Phosphorus tei chloride gas and chlorine gas react to form phosphorus pentachloride gas. A 7.5 L gas vessel is charged with a mixture of PCL3 (g) and Cl2, which is allowed to equilibrate at 450 K. At equilibrium the partial pressure of the three gases are P- PCL3 = 0.124 atm, Cl2- 0.157 atm, and PCl5= 1.30 atm. (A) what is the value of Kp at this temperature? (b) does the equilibrium favor reactants or products? (C) calculate K, for this reaction at 450 K

Answers

Answer 1

(a). The value of Kp at 450 K is 54.5.

(b). Kp = 54.5 > 1, we can conclude that the equilibrium favors products

(C). the value of Kc for this reaction at 450 K is also 54.5.

Chemical equation:

The balanced chemical equation for the reaction between phosphorus trichloride ([tex]PCL_{3}[/tex]) and chlorine ([tex]CL_{2}[/tex]) to form phosphorus pentachloride ([tex]PCL_{5}[/tex]) is:

[tex]PCL_{3}[/tex](g) + [tex]CL_{2}[/tex](g) ⇌ [tex]PCL_{5}[/tex](g)

What is athe value of Kp ?

(a) To find the value of Kp at 450 K, we can use the equilibrium partial pressures of the gases:

Kp = ([tex]PCL_{5}[/tex]) / (P-[tex]PCL_{3}[/tex])([tex]PCL_{2}[/tex])

Kp = (1.30 atm) / (0.124 atm)(0.157 atm)

Kp = 54.5

Therefore, the value of Kp at 450 K is 54.5.

equilibrium favors:

(b) To determine whether the equilibrium favors reactants or products, we can compare the calculated value of Kp to 1. If Kp > 1, the equilibrium favors products, and if Kp < 1, the equilibrium favors reactants.

Since Kp = 54.5 > 1, we can conclude that the equilibrium favors products.

What is the value of Kc?

(c) To calculate Kc for this reaction at 450 K, we need to use the following equation that relates Kp and Kc:

Kp = Kc(RT)Δn

where R is the gas constant (0.0821 L·atm/mol·K), T is the temperature in Kelvin (K), and Δn is the difference in the number of moles of gaseous products and reactants in the balanced chemical equation.

In this case, the equation is:

[tex]PCL_{3}[/tex](g) + [tex]Cl_{2}[/tex](g) ⇌ [tex]PCL_{5}[/tex](g)

Δn = (1-1) = 0

Substituting the values, we get:

Kc = Kp / [tex](RT)^{Δn}[/tex]

Kc = 54.5 / [tex](0.0821 L·atm/mol·K * 450 K)^{0}[/tex]

Kc = 54.5

Therefore, the value of Kc for this reaction at 450 K is also 54.5.

To know more about equilibrium, visit:

https://brainly.com/question/14721811

#SPJ9


Related Questions

if 124 ml of a 1.2 m glucose solution is diluted to 550.0 ml , what is the molarity of the diluted solution?

Answers

the molarity of the diluted solution is 0.27 M.if 124 ml of a 1.2 m glucose solution is diluted to 550.0 ml

To solve the problem, we can use the formula:

M1V1 = M2V

where M1 is the initial molarity, V1 is the initial volume, M2 is the final molarity, and V2 is the final volume.

Plugging in the values we have:

M1 = 1.2 M

V1 = 124 ml = 0.124 L

V2 = 550.0 ml = 0.550 L

Solving for M2:

M2 = (M1V1)/V2

= (1.2 M * 0.124 L)/0.550 L

= 0.27 M

A solution is a homogeneous mixture of two or more substances. In a solution, the solute is uniformly dispersed in the solvent. The solute is the substance that is being dissolved, and the solvent is the substance in which the solute is being dissolved. For example, in saltwater, salt is the solute and water is the solvent.

Learn more about solution here:

https://brainly.com/question/30665317

#SPJ12

The molarity of the diluted glucose solution is approximately 0.2705 M.

How to find the molarity of solution?

To find the molarity of the diluted glucose solution after 124 mL of a 1.2 M solution is diluted to 550.0 mL, you can use the dilution formula:
M1V1 = M2V2

where M1 is the initial molarity (1.2 M), V1 is the initial volume (124 mL), M2 is the final molarity, and V2 is the final volume (550.0 mL).

