Organ system that is responsible for breaking down food

a.Digestive
b.Respiratory
c.Circulatory
d.Nervous

Answers

Answer 1

Answer:

A. Digestive

Explanation:

Answer 2

Answer:

digestive system

Explanation:

since the digestive system secretes enzymes like amylase,lipase etc. required by the body for the proper breakdown of food.


Related Questions

What is the acceleration of the object if a 300-N force acting on a 25 kg object

Answers

Given parameters:

Force on the object = 300N

Mass of object  = 25kg

Unknown:

Acceleration  = ?

Solution:

According to Newton's second law of motion, force is a product of mass and acceleration.

   Force  = mass x acceleration

Input the parameters and solve for the acceleration;

         300  = 25 x acceleration

           Acceleration  = 12m/s²

The acceleration is  12m/s²

A boy and a girl are pulling a heavy crate at the same time with 7 units of firce each. What is the net force acts on the ibject? Is the object balanced or unbalanced?

Answers

Answer:

Net force= 14 units

The object is unbalanced

Explanation:

The net force refers to the sum of all forces applied to an object. However, the direction of force applied determine the net force. In this question, a boy and girl is pulling a heavy crate at the same time.

This means that the force is in the same direction, hence, the net force will be:

F(N) = 7 + 7 = 14 unit

However, since the pull is occuring at the same direction. This means that the object has a net force, therefore, will move in a particular direction. This means that the OBJECT IS UNBALANCED

A rectangular loop with an area of 2 m2 is placed perpendicular to a uniform magnetic field of 1 Tesla. The field’s magnitude is increased to 6 Tesla in 4 seconds. The magnitude of the induced emf is equal to:

Answers

Answer:

Induced emf = 0

Explanation:

An emf can be induced due to the change in magnetic field. It can be given by :

[tex]\epsilon=\dfrac{d\phi}{dt}\\\\\because \phi=BA\cos\theta\\\\\epsilon=\dfrac{d(BA\cos\theta)}{dt}\\\\\epsilon=A\cos\theta\dfrac{dB}{dt}[/tex]

As the loop is placed perpendicular to a uniform magnetic field of 1 Tesla. It means that [tex]\theta=90^{\circ}[/tex] and cos(90) = 0. Hence, the induced emf is equal to 0.

A pair of glasses is dropped from the top of a 32.0m stadium. A pen is dropped 2.Os later. How high above the ground is the pen when the spectacles hit the ground? Neglect the air resistance.

Answers

Answer:

[tex]h_p = 30.46\ m[/tex]

Explanation:

Free Fall Motion

A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.

The speed vf of the object when a time t has passed is given by:

[tex]v_f=g\cdot t[/tex]

Where [tex]g = 9.8 m/s^2[/tex]

Similarly, the distance y the object has traveled is calculated as follows:

[tex]\displaystyle y=\frac{g\cdot t^2}{2}[/tex]

If we know the height h from which the object was dropped, we can solve the above equation for t:

[tex]\displaystyle t=\sqrt{\frac{2\cdot y}{g}}[/tex]

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

[tex]\displaystyle t_1=\sqrt{\frac{2\cdot 32}{9.8}}=2.56\ sec[/tex]

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

[tex]t_2=2.56 - 2 = 0.56\ sec[/tex]

Therefore, it has traveled down a distance:

[tex]\displaystyle y=\frac{9.8\cdot 0.56^2}{2} = 1.54\ m[/tex]

Thus, the height of the pen is:

[tex]h_p = 32 - 1.54\Rightarrow h_p=30.46\ m[/tex]

The pen is 30.52 m above the ground.

Given that the height of the stadium is h = 32m

The initial velocity of the glasses will be 0.

[tex]h=\frac{1}{2}gt^{2} \\t=\sqrt{\frac{2h}{g} } \\t=\sqrt{\frac{2*32}{9.8} }\\t=2.55s[/tex]is the time taken for the glasses to hit the ground.

