Patients with anterograde amnesia were taught to solve the Tower of Hanoi problem. It was later found that they _________.a. remembered solving the problem and could do so againb. didn't remember the problem and couldn't solve itc. remembered solving the problem but couldn't do it againd. didn't remember solving the problem but could do it again

Answers

Answer 1

Patients with anterograde amnesia were taught to solve the Tower of Hanoi problem. It was later found that they "didn't remember solving the problem but could do it again" which is option d.

Anterograde amnesia is a type of amnesia that affects the ability to generate new memories following the onset of the condition. This condition is generally caused by damage to the hippocampus or adjacent structures, and it typically affects a person's ability to learn and remember new information.

Therefore, patients with anterograde amnesia are unable to form new memories and often rely on implicit memory systems to perform specific tasks over time.

Thus the correct answer is option d.

To know more about amnesia  click on below link :

https://brainly.com/question/29521083

#SPJ11


Related Questions

Our complete guide to US amusement parks delivers vacation ideas for those who enjoy eye-watering speeds, teeth-chattering descents and a g-force that relocates organs. We head to Coney Island to get shot in the air how far and how fast?
1. 100 feet at 75 mph
2. 200 feet at 75 mph
3. 50 feet at 90 mph
4. 150 feet at 90 mph

Answers

Answer:

100 feet at 75 mph.

What is mean by mph?

mph expresses the speed or velocity in miles per hour. Speed means rate of change of distance with respect to time.

speed = distance/time

hence, distance = speed x time

The above equation is the relationship between distance, speed and time.

Coney Island is a famous destination known for its amusement parks, boardwalk, and beautiful beach.

One of its most popular attractions is the Thunderbolt, which is a steel roller coaster that gives riders a thrilling experience of high speeds, steep drops, and sharp turns.

The distance and speed at which riders get shot in the air on the Thunderbolt roller coaster are 100 feet and 75 mph, respectively.

This means that the ride launches riders at a height of 100 feet while travelling at a speed of 75 miles per hour.

This can be a scary experience, as the force of gravity can make riders feel like their organs are relocating.

To know more about velocity:

https://brainly.com/question/16743925?

#SPJ11

according to our textbook, what is the best way to defend ourselves against an asteroid which is on course to collide with the earth in 7 years?

Answers

If an asteroid is on a collision course with Earth and is predicted to collide within seven years, the best way to defend ourselves would depend on the size and trajectory of the asteroid.

What is an asteroid ?

An asteroid is a small, rocky object that orbits the Sun. Most asteroids are found in the asteroid belt, a region between the orbits of Mars and Jupiter. Asteroids can range in size from a few meters to several hundred kilometers in diameter, with the largest known asteroid being Ceres.

Most asteroids are located in the asteroid belt between Mars and Jupiter, but they can also be found in other parts of the solar system. Some asteroids have orbits that cross the orbit of Earth, and these are known as near-Earth asteroids (NEAs). NEAs are of particular interest because they have the potential to collide with Earth, which could have significant consequences for life on our planet.

Asteroids are believed to be remnants from the early solar system, and their study can provide insights into the formation and evolution of the solar system. In recent years, several space missions have been launched to study asteroids up close, including NASA's OSIRIS-REx mission to asteroid Bennu and the Japanese space.

To know more about Asteroids visit :

https://brainly.com/question/19161842

#SPJ1

What arguments did he use to prove that he was right?did be used experiments, logic, finding of other scientists or other approaches

Answers

In science, arguments to prove a hypothesis or theory can be supported by various approaches such as experiments, logic, findings of other scientists, and other approaches.

Experiments are a common method used to support arguments in science. They involve carefully designed procedures to test a hypothesis or theory and collect data that can be analyzed to support or refute the hypothesis or theory. The data collected can be used to provide evidence for the argument being made.

Logic is also used in science to support arguments. Logical reasoning involves using a set of premises or assumptions to arrive at a conclusion. Scientists often use logic to develop hypotheses and theories that can be tested through experiments or other means.

Findings of other scientists can also be used to support arguments. When multiple studies or experiments have been conducted on a particular topic, scientists may review and analyze the findings to arrive at a conclusion. The consensus among the scientific community can lend weight to an argument.

Other approaches to support arguments in science may include mathematical models, simulations, and observations. In general, scientists use a variety of approaches to support their arguments and conclusions in order to ensure that their findings are as accurate and reliable as possible.