Rearrange the formula to solve for M2:

M2 = (M1*V1) / V2

Now, plug in the given values:
M2 = (1.2 M * 124 mL) / 550.0 mL
M2 = 148.8 mL / 550.0 mL
M2 = 0.2705 M

To know more about Molarity:

https://brainly.com/question/14581742

#SPJ11

Name both local and global effects of burning petroleum in car engines

Answers

The both local and the global effects of burning petroleum in the car engines are smog and the global warming.

The Global effects defines to the various effects at which the actions of the individuals, the businesses, and the governments will be on the environment and the society at the large. The Global effects will leads to the changes to the climate, the water cycle, the biodiversity, and the food production, and the other natural systems.

The Smog is the form of the air pollution and will be created by the reaction of the sunlight and with the emissions from the car exhausts.

To learn more about global effects here

https://brainly.com/question/22599236

#SPJ4

of the four basic elements necessary for life as we know it, three are made

Answers

Of the four basic elements necessary for life as we know it, three are made In supernovae explosions. Option c is correct.

The four basic elements necessary for life as we know it are carbon, nitrogen, oxygen, and hydrogen. While these elements can be found throughout the universe, the origin of these elements can be traced back to the nuclear reactions that occur inside stars.

Carbon, nitrogen, and oxygen are synthesized in the cores of stars through the process of stellar nucleosynthesis. However, heavier elements like carbon, nitrogen, and oxygen cannot be synthesized in stars, but instead are formed during supernovae explosions.

These explosions release a huge amount of energy, and during the explosion, the temperatures and pressures are high enough to fuse lighter elements together into heavier elements, including the elements necessary for life. Therefore, it can be concluded that three of the four basic elements necessary for life as we know it are made in supernovae explosions. Hence Option c is correct.

To learn more about basic elements, here

https://brainly.com/question/28948712

#SPJ4

The complete question is:

Of the four basic elements necessary for life as we know it, three are made

a. In terrestrial laboratoriesb. In the Big Bangc. In supernovae explosionsd. in the interiors of stars.e. By large, diffuse clouds of gas and dust

identify the correct statements regarding the use of stable oxygen isotopes in reconstructing ancient climates.

Answers

The use of stable oxygen isotopes in reconstructing ancient climates is a powerful tool that has contributed greatly to our understanding of past environmental changes. However, it is important to consider other factors that may influence the isotopic composition of precipitation and to use multiple lines of evidence when making interpretations about past climate conditions.

Stable oxygen isotopes (specifically, oxygen-18 and oxygen-16) are commonly used in reconstructing ancient climates because they can provide information about temperature and precipitation patterns.

1) Oxygen-18 is less abundant than oxygen-16 and has a slightly higher atomic mass. This means that it is preferentially incorporated into precipitation that forms at colder temperatures, such as snow and ice.

2) The ratio of oxygen-18 to oxygen-16 in carbonate minerals, such as those found in shells and corals, can also be used to reconstruct past temperatures. This is because the incorporation of oxygen isotopes into these minerals is influenced by both temperature and the isotopic composition of the water in which the organism lived.

3) Oxygen isotopes can also provide information about past precipitation patterns. For example, in regions where the dominant source of precipitation is from ocean evaporation, the oxygen isotope composition of precipitation can reflect the isotopic composition of the ocean water.

For such more questions on Oxygen isotopes:

https://brainly.com/question/160068

#SPJ11

I need help please help me with these two questions (the second picture is in the comments)

Answers

sodium hydroxide

cobalt (II) phosphide

lead (IV) carbonate

Magnesium fluoride

lithium sulfite

ammonium phosphate

iron (II) oxide

calcium sulfate

silver nitride

sodium sulfide

a balloon filled with helium has a volume of 11.8 l at 289 k. what volume will the balloon occupy at 257 k?