Now the pen is released 2 seconds later. So by the time the glasses hit the ground the pen has spent:

[tex]t^{'}=2.55-2\\t^{'}=0.55s[/tex]in the air

distance traveled by the pen:

[tex]d=\frac{1}{2}gt^{2}\\\\d=\frac{1}{2}*9.8*0.55*0.55\\\\d=1.48m[/tex]

So the pen is  [tex]h-d=32-1.48=30.52m[/tex]  above the ground.

Learn More:

https://brainly.com/question/24018491

The Newton unit obtained from

A)Kg.m/s2
B) Kg. m
C) kg/m
D) kg ml​

Answers

Answer:

Explanation:

The Newtons unit is kg. m/s2

Option A is the correct answer

A boy pushes a box with a force of 150 N at an angle of 40 with a flat floor. What component of his force is directed downward , or into the floor . PLEASE ANSWER!!!!!

Answers

Answer:

[tex]F_y=96.4N[/tex]

Explanation:

Hello.

In this case, considering the force diagram shown on the attached picture, we can see that the component of his force is directed downwards is:

[tex]F_y=F\times sin (\theta)[/tex]

Because the other component is the horizontal one:

[tex]F_x=F\times cos(\theta)[/tex]

In this case, the y-component force turns out:

[tex]F_y=150N\times sin (40\°)\\\\F_y=96.4N[/tex]

Moreover, the x-component force is also computed if required:

[tex]F_x=150N\times cos(40\°)\\\\F_x=114.9N[/tex]

Best regards.

Help please!!!!!!!!!!!!!

Answers

Answer:

The second choice

Explanation:

I think the answer is the second choice because if the surface is smooth, there is less friction. With a boat, it is easier to pull it on water than on the sand, because water has less friction, and thus, the answer is the second choice because rough surfaces have more friction.

Hopefully the explanation and answer helps!

can you describe your own perspective whats Physical Science all about? PLS GUYS HELP​

Answers

Answer:

Physical science is the study of the inorganic world. That is, it does not study living things.  The four main branches of physical science are astronomy, physics, chemistry, and the Earth sciences, which include meteorology and geology.

The nervous system has two distinct branches. They are the:

Answers

Answer:

central nervous system

peripheral nervous system

Explanation:

The nervous system has two main parts: The central nervous system is made up of the brain and spinal cord. The peripheral nervous system is made up of nerves that branch off from the spinal cord and extend to all parts of the body.Oct 1, 2018

Answer:

The central nervous system

The peripheral nervous system

Explanation:

The central nervous system (CNS) is the brain and spinal cord, and the peripheral nervous system (PNS) is everything else

(DUE IN FIVE MINUTES, QUICK)

Explain why your weight would change if you went to the moon, but your mass wouldn’t.

Answers

The moon's gravitation force is determined by the mass and the size of the moon. Since the moon has significantly less mass than the Earth, it will not pull objects toward itself at the strength that Earth will.

Which of the following does not discribe a mineral

Answers

Answer:

give us some further context to answer your question as well

Explanation:

Part B
You should find that your Interpolated and extrapolated values are not even close to the actual recorded values for these
displacement and velocity readings. Describe the basic assumption behind Interpolation and extrapolation, then for at least
one of these values explain why the calculated value was significantly larger or smaller than the recorded value.
BI
x
Font Sizes
A- A-EIE 3
I
Characters used: 0 / 15000

Answers

Answer:

When ever we use interpolation and extrapolation in our case we use linear approximation but the displacement verses time graph as well as velocity verses time grph are not linear so that whenever we use interpolatio and extrapolation we did not get close readings to the actual recorded values.

Explanation:

A 1.10-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of vi = 2.60 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e).

The right end of a horizontal spring labeled k is attached to a wall. Five images show five configurations as a block labeled m approaches, compresses, and then moves away from the spring.
In figure a, the block is to the left of the spring, and an arrow above the block points to the right.
In figure b, the block is just touching the uncompressed spring, and an arrow labeled vector vi above the block points to the right.
In figure c, the block has compressed the spring by a distance d, and a label indicates vector vf = 0.
In figure d, the block is just touching the uncompressed spring, and an arrow labeled vector v above the block points to the left.
In figure e, the block is a distance D away from the spring, and a label indicates vector v = 0.
(a)
Find the distance of compression d (in m).
m
(b)
Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d).
m/s
(c)
Find the distance D (in m) where the object comes to rest.
m
(d)
What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to rest after moving to the left?
m

Answers

Answer:

(a) Approximately [tex]0.335\; \rm m[/tex].