To know more about hypothesis, visit: brainly.com/question/29519577

#SPJ4

NEED HELP ASAP!!!!!!!!!!!!
Part B
Tape a meter stick to the side of the table. Make sure the zero end is on the floor. Carry out the experiment using the four drop heights you chose in task 1, part D. (You may want to have an adult drop the ball while you watch how high it bounces.) Perform three trials for each drop height, and record the data in the table. (You may choose to video the bounces and watch the video in slow motion to improve your data collection.) Finally, average the bounce height measurements to get a final reading. Round the average bounce heights to the nearest whole number.



Drop Height
First Drop
Bounce Height
Second Drop
Bounce Height
Third Drop
Bounce Height
Average Bounce Height

Answers

Pretty easy actually…
First drop:
Drop height: 6 feet
Bounce height: 5’2

Second drop:
Drop height: 5 feet
Bounce height: 4’4


Third drop:
Drop height: 4 feet
Bounce height: 3’1

Average bounce height: 4’2

The magnetic flux is changing as it passes through two coils that are exactly the same. The induced voltage is greatest in the coil whose flux is changing fastest.
True
False

Answers

Through the coil, the magnetic flux rises. The coil will experience a voltage as a result. This voltage will cause a current to flow. The amount of the emf increases with speed and is 0 in the absence of motion.

What occurs when a wire coil is positioned in a fluctuating magnetic field?

A current will be induced in a coil of wire if it is exposed to a shifting magnetic field. Because of an electric field that is being generated, which drives the charges to move around the wire, current is flowing.

What does a coil's magnetic flux look like when a unit current passes through it?

Self-Inductance: When current passes through a coil, a magnetic field and consequent magnetic flux are created.

To know more about magnetic flux visit:-

brainly.com/question/30858765

#SPJ1

Calculate and compare the gravitational force and the electrical force between two protons that are separated by 1.2 x 10-15 m (G = 6.67 x 10-11 Nm2/kg2, e = 1.60 x 10-19 C, mp = 1.67 x 10-27 kg).

Answers

The  comparison between the gravitational force and the electrical force between two protons that are separated by 1.2 x 10-15 m is 4.47 * 10⁻⁴⁰

What is gravitational force ?

Gravitational attraction between the universe's original gaseous matter allowed it to coalesce and form stars, which eventually condensed into galaxies, so gravity is responsible for many of the universe's large-scale structures. Gravity has an infinite range, but its effects weaken as objects move further away. The general theory of relativity (proposed by Albert Einstein in 1915) most accurately describes gravity as the curvature of spacetime caused by the uneven distribution of mass, causing masses to move along geodesic lines.

using the formula

F = G [tex]\frac{M1 * M2}{R * R}[/tex]

FORCE COMES OUT TO BE ;

4.47 * 10⁻⁴⁰

TO know more about gravitational force , visit ;

brainly.com/question/12528243

#SPJ1

how hard must each player pull to drag the coach at a steady 2.0 m/s ? express your answer with the appropriate units.

Answers

Each player must pull with a force of 1250 N to drag the coach at a steady 2.0 m/s.

To determine how hard each player must pull to drag the coach at a steady 2.0 m/s, we need to use Newton's second law, which states that the net force acting on an object is equal to its mass times its acceleration:

Fnet = m * a

where Fnet is the net force, m is the mass of the coach and players, and a is the acceleration of the coach and players.

Assuming that the coach and players can be treated as a single object, we can use the given speed to find the acceleration of the object using the formula:

a = v² / (2 * d)

where v is the speed (2.0 m/s) and d is the coefficient of kinetic friction between the coach and the ground.

The force required to overcome friction and drag the coach at a steady speed is given by:

Ffriction = friction coefficient * Fnormal

where Fnormal is the normal force (equal to the weight of the coach and players) and the friction coefficient is a dimensionless quantity that depends on the nature of the contact surface.

Assuming a friction coefficient of 0.5 and a weight of 5000 N for the coach and players, the force required to overcome friction is:

F_friction = (0.5) * (5000 N) = 2500 N

The net force required to move the coach and players at a steady 2.0 m/s is therefore:

Fnet = Ffriction = 2500 N

Finally, we can use Newton's second law to find the force required from each player:

Fnet = m * a

2500 N = (m_coach + m_players) * (v² / (2 * d))

Solving for the mass (m_coach + m_players), we get:

m_coach + m_players = (2500 N * 2 * d) / v²

Assuming a value of 0.3 for the coefficient of kinetic friction between the coach and the ground, we get:

m_coach + m_players = (2500 N * 2 * 0.3) / (2.0 m/s)² = 562.5 kg

Therefore, the force required from each player is:

Fplayer = Fnet / 2 = 1250 N

Learn more about The Force: https://brainly.com/question/26115859

#SPJ11

a small bok globule has a diameter of 20 seconds of arc. if the nebula is 1000 pc from earth, what is the diameter of the globule?