Answers

Answer:

Explanation:

289k ---- 11.8

257k ------ x (where x = volume at 257k)

x = [tex]\frac{257*11.8}{289}[/tex]

x = 10.49 I

therefore at, 257k the balloon will have a volume of 10.49

calculate the engery of a photon needed to cause an electron in the 3s orbital to be excited to tthe 3p orbital

Answers

The energy of the photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital is approximately 3.04 × [tex]10^{-18}[/tex] J (or about 1.90 eV).

To calculate the energy of a photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital, we need to know the energy difference between these two orbitals.

The energy of an electron in a hydrogenic atom (an atom with one electron) can be calculated using the following formula:

[tex]E = - (Z^2 * Ry) / n^2[/tex]

where Z is the atomic number, Ry is the Rydberg constant (2.18 × [tex]10^{-18}[/tex]J), and n is the principal quantum number.

The energy difference between the 3s and 3p orbitals can be calculated by subtracting the energy of the 3s orbital from the energy of the 3p orbital.

For hydrogen, the energy of the 3s orbital is:

E(3s) = - ([tex]1^2[/tex]* 2.18 × [tex]10^{18}[/tex] J) / [tex]3^2[/tex]

E(3s) = - 0.242 ×[tex]10^{18}[/tex] J

And the energy of the 3p orbital is:

E(3p) = - ([tex]1^2[/tex] * 2.18 × [tex]10^{-18}[/tex] J) / 2^2

E(3p) = - 0.546 × [tex]10^{-18}[/tex] J

The energy difference between the two orbitals is:

ΔE = E(3p) - E(3s)

ΔE = (- 0.546 ×[tex]10^{18}[/tex]  J) - (- 0.242 ×[tex]10^{-18}[/tex] J)

ΔE = - 0.304 × [tex]10^{-18}[/tex]J

This energy difference represents the energy required to excite an electron from the 3s orbital to the 3p orbital.

To calculate the energy of the photon needed to provide this energy, we use the formula:

E = hν

where E is the energy of the photon, h is Planck's constant (6.626 × [tex]10^{-34}[/tex]J·s), and ν is the frequency of the photon.

Rearranging this formula to solve for the frequency of the photon, we get:

ν = E / h

Substituting the energy difference we calculated, we get:

ν = (- 0.304 × [tex]10^{18}[/tex] J) / (6.626 × [tex]10^{-34}[/tex] J·s)

ν = - 4.59 × [tex]10^{15}[/tex]Hz

Finally, to calculate the energy of the photon, we use the formula:

E = hν

Substituting the frequency we calculated, we get:

E = (6.626 ×[tex]10^{-34}[/tex] J·s) x (- 4.59 × [tex]10^{15}[/tex] Hz)

E = - 3.04 × [tex]10^{-18}[/tex]J

Therefore, the energy of the photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital is approximately 3.04 × 10^-18 J (or about 1.90 eV).

Learn more about photon

https://brainly.com/question/20912241

#SPJ4

superficial frostbite is a blank and results in blank

Answers

Superficial frostbite is a second-degree frostbite (a type of injury) and results in clear skin blisters.

Frostbite is damage of skin due to cold temperatures. The victim of frostbite is mostly unaware of it because a frozen tissue is numb. It can be cured but depends upon the stages of frostbite. There are three stages of frostbite as given below:

First stage is Frostnip, cause loss of feeling in skin occurs. Skin color becomes red and purple.

Second stage is Superficial Frostbite, cause clear skin blisters. Skin color changes from red to paler. A fluid-filled blister may appear 24 to 36 hours after color changing of skin

Third stage is Deep Frostbite, cause joints or muscles no longer work. Skin color changes to black and the area turns hard.

Redness or pain in any skin area maybe the first sign of frostbite.

Thus, when weather is very cold, stay indoors or dress in layers to prevent serious health problems.

Learn more about Frostbite here:

brainly.com/question/14460475

#SPJ11

Superficial frostbite is a type of frostbite that affects the outer layers of the skin and results in localized damage to the skin and underlying tissues. It is considered a mild form of frostbite and usually affects the fingers, toes, ears, nose, and cheeks.

The symptoms of superficial frostbite can include numbness, tingling, stinging, and burning sensations in the affected area. The skin may also appear pale or waxy and may be hard to the touch. In some cases, blisters may form several hours after rewarming the affected area.