(b) Approximately [tex]1.86\; \rm m\cdot s^{-1}[/tex].

(c) Approximately [tex]0.707\; \rm m[/tex].

(d) Approximately [tex]0.228\; \rm m[/tex].

Explanation:

[tex]v_i[/tex] denotes the velocity of the object in the first diagram right before it came into contact with the spring. Let [tex]m[/tex] denote the mass of the block. Let [tex]\mu[/tex] denote the constant of kinetic friction between the object and the surface. Let [tex]g[/tex] denote the constant of gravitational acceleration.Let [tex]k[/tex] denote the spring constant of this spring.(a)

Consider the conversion of energy in this object-spring system.

First diagram: Right before the object came into contact with the spring, the object carries kinetic energy [tex]\displaystyle \frac{1}{2}\, m \cdot {v_{i}}^2[/tex].

Second diagram: As the object moves towards the position in the third diagram, the spring gains elastic potential energy. At the same time, the object loses energy due to friction.

Third diagram: After the velocity of the object becomes zero, it has moved a distance of [tex]D[/tex] and compressed the spring by the same distance.

Energy lost to friction: [tex]\underbrace{(\mu \cdot m \cdot g)}_{\text{friction}} \cdot D[/tex]. Elastic potential energy that the spring has gained: [tex]\displaystyle \frac{1}{2}\,k\, D^2[/tex].

The sum of these two energies should match the initial kinetic energy of the object (before it comes into contact with the spring.) That is:

[tex]\displaystyle \frac{1}{2}\, m \cdot {v_{i}}^{2} = (\mu\cdot m \cdot g) \cdot D + \frac{1}{2}\, k \cdot D^2[/tex].

Assume that [tex]g = 9.81\; \rm m \cdot s^{-2}[/tex]. In the equation above, all symbols other than [tex]D[/tex] have known values:

[tex]m =1.10\; \rm kg[/tex].[tex]v_i = 2.60\; \rm m \cdot s^{-1}[/tex].[tex]\mu = 0.250[/tex].[tex]g = 9.81\; \rm m \cdot s^{-2}[/tex].[tex]k = 50.0\; \rm N \cdot m^{-1}[/tex].

Substitute in the known values to obtain an equation for [tex]D[/tex] (where the unit of [tex]D\![/tex] is [tex]m[/tex].)

[tex]3.178 = 2.69775\, D + 25\, D^2[/tex].

[tex]2.69775\, D + 25\, D^2 + 3.178 = 0[/tex].

Simplify and solve for [tex]D[/tex]. Note that [tex]D > 0[/tex] because the energy lost to friction should be greater than zero.

[tex]D \approx 0.335\; \rm m[/tex].

(b)

The energy of the object-spring system in the third diagram is the same as the elastic potential energy of the spring:

[tex]\displaystyle \frac{1}{2}\,k\, D^2 \approx 2.81\; \rm J[/tex].

As the object moves to the left, part of that energy will be lost to friction:

[tex](\mu \cdot m \cdot g) \, D \approx 0.905\; \rm J[/tex].

The rest will become the kinetic energy of that block by the time the block reaches the position in the fourth diagram:

[tex]2.81\; \rm J - 0.905\; \rm J \approx 1.91\; \rm J[/tex].

Calculate the velocity corresponding to that kinetic energy:

[tex]\displaystyle v =\sqrt{\frac{2\, (\text{Kinetic Energy})}{m}} \approx 1.86\; \rm m \cdot s^{-1}[/tex].

(c)

As the object moves from the position in the fourth diagram to the position in the fifth, all its kinetic energy ([tex]1.91\; \rm J[/tex]) would be lost to friction.