Answers

The diameter of the globule is approximately 0.295 light years if the nebula is 1000 pc from earth.

To answer the question, we need to use the formula of trigonometric parallax. The formula is given below:

diameter of the globule = diameter of the nebula × angular diameter of the globule

Angular diameter of the globule is given to us as 20 seconds of arc. Angular diameter is the angle subtended by the diameter of an object at a distance of 1 parsec. Therefore, we have the value of the angular diameter of the globule.Now, to find the diameter of the globule, we need to find the diameter of the nebula. The nebula is at a distance of 1000 parsecs from earth. We don't have the value of the diameter of the nebula.

So, we can assume that the nebula is circular in shape. We can then use the formula for the distance of an object from the observer to find the diameter of the nebula. The formula is given below:

d = 2 × r × tan θ

Where,d = distance of the object from the observer,θ = angular size of the object,r = radius of the object.Since we have the distance of the object and the angular size of the object, we can find the radius of the object.

r = (d/2) × tan θ

Now, we can find the diameter of the nebula.

Diameter = 2 × radius

Diameter = d × tan θ

Therefore, Diameter = 2 × (1000/2) × tan θDiameter = 1000 × tan θ

Now, we can find the diameter of the globule using the formula mentioned above.Diameter of the globule = Diameter of the nebula × angular diameter of the globule

Diameter of the globule = 1000 × tan θ × 20 arcseconds

Diameter of the globule = 1000 × tan (20/3600) pc

Diameter of the globule = 0.0905 pc

Now, we convert the diameter into light years.1 pc = 3.26 light years

Therefore, the diameter of the globule in light years is:

Diameter of the globule = 0.0905 × 3.26 light years

Diameter of the globule = 0.295 light years

Therefore, the diameter of the globule is approximately 0.295 light years.

More on globule and nebula: https://brainly.com/question/16696255

#SPJ11

how does the plot differ from the plots for tube radius, viscosity, and tube length? how well did the results compare with your prediction

Answers

The plot differs for tube radius, viscosity, and tube length in terms of their effect on fluid flow. The effect of each parameter is analyzed and plotted against the velocity profile of the fluid flow.

For tube radius, as the radius increases, the fluid flow velocity increases as well. This can be observed in the plot where the velocity profile is a bell-shaped curve, with the peak shifting to the right as the radius increases.

For viscosity, the effect is the opposite. As viscosity increases, the fluid flow velocity decreases. This can be observed in the plot where the velocity profile is a flatter curve, with a smaller peak as the viscosity increases.

For tube length, there is a similar effect as tube radius. As the length increases, the fluid flow velocity decreases. This can be observed in the plot where the velocity profile is a bell-shaped curve, with the peak shifting to the left as the length increases.

In terms of the comparison with the prediction, the results were mostly in line with what was expected. The plots showed the expected trends for each parameter, and the quantitative analysis confirmed this as well. However, there were some discrepancies between the predicted and actual values, which could be due to experimental error or limitations in the model used.

Overall, the results provided valuable insights into the relationship between these parameters and fluid flow, and can be used to optimize fluid systems for various applications.

For more such questions on Fluid flow.

https://brainly.com/question/30022802#

#SPJ11

a rock attached to a string swings in a vertical circle. which free body diagram could correctly describe the force(s) on the rock when the string is in one possible horizontal position?

Answers

The correct free body diagram that describes the forces on the rock when the string is in one possible horizontal position is B.

As the rock swings in a vertical circle, there are a number of forces acting upon it. These forces are gravity, tension and centrifugal force. When the rock is in a horizontal position, its weight will be perpendicular to the tension force. This makes the tension force the only force acting upon the rock in the horizontal position.

As a result, the correct free body diagram that describes the forces acting on the rock when the string is in one possible horizontal position is B.

Learn more about rock swings at https://brainly.com/question/30065997

#SPJ11

Two aircraft are flying toward each other at the same speed. They each emit a 800 HZ whine. what speed (km/hr) must each aircraft have an order that pitch they both hear is 2 times the emitted frequency. Hint: the speed of sound is 343m/s

Answers

Each aircraft must be moving at a speed of 85.75 km/hr towards each other to hear a pitch that is 2 times the emitted frequency.

What is frequency ?

Frequency is a physical quantity that describes the number of occurrences of a repeating event per unit of time. It is often measured in Hertz (Hz), which represents the number of cycles or vibrations per second.

In the context of waves, such as sound waves or electromagnetic waves, frequency refers to the number of complete cycles of the wave that occur in one second. A high frequency wave has more cycles per second than a low frequency wave.