If treated promptly and properly, superficial frostbite usually heals without complications. However, if left untreated, it can progress to deeper layers of tissue, leading to more severe frostbite and potential tissue damage.

For more question on Superficial frostbite click on

https://brainly.com/question/31453309

#SPJ11

given the equation3cl2 8nh3 =n2 6nh$cl how many moles of nh3 are required to produce 12 moles of nh4cl

Answers

16 moles of NH3 are required to produce 12 moles of NH4Cl.

Given the balanced equation:

3Cl2 + 8NH3 → N2 + 6NH4Cl

To determine how many moles of NH3 are required to produce 12 moles of NH4Cl, we can use the stoichiometry of the equation. We can see that 6 moles of NH4Cl are produced from 8 moles of NH3.

Follow these steps:

1. Write down the balanced equation:
  3Cl2 + 8NH3 → N2 + 6NH4Cl

2. Determine the stoichiometric ratio between NH3 and NH4Cl:
  8 moles of NH3 : 6 moles of NH4Cl

3. Calculate the moles of NH3 needed to produce 12 moles of NH4Cl using the stoichiometric ratio:
  (8 moles of NH3 / 6 moles of NH4Cl) * 12 moles of NH4Cl = 16 moles of NH3

16 moles of NH3 are required to produce 12 moles of NH4Cl.

Learn more about moles here:

https://brainly.com/question/15833820

#SPJ11

Given the equation 3[tex]Cl_{2}[/tex] + 8[tex]NH_{3}[/tex] = [tex]N_{2}[/tex] + 6 [tex]NH_{4}Cl[/tex], 16 moles of [tex]NH_{3}[/tex] are required to produce 12 moles of  [tex]NH_{4}Cl[/tex].

How to determine the number of moles?

To know how many moles of [tex]NH_{3}[/tex] are required to produce 12 moles of  [tex]NH_{4}Cl[/tex], we can follow the steps below:

Step 1: Determine the mole ratio between [tex]NH_{3}[/tex] and  [tex]NH_{4}Cl[/tex] from the balanced equation. In this case, it is 8 moles of [tex]NH_{3}[/tex] to 6 moles of  [tex]NH_{4}Cl[/tex].

Step 2: Set up a proportion to find the moles of NH3 needed for 12 moles of  [tex]NH_{4}Cl[/tex]:
(8 moles [tex]NH_{3}[/tex] / 6 moles  [tex]NH_{4}Cl[/tex]) = (x moles [tex]NH_{3}[/tex] / 12 moles  [tex]NH_{4}Cl[/tex])

Step 3: Solve for x:
x moles [tex]NH_{3}[/tex] = (8 moles [tex]NH_{3}[/tex] / 6 moles [tex]NH_{4}Cl[/tex]) * 12 moles  [tex]NH_{4}Cl[/tex]

Step 4: Calculate x:
x moles [tex]NH_{3}[/tex] = (8/6) * 12 = 16 moles [tex]NH_{3}[/tex]

To know more about Stoichiometry:

https://brainly.com/question/29195098

#SPJ11

if you can fill out this worksheet 100 pts! only 5 questions, about stoichiometry PLEASE HELP ASAP!!

Answers

Given: NaOH, H₂SO₄. Wanted: Na₂SO₄.

Percent yield = (325 g / 355.1 g) × 100 = 91.5%

molar mass of Na₂SO₄ is 142.04 g/mol.

The mole ratio needed is 2:1 (two moles of NaOH react with one mole of H₂SO₄ to produce one mole of Na₂SO₄).

The molar mass of Na₂SO₄ is 142.04 g/mol.

To determine the theoretical yield, we need to first calculate the limiting reagent.

Using the mole ratio, we can calculate the number of moles of H₂SO₄ required to react with 5.00 moles of NaOH:

5.00 mol NaOH × (1 mol H₂SO₄ / 2 mol NaOH) = 2.50 mol H₂SO₄

Since we have 7.00 moles of H₂SO₄, it is in excess and NaOH is the limiting reagent.