How far would the object need to move on the surface to lose that much energy to friction? Again, the size of the friction force is [tex]\mu \cdot m \cdot g[/tex].

[tex]\displaystyle (\text{Distance Travelled}) = \frac{\text{(Work Done by friction)}}{\text{(Size of the Friction Force)}} \approx0.707\; \rm m[/tex].

(d)

Similar to (a), solving (d) involves another quadratic equation about [tex]D[/tex].

Left-hand side of the equation: kinetic energy of the object (as in the fourth diagram,) [tex]1.91\; \rm J[/tex].

Right-hand side of the equation: energy lost to friction, plus the gain in the elastic potential energy of the spring.

[tex]\displaystyle {1.91\; \rm J} \approx (\mu\cdot m \cdot g) \cdot D + \frac{1}{2}\, k \cdot D^2[/tex].

[tex]25\, D^2 + 2.69775\, D - 1.90811\approx 0[/tex].

Again, [tex]D > 0[/tex] because the energy lost to friction is greater than zero.

[tex]D \approx 0.228\; \rm m[/tex].

The energy transferred between the object and the spring as a closed system, therefore, conserved are;

(a) The distance of compression, d ≈ 0.3354 meters

(b) The speed in the un-stretched position wen the object is sliding to the left, v ≈ 1.8623 m/s

(c) The distance where the object comes to rest, D ≈ 0.7071 m

(d) The distance the object will come to rest attached to the spring, D ≈ 0.2278 m

The reason the above values are correct are as follows;

The known parameters are;

Mass of the object, m₁ = 1.10 kg

Coefficient of friction, μ = 0.250

The initial speed of the object, [tex]v_i[/tex] = 2.60 m/s

Force constant of the spring, K = 50.0 N/m

Distance the spring is compressed by the object = d

(a) Conservation of energy principle

[tex]Kinetic \ energy = \dfrac{1}{2} \cdot m\cdot v^2[/tex]

Work done = Force × Distance

Friction force, [tex]F_f[/tex] = W × μ

Weight, W = m·g

Weight = Mass × Acceleration

Energy transferred by object = Work done by spring + Work done by friction

[tex]Energy \ transferred \ by \ object = Kinetic \ energy = \dfrac{1}{2} \times 1.10\times 2.60^2 = 3.718[/tex]

Energy transferred by object = 3.718 J

[tex]Work \ done \ by \ spring = \dfrac{1}{2} \cdot k\cdot x^2[/tex]

[tex]Work \ by \ spring \ to \ bring \ object \ to \ rest, \ W_{spring} = \dfrac{1}{2} \times 50\times d^2[/tex]

[tex]W_{spring}[/tex] = 25·d²

Work done by friction, [tex]W_{friction}[/tex] = 1.10×9.81×0.250×d = 2.69775·d

Therefore;

3.718 = 25·d² + 2.69775·d

25·d² + 2.69775·d - 3.718 = 0

Solving gives

The distance of the compression d ≈ 0.3354 m

(b) The energy given by the spring = 25·d²

The work done by friction, [tex]W_{friction}[/tex] = 2.69775·d

Kinetic energy given to object = 0.55·v²

0.55·v² = 25·d² - 2.69775·d

0.55·v² = 25×0.3354² - 2.69775×0.3354

∴ v = √(3.4682) = 1.8623

The velocity of the object at the un stretched position, v ≈ 1.8623 m/s

(c) The kinetic energy, K.E. of the object on the way left is given as follows;

K.E. = 0.5 × 1.10 kg × 3.4682 m²/s² = 1.90751 J

The work done by friction before object comes to rest = 2.69775·D

[tex]D = \dfrac{1.90751 \, J}{2.69775 \, N} \approx 0.7071 \, m[/tex]

The distance where the object comes to rest, D ≈ 0.7071 m

(d) The work done on spring, [tex]W_{spring}[/tex] = 25·D'²

Work done on friction, [tex]W_{friction}[/tex] = 2.69775·D'