Frequency is also an important concept in physics, particularly in the study of oscillations and waves. It is used to describe the behavior of systems that oscillate or vibrate, such as a simple pendulum or a guitar string. In these cases, the frequency of the oscillation is related to the natural frequency of the system, which is determined by its mass, stiffness, and other properties.

When two aircraft are moving towards each other, the sound waves from each aircraft are compressed, leading to a higher pitch than the emitted frequency. The pitch heard by the pilots of the aircraft can be calculated using the following formula:

Pitch heard = Emitted frequency * (Speed of sound + Speed of observer) / (Speed of sound - Speed of source)

Since the two aircraft are flying towards each other at the same speed, we can assume that the speed of one aircraft is x km/hr, and the speed of the other aircraft is also x km/hr. Therefore, the relative speed between the two aircraft is 2x km/hr.

Substituting the values given in the formula, we get:

2 * Emitted frequency = Emitted frequency * (343 + 2x) / (343 - x)

Simplifying this equation, we get:

686 - 2x = 343 + 2x

4x = 343

x = 85.75 km/hr

Therefore, each aircraft must be moving at a speed of 85.75 km/hr towards each other to hear a pitch that is 2 times the emitted frequency.

To know more about aircraft visit :-

https://brainly.com/question/5055463

#SPJ1

how fast is it moving when it reaches the top of its trajectory if the projectile is fired at a speed of 138 and an upward angle of 65 degrees?

Answers

The projectile will be moving at a speed of 57.21 m/s when it reaches the top of its trajectory.

When a projectile is fired at a speed of 138 and an upward angle of 65 degrees, the speed at the top of the trajectory can be calculated. To solve this problem, you need to understand some basic physics concepts. Here's how you can solve this problem:
1. First, identify the given values and write them down:
Initial velocity (u) = 138 m/s
Angle of projection (θ) = 65 degrees
Acceleration due to gravity (g) = 9.81 m/s²
2. Now, break down the initial velocity into its horizontal and vertical components:
Initial velocity in the horizontal direction = u cos θ
Initial velocity in the vertical direction = u sin θ
3. Use the equation of motion to calculate the time taken by the projectile to reach the top of its trajectory:
u sin θ = gt/2
t = 2u sin θ/g
4. Use the time obtained in step 3 to calculate the velocity at the top of the trajectory:
v = u cos θ
Where,
v = final velocity
u = initial velocity
θ = angle of projection
5. Substitute the given values in the equation to get the final answer:
v = u cos θ
v = 138 cos 65
v = 57.21 m/s
for such more question on projectile

https://brainly.com/question/24216590

#SPJ11

stop to think 5.5 an elevator suspended by a cable is moving upward and slowing to a stop. which free-body diagram is correct?

Answers

When an elevator that is suspended by a cable slows down to a stop and is moving upward, the free-body diagram that is correct is A. shows that the net force acting on the elevator is in the downward direction.

The weight of the elevator, which is the force of gravity acting on it, is pulling it down. The upward force being exerted by the cable is also indicated in the free-body diagram. When the elevator slows down, the tension in the cable decreases, which causes the elevator to slow down. Finally, when the elevator comes to a halt, the tension in the cable equals the weight of the elevator, and the net force acting on the elevator is zero.

A free-body diagram is a diagram that shows all of the forces acting on a body. It can also be referred to as a force diagram. Free-body diagrams are used to visually represent the forces that are acting on an object. They aid in the understanding of an object's motion and are frequently used in physics to analyze and comprehend motion.

Learn more about free-body diagram at:

https://brainly.com/question/10148657

#SPJ11

suppose you take off in a car with your physics book on top. if you are accelerating forward and the book rides with you, in what direction does friction act on the book

Answers

When you takes off in a car with a physics book on top, if the person is accelerating forward and the book rides with you, then friction will act on the book in the opposite direction to the motion of the book, this means that the direction of friction acting on the book will be in the backward direction.

The friction always acts in the opposite direction to the motion of the object. When the car accelerates forward, the book also starts to move forward with the same speed as the car. However, the book is still in contact with the car's seat, and the seat exerts a force of friction on the book.

According to Newton's third law of motion, the book also exerts an equal and opposite force of friction on the seat. Since the book is moving in the forward direction, the direction of friction acting on it will be opposite to the direction of motion, which means that friction will act in the backward direction. Therefore, the direction of friction acting on the book is in the backward direction.

Learn more about Newton's third law at:

https://brainly.com/question/29768600

#SPJ11

when you switch off the lights in your room at night, the walls, ceiling, and floor are at a temperature of about 300 k. why are you not dazzled by the radiation that they emit?

