) and (0,4) lie on the given line.
Substituting x=1, y=5 in equation (1), we get
[tex]5=m(1)+c[/tex][tex]m+c=5\ldots\text{.}(2)[/tex]Substituting x=0, y=4 in equation (1), we get
[tex]4=m(0)+c[/tex][tex]c=4[/tex]Substituting c=4 in equation (2), we get
[tex]m+4=5[/tex][tex]m=5-4[/tex][tex]m=1[/tex]Substituting c=4,m=1 in equation (1), we get
[tex]y=x+5[/tex]We need to write this equation in the form of r(x) = p(x) / q(x).
[tex]r(x)=\frac{p(x)}{q(x)}\ldots(3)[/tex]Let r(x)=x+5, q(x)=x, and subsitute in the equation , we get
[tex]x+5=\frac{p(x)}{x}[/tex]Using the cross-product method, we get
[tex]x(x+5)=p(x)[/tex][tex]x\times x+x\times5=p(x)[/tex][tex]x^2+5x=p(x)[/tex]Substitute values in equation (3), we get
[tex]x+5=\frac{x^2+5x}{x}[/tex]Hence the required equation is
[tex]x+5=\frac{x^2+5x}{x}[/tex]