Kinetic energy of object, K.E. ≈ 1.90751 J

K.E. = [tex]W_{spring}[/tex] + [tex]W_{friction}[/tex]

1.90751 ≈ 25·D'² + 2.6775·D'

25·D'² + 2.6775·D' - 1.90751 = 0

Solving with a graphing calculator gives;

D' ≈ 0.2278 m

The new value of the distance D = 0.2278 m

Learn more about the energy conservation principle here:

https://brainly.com/question/928985

Type of tissue that helps with movement.Immersive Reader

a. Epithelial
b.Muscle
c.Connective
d.Nervous

Answers

the answer is b. muscle

The two main types of weathering are (4 points)
A. mechanical and physical
B. physical and kinetic
C. chemical and physical
D. chemical and acidic

Answers

Answer:

b

Explanation:

Answer:

its acually c

Explanation:

3. An object with a mass of 3.2 kg has a force of 6.2 N applied to it. What is the resulting acceleration
of the object?

Answers

Answer:

The answer is 1.94 m/s²

Explanation:

The acceleration of an object given it's mass and the force acting on it can be found by using the formula

[tex]a = \frac{f}{m} \\ [/tex]

where

f is the force

m is the acceleration

From the question we have

[tex]a = \frac{6.2}{3.2} \\ = 1.9375[/tex]

We have the final answer as

1.94 m/s²

Hope this helps you

The resultant force is equel to the.......of all the force


A) sum
B) product
C) subtraction
D) Division​

Answers

Answer:

A) sum

Explanation:

That's the answer bro

Answer:

the answer is C subtraction

The number of
• in the atom of an element determines its chemical properties.

Answers

Answer:

Yes, the number of electrons determines the chemical properties of the atom.

Explanation:

PLEASE HELP

Discussion: If you put something like a piece of cardboard between a magnet and an iron nail, the magnet still holds the nail in place, even though the magnet is not touching the nail Explain how that happens. Use the words induce, magnetic field, permanent magnet and temporary magnet in your response.​

Answers

The magnetic field is holding onto the nail that’s all I got

If a pair of shoes weighs 0.3 N on Pluto what is the strength of gravity on Pluto

Answers

Answer:

0.6 m/s 2

Explanation:

A block is attached to one end of a spring with the other end of the spring fixed to a wall. The block is vibrating horizontally on a frictionless surface. If the mass of the block is 4.0 kg, the spring constant is k

Answers

Complete Question

A block is attached to one end of a spring with the other end of the spring fixed to a wall. The block is vibrating horizontally on a frictionless surface. If the mass of the block is 4.0 kg, the spring constant is k = 100 N/m, and the maximum distance of the block from the equilibrium position is 20 cm, what is the speed of the block at an instant when it is a distance of 16 cm from the equilibrium position?

Answer:

The velocity is [tex]v = 0.6 \ m/s[/tex]

Explanation:

From the question we are told that

  The mass of the block is  m =  4.0 kg

  The spring constant is k =  100 N/m

  The maximum distance of the block from equilibrium position is  d = 20 cm =0.20 m

   The distance considered is  [tex]d_k = 16 \ cm = 0.16 \ m[/tex]

Generally the maximum energy stored in the spring is mathematically represented as

      [tex]E = \frac{1}{2} * k * d^2[/tex]

=>  [tex]E = \frac{1}{2} *100 * 0.2^2[/tex]

=>  [tex]E = 2.0 \ J[/tex]

Gnerally according to the law of energy conservation

   The energy maximum energy of  the spring = energy of  the spring at [tex]d_k[/tex] + energy of the block at [tex]d_k[/tex]

Here energy of the block at [tex]d_k[/tex] is mathematically represented as

        [tex]K_1 = \frac{1}{2} mv^2[/tex]

=>    [tex]K_1 = \frac{1}{2} * 4* v^2[/tex]

=>    [tex]K_1 = 2v^2[/tex]

Generally the energy of the spring at [tex]d_k[/tex] is mathematically represented as

      [tex]E_2 =\frac{1}{2} * k * d_k^2[/tex]

=>    [tex]E_2 =\frac{1}{2} * 100 * (0.16)^2[/tex]

=>    [tex]E_2 =1.28 \ J[/tex]

So

       [tex]2.0 = 1.28 + 2v^2[/tex]

=>    [tex]v = 0.6 \ m/s[/tex]

     

   

How are gas giants similar to one another?