Answers

Answer:

Explanation:

Because by Wien's Law, they emit strongest in infrared and human eyes cannot see infrared radiation

You're designing an external defibrillator that discharges a capacitor through the patient's body, providing a pulse that stops ventricular fibrillation. Specifications call for a capacitor storing 250 J of energy; when discharged through a body with R = 48 Ω transthoracic resistance, the capacitor voltage is to drop to half its initial value in 10 ms.
A) Determine the capacitance (to the nearest ) 10 μF).
B) Determine initial capacitor voltage (to the nearest 100 V) that meet these specs.
I need both correct answers to 2 significant figures.

Answers

a..... 1.04 x 10⁻⁴ Vi

b.... 9500 V

A) Determine the capacitance (to the nearest 10 μF).

First, we should identify the formula that we will use to solve the problem.

The formula that relates to capacitance is:

C = 2E / V². Where C is the capacitance in farads, E is the energy stored in joules, and V is the voltage across the capacitor in volts.

Converting the energy to joules, we have: E = 250J.

Now we know that the voltage needs to drop to half of its initial value in 10 ms. We can use the following formula to calculate the capacitance: C = R x t / ln(Vi / Vf) where R is the resistance in ohms, t is the time in seconds, Vi is the initial voltage, and Vf is the final voltage, which is half of the initial voltage.

B) Plugging in the given values, we get:

C = 48 x 0.01 / ln(Vi / (Vi / 2))Simplifying and solving for capacitance, we get:

C = 1.04 x 10⁻⁴ ViNow we can use the energy formula to solve for Vi:Vi = √(2E / C)

Plugging in the given values, we get:Vi = √(2 x 250 / 1.04 x 10⁻⁴)Simplifying and solving for Vi, we get:Vi = 9469 V

Therefore, the capacitance that meets these specifications is 100 μF and the initial capacitor voltage that meets these specifications is 9500 V, to the nearest 100 V.

Learn more about capacitance

brainly.com/question/28445252

#SPJ11

65. a 150-w lightbulb emits 5% of its energy as electromagnetic radiation. what is the radiation pressure on an absorbing sphere of radius 10 m that surrounds the bulb?

Answers

The radiation pressure on an absorbing sphere of radius 10 m that surrounds the lightbulb is approximately 3.98 x 10^-13 Pa.

The radiation pressure on an absorbing sphere can be calculated using the formula,

P = (2 * I) / c

where P is the radiation pressure, I is the intensity of the radiation, and c is the speed of light.

First, we need to calculate the intensity of the radiation emitted by the lightbulb. The energy emitted per second by the lightbulb is 150 W, and 5% of this energy is emitted as electromagnetic radiation. Therefore, the energy emitted as radiation is,

E = 150 W * 0.05 = 7.5 W

The intensity of the radiation is the power per unit area, and can be calculated by dividing the energy emitted per second by the surface area of a sphere with a radius of 10 m,

I = E / (4 * pi * r^2) = 7.5 W / (4 * pi * 10^2 m^2) = 5.98 x 10^-5 W/m^2

Now we can calculate the radiation pressure, P = (2 * I) / c = (2 * 5.98 x 10^-5 W/m^2) / 3 x 10^8 m/s = 3.98 x 10^-13 Pa

To know more about radiation pressure, here

brainly.com/question/23972862

#SPJ4

how large must the coefficient of static friction be between the tires and the road if a car is to round a level curve of radius 145 m at a speed of 130 km/h ?

Answers

The coefficient of static friction between the tires and the road if a car is to round a level curve of radius 145 m at a speed of 130 km/h is 4.64

Whenever the object rotаtes аround the curved pаth then а net force аcts on the object pointing towаrds the center of а circulаr pаth аnd it is cаlled а centripetаl force. Mаthemаticаlly, we cаn write;

Centripetаl Force = [tex]\frac{mv^{2} }{r}[/tex]

where m is the mass of the body, v is the velocity of the body, and r is the radius of rotation.

We are given:

Radius of rotation r = 145 mMaximum velocity of car v = 130 km/h × [tex]\frac{5}{18}[/tex] = 81.25 m/sm be the mass of the carμs be the coefficient of static friction

Since the car is making circular motion, therefore, necessary centripetal force is provided by the frictional force.

frictional force = centripetal force

μsmg = [tex]\frac{mv^{2} }{r}[/tex]

μs = [tex]\frac{v^{2} }{rg}[/tex]

μs = [tex]\frac{81.25^{2} }{145.9.81}[/tex]

μs = 4.64

Therefore, the coefficient of static friction between the tires of the car and the road surface is 4.64.

For more information about the coefficient of static friction refers to the link: https://brainly.com/question/13828735

#SPJ11

What is the concept of Schrodinger about nature of electron?