The number of moles of Na₂SO₄ that can be produced is:

5.00 mol NaOH × (1 mol Na₂SO₄ / 2 mol NaOH) = 2.50 mol Na₂SO₄

The theoretical yield of Na₂SO₄ is:

2.50 mol Na₂SO₄ × 142.04 g/mol = 355.1 g Na₂SO₄

The percent yield is calculated by dividing the actual yield (325 g) by the theoretical yield (355.1 g) and multiplying by 100:

Percent yield = (325 g / 355.1 g) × 100 = 91.5%

learn more about stoichiometry here

https://brainly.com/question/16060223

#SPJ1

________________ stimulates retention of na ions by the kidneys and sweat glands.

Answers

Aldosterone stimulates the retention of Na+ ions by the kidneys and sweat glands.

Step-by-step explanation:
1. Aldosterone is a hormone produced by the adrenal glands.
2. It is released in response to low blood volume, low blood pressure, or low sodium levels.
3. Once released, aldosterone acts on the kidneys and sweat glands.
4. It promotes the retention of Na+ ions, which helps to maintain the body's fluid balance.
5. By retaining Na+ ions, water is also retained, leading to increased blood volume and blood pressure.

To learn more bout ions, refer:-

https://brainly.com/question/14982375

#SPJ11

The hormone that stimulates retention of Na (sodium) ions by the kidneys and sweat glands is aldosterone. Your question is: "Which hormone stimulates retention of Na ions by the kidneys and sweat glands?"

Aldosterone is a hormone produced by the adrenal glands and is part of the renin-angiotensin-aldosterone system (RAAS). Its primary function is to regulate sodium and potassium balance in the body.

Here's a step-by-step explanation of how aldosterone works:

1. When blood pressure or blood volume decreases, the kidneys release an enzyme called renin.
2. Renin converts angiotensinogen, a protein produced by the liver, into angiotensin I.
3. Angiotensin I is then converted to angiotensin II by an enzyme called angiotensin-converting enzyme (ACE).
4. Angiotensin II stimulates the adrenal glands to produce aldosterone.
5. Aldosterone increases sodium reabsorption in the kidneys and sweat glands, causing the body to retain more sodium.
6. As a result, water retention also increases, leading to an increase in blood volume and blood pressure.

In summary, aldosterone is the hormone responsible for stimulating retention of Na ions by the kidneys and sweat glands.

To know more about angiotensin-converting enzyme (ACE):

https://brainly.com/question/9381741

#SPJ11

tollens's test shows the presence of aldehydes . a positive tollens's test appears as a silver precipitate . a negative tollens's test appears as

Answers

Tollens's test shows the presence of aldehydes . a positive Tollens's test appears as a silver precipitate . a negative Tollens's test appears as presence of ketone.

Tollens's test is a chemical test used to differentiate between aldehydes and ketones. In this test, a solution called Tollens's reagent, which contains silver nitrate and ammonia, is used to detect the presence of aldehydes. When an aldehyde is present, it undergoes oxidation by reacting with the Tollens's reagent, forming a silver precipitate.

A positive Tollens's test is indicated by the formation of this silver precipitate, which appears as a shiny silver layer on the inside of the test tube. This silver layer is also referred to as a "silver mirror." This reaction occurs because the aldehyde group is oxidized to a carboxylic acid, while the silver ions in the Tollens's reagent are reduced to metallic silver.

On the other hand, a negative Tollens's test means that no aldehyde is present, and thus, no silver precipitate forms. This is typically observed when a ketone is present in the test sample, as ketones do not readily undergo oxidation like aldehydes do. In this case, the test tube remains clear or slightly cloudy, depending on the reaction conditions and the substances being tested.

know more about Tollens's test here

https://brainly.com/question/30892406#

#SPJ11

Complete question is :-

tollens's test shows the presence of aldehydes . a positive tollens's test appears as a silver precipitate . a negative tollens's test appears as ______.

what can you conclude from this about the signs of and , assuming that the enthalpy and entropy changes are not greatly affected by the temperature change?

Answers

The signs of ΔH and ΔS are related to the sign of ΔG, and an understanding of the sign of ΔG can provide information about the nature of the reaction and the effect of temperature on the thermodynamic parameters.

However, in general, the sign of ΔG (Gibbs free energy change) can provide information about the signs of ΔH and ΔS. The relationship between these three thermodynamic parameters is given by the following equation:

ΔG = ΔH - TΔS

where T is the temperature in Kelvin.