Answers

Answer:

they are all made of gass and they are all giants.

Explanation:

Answer:

How are the gas giants similar to one another? dont have solid surfaces and are much larger than earth. Why do all of the gas giants have thick atmospheres? Because they are so massive, the gas giants exert a much stronger gravitational force than the terrestrial planets

Explanation:

A helpful association method like remembering the Allies during World War II as BAR
(Britain, America, and Russia) is called
O an acronym
O the DAP flashcard method
O a visual image
O a mind map

Answers

Answer:

an acronym because it is shorted to remember like mvemjsun it's the planet

An archer shoots an arrow with vertical velocity of 10 m/s and horizontal velocity of
30m/s. What is the maximum height the arrow reaches?

Answers

Answer:

5.1 m

Explanation:

Given in the y direction:

v₀ = 10 m/s

v = 0 m/s

a = -9.8 m/s²

Find: Δy

v² = v₀² + 2aΔy

(0 m/s)² = (10 m/s)² + 2 (-9.8 m/s²) Δy

Δy = 5.1 m

A planned high-speed train between Houston and Dallas will travel a distance of 386 kilometers in 5.40 × 103 seconds. What is the average speed of this train?

Answers

The answer to your question is


556.2

why a dam is thicker at the bottom than it's top​

Answers

Answer: Due to water pressure.

Explanation:

As depth increases so does the pressure.

is newton's first law true on earth?

Answers

Newton's First Law states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force.

THIS LAW IS TRUE AS IT ALSO HAVE A REAL LIFE EXAMPLE.

Examples of Newton's 1st Law : If you slide a hockey puck on ice, eventually it will stop, because of friction on the ice. It will also stop if it hits something, like a player's stick or a goalpost.

1) Which of the following is considered an effective treatment for someone with hearing loss based on nerve damage?

TAD
Cochlear implant
Hearing aid
OBI
No treatment available


2) Sylvester is dealing with hearing loss. The doctor informs him that his basilar membrane is damaged. What type of hearing loss is Sylvester experiencing?

Nerve deafness
Conduction hearing loss
Cochlear hearing loss
Conduction deafness
Sensory hearing loss

Answers

Answer:

For number 1 no treatment available , number 2 cochlear hearing loss

Explanation:

nerve damage is permanent

What causes tides to occur in the ocean?

Waves
Wind
Gravitational pull
Coriolis effect

Answers

Answer:

Gravitational pull

Explanation:

The moon pulls the tides

Answer: gravitational pull

Tides are caused by a gravitational pull from the Moon. Ocean/bay tides rise because of this pull for the gravity under the water. This can happen every day up to 6 times.

Electricity & Magnetism
4
Electricity can be used to produce powerful forces.
What type of energy is electricity converted to in an electromagnet?
A. sound energy
B.
heat energy
C. light energy
D. magnetic energy