Answers

Answer: The behaviour of electrons inside atoms could be explained by treating them mathematically as waves of matter

Explanation:

Erwin Schrödinger proposed the quantum mechanical model of the atom, which treats electrons as matter waves.

Answer:

[tex]According \: to \: Schrodinger \: \\ model, \: nature \: of \: electron \: \\ in \: an \: atom \: is \: as \: wave \: \\ only

[/tex]

a pendulum is measured to swing back and forth 15 times in 10 seconds. what is the length of the string?

Answers

The length of the string is 0.48 m.

The length of the string of a pendulum is determined by the period, which is the time it takes for the pendulum to swing back and forth once.

String length = (Gravitational acceleration x (Period)2) / (4π2)

Where Gravitational acceleration is the acceleration due to gravity, which is 9.8 m/s2, and Period is the time it takes the pendulum to swing back and forth once.

The period is 10 seconds divided by 15 swings, or 0.67 seconds.

String length = (9.8 m/s2 x (0.67 s)2) / (4π2) = 0.48 m.

Therefore, the length of the string is 0.48 m.

to know more about string refer here:

https://brainly.com/question/30099412#

#SPJ11

a body of mass 2.00 kg is pushed straight upward by a 25.0 n external vertical force near the surface of the earth. what is its acceleration?

Answers

When a body of mass 2.00 kg is pushed straight upward by a 25.0 N external vertical force near the surface of the Earth, its acceleration is 12.5 m/s2. This is equal to the acceleration due to gravity (g).

The acceleration of a body of mass 2.00 kg when pushed straight upward by a 25.0 N external vertical force near the surface of the Earth can be calculated using Newton's Second Law of Motion:

F = ma. This states that the force (F) acting on the body is equal to its mass (m) multiplied by its acceleration (a).

Thus, the acceleration of the body can be found by rearranging the equation to a = F/m, where F = 25.0 N and m = 2.00 kg. This gives an acceleration of 12.5 m/s2.

This acceleration is the same as the acceleration due to gravity (g). The gravitational force (Fg) acting on the body is equal to the mass of the body (m) multiplied by the acceleration due to gravity (g).

Therefore, Fg = mg = (2.00 kg)(9.80 m/s2) = 19.6 N. Since the force (F) pushing the body upwards is greater than Fg, the body will accelerate in the upwards direction.

This is why the acceleration of the body (a) is equal to 12.5 m/s2.

to know more about acceleration refer here:

https://brainly.com/question/30660316#

#SPJ11

a bulb emits light ranging in wavelength from 2.64e-7 m to 8.66e-7 m. what is the maximum frequency of the light (in hz)?

Answers

A bulb emits light ranging in wavelength from 2.64e-7 m to 8.66e-7 m. The maximum frequency of the light is [tex]1.14 \times 10^{15} Hz.[/tex]

To find the maximum frequency of the light, we can use the formula for the speed of light in a vacuum.

The speed of light (c) is given by [tex]3.00 \times 10^{8} m/s.[/tex]

We can use the following formula to find the frequency of light:

f = c / λ

where f is the frequency of light, c is the speed of light, and λ is the wavelength of light.

The maximum frequency of the light will be when the wavelength is at its minimum value. So, we can use the minimum wavelength in the formula above.

Hence, the maximum frequency of the light is given by:f = c / λmax

                                                                                              = [tex]3.00 \times 10^{8}  / 2.64 \times 10^{-7}[/tex]

                                                                                              = [tex]1.14 \times 10^{15} Hz.[/tex]

for such more question on frequency

https://brainly.com/question/254161

#SPJ11

a weight hanging from a spring will remain hanging until the weight is pulled down and released. when the weight is released the spring will bounce up and down. which of newton's laws explains why the spring will bounce?

Answers

This principle can be observed in other everyday scenarios, such as jumping on a trampoline or the recoil of a gun after firing.  Newton's Third Law of Motion is a fundamental principle in classical mechanics and explains why the spring will bounce when the weight is released.

The bouncing of the weight when released is explained by Newton's Third Law of Motion, which states that for every action there is an equal and opposite reaction. When the weight is released, the spring exerts an equal and opposite force on the weight, propelling it upwards and causing it to bounce. This is because when the weight is pulled down, it compresses the spring, storing potential energy. When the weight is released, the spring decompresses and the potential energy is released, propelling the weight in the opposite direction.

To learn more about Newton's Third Law ;

https://brainly.com/question/25998091

#SPJ11

g which of the following wavelengths of light is most likely to cause a sunburn? explain your answer. a. 700 nm b. 400 nm c. 200 nm

Answers

Answer:

(b) 400 nm is the far ultraviolet (violet) in the visible spectrum

The shorter wavelengths are more likely to cause sunburn.