If ΔG is negative, then the reaction is spontaneous and the forward reaction is favored. This implies that the products have a lower free energy than the reactants. In this case, if the temperature is increased, the value of TΔS will become more positive, which means that the value of ΔH must become more negative in order for ΔG to remain negative.

This suggests that the reaction is exothermic (ΔH is negative) and that the entropy change is negative (ΔS is negative).

If ΔG is positive, then the reverse reaction is favored and the products have a higher free energy than the reactants. In this case, if the temperature is increased, the value of TΔS will become more negative, which means that the value of ΔH must become more positive in order for ΔG to remain positive. This suggests that the reaction is endothermic (ΔH is positive) and that the entropy change is positive (ΔS is positive).

learn more about thermodynamic parameters here:

https://brainly.com/question/31237925

#SPJ11

how much volume does a 3.2 M solution of NaCl occupy with 50 moles of NaCl in solution?

Answers

Answer:

data given

molarity 3.2m

moles 50mol

Required volume

Explanation:

from

molarity =mole/volume

3.2=50/v

v=15.62

:.volume is15.62dm^3

Help what's the answer?

Answers

The mass of the P4 that is reacted is 37.2 g

How does stoichiometry work?

Stoichiometry works by using a balanced chemical equation to determine the mole ratio between reactants and products. This mole ratio is then used to convert the amount of one substance into the amount of another substance, using the mole concept and molar mass.

Using

PV = nRT

n = PV/RT

n = 1 * 39.6/0.082 * 298

n = 1.6 moles

From the reaction equation;

P4 + 6Cl2 → 4PCl3

1 mole of P4 reacts with 6 moles of Cl2

x moles of P4 reacts with 1.6 moles of Cl2

x = 1.6 * 1/6

= 0.3 moles

Mass of P4 = 0.3 * 124 g/mol

= 37.2 g

Learn more about stoichiometry:https://brainly.com/question/30215297

#SPJ1

At 275 °C a gas has a volume of 500 mL. What is the volume of this gas at 190°C?

Answers

Answer:

using the formula

v1/T1 =V2T2

make V2 subject of formula

V2= V1T2/T1

V2= 724mL

Answer :

The volume of this gas at the 190°C will be 423 ml.

Explanation :

We can resolve this issue by applying Charles' law. According to Charles' law, a gas's volume is directly inversely proportionate to its Kelvin temperature. To resolve this issue, we can apply the formula shown below:

[tex]\large{\implies{\bf{\boxed{\boxed{\dfrac{V1}{T1} = \dfrac{V2}{T2} }}}}}[/tex]

Where,

V1 is the gas's initial volume T1 is its starting temperature in Kelvin V2 is its finished volume T2 is its finished temperature in Kelvin.

The temperatures must first be converted from Celsius to Kelvin. By raising each temperature by 273.15, we may achieve this.

Initial temperature (T1) is equal to 275 + 273 K.

500 mL is the initial volume (V1).

Final volume (V2) = Final temperature (T2) = 190 + 273.15 = 463.15 K Final temperature (T2) =?

V1/T1 = V2/T2

500/548.15 = V2/463.15

V2 = (500/548.15) * 463.15

V2 ≈ 423 mL

Therefore, at a temperature of 190°C, the volume of this gas would be approximately 423 mL.

Similar answers :

https://brainly.com/question/30911674

Estimate the change in the thermal energy of water in a pond

a mass of 1,000 kg and a specific heat of 4,200 J/(kg. °C) if the

cools by 1°C.

er in a pond with

kg. "C) if the water

Answers

The change in the thermal energy of the water in the pond, a mass of 1,000 kg and the specific heat of 4,200 J/(kg. °C) is 4200 kJ.

The Mass of the water of the pond, m = 1,000 kg,

The specific heat of the water, C = 4,200  J/kg °C,

The change in temperature, ΔT =  1 °C,

The change in the thermal energy :

Q = mcΔT

where,

m = mass,

C = specific heat,

ΔT =  change in temperature.

Q = 1000 × 4200 × 1

Q = 4200000 J

Q = 4200 kJ

The change in the thermal energy is 4200 kJ.