Answers

The answer is A. Sound Energy
Other Questions
On the map above, river A is the __________ River and river B is the __________ River.A. Congo . . . RwenzoriB. Zambezi . . . CongoC. Congo . . . ZambeziD. Zambezi . . . RwenzoriPlease select the best answer from the choices provided A B C D 52x16 please add explaining to show me how to do it Which of the following limited topics would be appropriate for a short paper?How Mia Hamm revolutionized soccerSoccer skillsHow Mia Hamm revolutionized soccerSoccer in Angland (-3)^4 in expanded form what is a simple meaning of political region?what is a simple meaning of cultural region? 25. What geographic feature is at an altitude of 0 Km. Read the problem in the box below. Make a list to help you find the correctanswer.Radio listeners were asked to call in and pick theirtwo favorite rodents. The listeners had 4 choices:Woodchuck, Prairie dog, Beaver and Chipmunk.Which of the following is the complete list of thepossible pairs of rodents?A. WP, PW, WC, PB, PC, BP0 0B. WP, WB, WC, PB, PC, BWC. WP WB, WC, PB, PC, BCD. WP CB, WC, CP, PC, BC (this is 6th grade science so thats the closet subject I could find) Do you know an adult who drinks coffee, tea, or soda pop? Think about that person and picture them in your mind. Write a description to help that person understand how they can smell their favorite beverage even though its a liquid. im kinda dumb here ... need help again 2 physical properties for manganese What were 3 problems King Louis XVI faced in the 1780s? What were African Americans efforts to build a society? Microwave popcorn or movie theater popcorn ? A. How many molecules of sugar are in 20.5 g of sugar? Answer please!!Christopher Columbus and other navigators of his time were looking primarily for...(choose all that very)1.new trade routes to Asia2.new trade routes to Australia3.new trade routes to Africa4.new trade routes to the Americas Determine the acceleration that an unbalanced force of 28 N gives to a 6.8 kg mass. Question 5(Multiple Choice Worth 5 points)(MC)STORIES OF USEFUL INVENTIONS, excerptBy S. E. Forman1911THE MATCHThere never was a time when the world was without fire, but there was a time when men did not know how to kindle fire; and after they learned how to kindle one, it was a long, long time before they learned how to kindle one easily. In these days we can kindle a fire without any trouble, because we can easily get a match; but we must remember that the match is one of the most wonderful things in the world, and that it took men thousands of years to learn how to make one. Let us learn the history of this familiar little object, the match.Fire was first given to man by nature itself. When a forest is set on fire by cinders from a neighboring volcano, or when a tree is set ablaze by a thunderbolt, we may say that nature strikes a match. In the early history of the world, nature had to kindle all the fires, for man by his own effort was unable to produce a spark. The first method, then, of getting fire for use was to light sticks of wood at a flame kindled by natureby a volcano, perhaps, or by a stroke of lightning. These firebrands were carried to the home and used in kindling the fires there. The fire secured in this way was carefully guarded and was kept burning as long as possible. But the flame, however faithfully watched, would sometimes be extinguished. A sudden gust of wind or a sudden shower would put it out. Then a new firebrand would have to be secured, and this often meant a long journey and a deal of trouble.In 1827, John Walker, a druggist in a small English town, tipped a splint with sulphur, chlorate of potash, and sulphid of antimony, and rubbed it on sandpaper, and it burst into flame. The druggist had discovered the first friction-chemical match, the kind we use to-day. It is called friction-chemical because it is made by mixing certain chemicals together and rubbing them. Although Walker's match did not require the bottle of acid, nevertheless it was not a good one. It could be lighted only by hard rubbing, and it sputtered and threw fire in all directions. In a few years, however, phosphorus was substituted on the tip for antimony, and the change worked wonders. The match could now be lighted with very little rubbing, and it was no longer necessary to have sandpaper upon which to rub it. It would ignite when rubbed on any dry surface, and there was no longer any sputtering. This was the phosphorus match, the match with which we are so familiar.Which sentence from the text describes a problem with Walker's match that the phosphorus match tried to solve? A. A sudden gust of wind or a sudden shower would put it out.B. Although Walker's match did not require the bottle of acid, nevertheless it was not a good one.C. A druggist in a small English town, tipped a splint with sulphur, chlorate of potash, and sulphid of antimony.D. It could be lighted only by hard rubbing, and it sputtered and threw fire in all directions. If the sum of twice a number and 3 is 15. what is the value of 8x? Write the equation of the line that passes through the points (-7, -3) and(-2,-1) Read the sentence from Barrio Boy by Ernesto Galarza."Now, Ernesto, you are the man of the family. You will take care of your mother until we are together in Sacramento.Which statement best describes the figurative language used in these sentences?A simile is used to compare Ernesto to a man.B simile is used to paint a picture of family life.C metaphor is used to compare a man and his family.D metaphor is used to paint a picture of responsibility.