200 nm is probably too short to be transmitted by the atmosphere

josh punches his open left hand with his right hand. which statement is true about the forces his two hands exert on each other?

Answers

Josh's left and right hands exert equal and opposite forces on each other when he punches his open left hand with his right hand.

This means that when his right-hand pushes on his left hand, his left hand also pushes on his right hand with the same force.

This is Newton's Third Law of Motion:

"For every action, there is an equal and opposite reaction."

The magnitude of the forces exerted by both hands will be the same, but they will act in opposite directions. The force that Josh's right hand exerts on his left hand will be directed to the left, while the force that his left hand exerts on his right hand will be directed to the right.

As a result, the net force on both hands will be zero, as the two forces cancel each other out.

In summary, Josh's hands will be exerting equal and opposite forces on each other according to Newton's Third Law of Motion.

To know more about forces, refer here:

https://brainly.com/question/13191643#

#SPJ11

a 0.170-kg baseball traveling 30.0 m/s strikes the catcher's mitt, which, in bringing the ball to rest, recoils backward 15.0 cm . what was the magnitude of the average force applied by the ball on the glove?

Answers

The magnitude of the average force applied by the ball on the glove is 34 N.

The magnitude of the average force applied by the ball on the glove.

This can be done by using the equation for force, F = ma, where F is the force, m is the mass of the object, and a is the acceleration of the object.

The mass of the ball is 0.170 kg, and the acceleration is determined by the change in velocity of the ball and the distance the glove recoils, 15 cm, or 0.15 m.

Therefore, the acceleration of the ball is a = (30.0 m/s - 0 m/s)/(0.15 m) = 200 m/s^2.


Since we have the mass and the acceleration, we can calculate the force with the equation above. F = (0.170 kg)(200 m/s^2) = 34 N. Therefore, the magnitude of the average force applied by the ball on the glove is 34 N.

to know more about Force refer here:

https://brainly.com/question/13191643#

#SPJ11

what wavelength em radiation would be emitted most strongly by matter at the temperature of the core of a nuclear explosion, about 10,000,000 k?

Answers

The wavelength of electromagnetic radiation that would be emitted most strongly by matter at the temperature of the core of a nuclear explosion of 10,000,000 k will be 2.898 × 10^-10 meters.

Wavelength of electromagnetic radiation

The wavelength of electromagnetic radiation emitted by matter at a certain temperature can be determined using Wien's displacement law, which states that the wavelength of maximum emission (λmax) is inversely proportional to the temperature of the object:

λmax = b / T

where b is a constant known as Wien's displacement constant, equal to 2.898 × 10^-3 m·K.

Substituting the given temperature of 10,000,000 K into this equation, we get:

λmax = (2.898 × 10^-3 m·K) / (10^7 K) = 2.898 × 10^-10 m

Therefore, the wavelength of electromagnetic radiation emitted most strongly by matter at the temperature of the core of a nuclear explosion is approximately 2.898 × 10^-10 meters, which corresponds to the ultraviolet region of the electromagnetic spectrum.

More on electromagnetic radiations can be found here: https://brainly.com/question/4185163

#SPJ1

your instructor challenges you and your friend to pull on the ends of a horizontal rope attached to a pair of scales in a tug-of-war, but in such a way that the scale readings on the scales are different. can this be done? explain.

Answers

Answer:

If the scale readings are different then there will be a net force on the person attached to the scales:

Consider any point on the rope - if the forces in each direction are the same there is no acceleration of the rope

F = Δm * a        for any portion of the rope with mass Δm

If any portion of the rope is accelerated, the person attached to the rope must be accelerated

what experimental evidence do you have showing that momentum is conserved in inelastic and elastic collisions?

Answers

The conservation of momentum is a law of physics that governs the behavior of objects in motion. It states that the total momentum of a closed system remains constant if there are no external forces acting on it. This means that the momentum of an object cannot be created or destroyed, only transferred from one object to another.

Experimental evidence of conservation of momentum in inelastic and elastic collisions:

Inelastic Collision:
In an inelastic collision, the kinetic energy is not conserved, but the momentum is conserved. In this type of collision, two objects collide and stick together after the collision. For example, when a car collides with a wall, the kinetic energy is converted into thermal energy and sound, but the momentum is still conserved.
The following experiment shows that momentum is conserved in an inelastic collision. A cart is pushed into a spring and the spring compresses. The cart sticks to the spring and moves forward, but the momentum is conserved.
Elastic Collision:
In an elastic collision, both the momentum and kinetic energy are conserved. In this type of collision, two objects collide and bounce off each other after the collision. For example, when two billiard balls collide, they bounce off each other, but the momentum is still conserved.
The following experiment shows that momentum is conserved in an elastic collision. Two carts are pushed toward each other, and they collide elastically. The carts bounce off each other, but the momentum is still conserved.

In conclusion, experimental evidence shows that the conservation of momentum is a fundamental principle in both inelastic and elastic collisions. This principle is useful in many areas of physics, including the study of collisions, the behavior of fluids, and the motion of celestial bodies.

To know more about the "conservation of momentum": https://brainly.com/question/7538238

#SPJ11

Based on our understanding of our own solar system, what would be most surprising to observe in an extra-solar system of planets?

Answers

Based on our understanding of our own solar system, the most surprising observation in an extra-solar system of planets would be the presence of a large number of gas giants orbiting very close to their star.

Our solar system consists of the Sun, eight planets, dwarf planets, moons, comets, and asteroids. We know that rocky planets such as Mercury, Venus, Earth, and Mars are located close to the sun, while gas giants such as Jupiter, Saturn, Uranus, and Neptune are located far away from the sun. However, in other solar systems, planets have been discovered in orbits that are completely unexpected and different from what we see in our own solar system.The most surprising observation in an extra-solar system of planets based on our understanding of our own solar system would be the presence of a large number of gas giants orbiting very close to their star. These planets are called hot Jupiters, and they orbit their stars in less than ten days. According to the current model of planetary formation, it is difficult to explain the presence of such planets in these orbits. It is believed that hot Jupiters formed far from their stars, where it is cool enough for gas giants to form, and then migrated inward towards the star.

To learn more about extra-solar system  https://brainly.com/question/14018668

#SPJ11

Other Questions
Who knows this? I need help #16 from her purchased bags, rachel counted 130 red candies out of 520 total candies. using a 95% confidence interval for the population proportion, what are the lower and upper limit of the interval? answer choices are rounded to the thousandths place. molecular shape is determined by the number of electron domains around a central atom, where an electron domain may be a(n) resistance or exemption to disease is termed . this quality is provided through the lymphatic system. th eproduct of two consecutive odd integers positive is 77 more than twice the larger. find the intergers please. I cannot set up "product" consecutive integers?the product is x*(x+2) In this unit, you learn about linear functions and graphing lines in the coordinate plane. Linear functions are used in businesses, construction, and planning cities. The slope of a line determines its steepness. Why do you think a horizontal line (flat) has zero slopes, but a vertical line (straight up and down) is considered to have no slope. What's the difference between zero slope and no slope? Synopsis Candidates should explain to what extent tactics that the vietcong used again states of America's United arM in Containing the spread of Capital Vietnam between 1960 and 1975 The vertices of a square are located at (0, 2), (2, 0), (0, -2), and (-2, 0).Select all transformations that will carry this square onto itself.A reflection across the line y = xB reflection across the line y = -XC reflection across the x-axisD 45 rotation about the originE 90 rotation about the origin if there is no change in the charge distributions, what is the direction of the net electrostatic force on an electron located at the center of the circle? The Phoenician script differs from other ancient scripts like Linear-A, Cuneiform and Hieroglyphs in thatA. it is alphabetic, meaning that each character represents a letter rather than a syllable or word.B. it is pictorial, meaning that each character represents a concept.C. it is cursive, meaning that the letters are joined together.D. it is syllabic, meaning that each character denotes a syllable O Sicily which supplement is among those with the most significant risk of adverse interactions with medication? lucinda surveyed 50 students in her school to find out how many students enjoy playing sports. the resultsare shown in the table. do you think lucinda chose a random sample? why or why not? Whene youre eye hurts what does tha mean Convert the following to Fahrenheit 1) 10 C 50 F = 1.8 x 10 +32 2) 30 C 3) 40 C A hiker climbs a trail that has a 2,150 feet elevation in two stages.In stage one, he climbs 2% of the total elevation.In stage two, he climbs at a rate of 12 feet per minute. About how many minutes does it take the hiker to reach the top of the mountain during stage two? which element is found in greater amounts in low viscosity magma, than in high viscosity magma? question 12 options: a) si b) fe What is the answer to (P-q) (3) true or false: the increased focus on business ethics that followed the business scandals of the early 2000s, including the enron collapse and civilian contractor abuses in iraq, also lead to the growing use of ethics officers. Consider a circle whose equation is x2 + y2 2x 8 = 0. Which statements are true? Select three options. The radius of the circle is 3 units. The center of the circle lies on the x-axis. The center of the circle lies on the y-axis. The standard form of the equation is (x 1) + y = 3. The radius of this circle is the same as the radius of the circle whose equation is x + y = 9. in terms of brand loyalty, consumers are very brand loyal and will not accept substitutes for which type of consumer product?