Thus, the change in thermal energy of the water in a pond is 4200 kJ.

To learn more specific heat here

https://brainly.com/question/29499912

#SPJ4

what is the ph after 0.195 mol of naoh is added to the buffer from part a? assume no volume change on the addition of the base. express the ph numerically to three decimal places.

Answers

The pH after 0.195 mol of NaOH is added to the buffer from part a is pH > 14.

To answer this question, we need to use the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
We were given the following information in part a: a buffer solution with a pKa of 5.00 and a concentration of 0.100 M for both the acid (HA) and its conjugate base (A-).
To determine the pH after adding 0.195 mol of NaOH to this buffer solution, we need to first calculate the new concentrations of the acid and its conjugate base:
- The initial moles of the acid (HA) and its conjugate base (A-) are both 0.100 M x 1.00 L = 0.100 mol.
- Adding 0.195 mol of NaOH will react with an equivalent amount of the acid, leaving behind the conjugate base. This means that the new amount of the acid will be 0.100 mol - 0.195 mol = -0.095 mol. However, this negative value doesn't make sense, so we should interpret it as meaning that all of the acid was used up and there is still 0.095 mol of NaOH remaining in the solution. The new amount of the conjugate base (A-) will be 0.100 mol + 0.195 mol = 0.295 mol.
- The new concentrations of the acid and its conjugate base are therefore:
[HA] = 0.000 mol/L
[A-] = 0.295 mol/L
Now we can substitute these values into the Henderson-Hasselbalch equation:
pH = 5.00 + log([0.295]/[0.000])
We cannot divide by zero, so we know that the pH will be very high (basic) because there is no acid left to keep the solution acidic. Taking the log of a very large number will also give us a very large positive value. Let's calculate it:
pH = 5.00 + log(∞)
pH = 5.00 + ∞
pH = ∞
However, we need to express the pH numerically to three decimal places. This means that we need to choose a convention for representing infinite values. One common convention is to use "pH = 14.000", since pH + pOH = 14. Another convention is to use "pH > 14", which indicates that the pH is higher than the highest possible value on the pH scale.
Therefore, the answer to the question is:
The pH after 0.195 mol of NaOH is added to the buffer from part a is pH > 14.

learn more about pH here

https://brainly.com/question/29775377

#SPJ11

a 40.0 ml sample of a 0.100 m aqueous nitrous acid solution is titrated with a 0.200 m aqueous sodium hydroxide solution. what is the ph after 10.0 ml of base have been added?

Answers

The pH of the solution after the addition of 10.0 mL of base is 3.35.

The balanced chemical equation for the reaction between nitrous acid and sodium hydroxide is:

HNO2 + NaOH → NaNO2 + H2O

Before any base is added, the nitrous acid solution is acidic, and so the pH is less than 7. The nitrous acid dissociates in water according to the following equilibrium:

HNO2 + H2O ⇌ H3O+ + NO2-

The equilibrium constant for this reaction is the acid dissociation constant, Ka, which is given by:

Ka = [H3O+][NO2-] / [HNO2]

At equilibrium, the concentration of nitrous acid that has dissociated is equal to the concentration of hydroxide ions that have been neutralized by the acid:

[HNO2] - [OH-] = [NO2-]

Initially, the concentration of nitrous acid in the solution is:

[HNO2] = 0.100 mol/L × 0.0400 L = 0.00400 mol

When 10.0 mL of 0.200 M sodium hydroxide solution is added, the number of moles of hydroxide ions added is:

[OH-] = 0.200 mol/L × 0.0100 L = 0.00200 mol

Using the stoichiometry of the balanced equation, the number of moles of nitrous acid that have reacted is also 0.00200 mol.

The concentration of nitrous acid remaining in the solution after the addition of base is:

[HNO2] = (0.00400 mol - 0.00200 mol) / 0.0500 L = 0.0400 mol/L

The concentration of nitrite ion in the solution is equal to the concentration of hydroxide ions that have been neutralized by the acid:

[NO2-] = [OH-] = 0.00200 mol / 0.0500 L = 0.0400 mol/L

The acid dissociation constant for nitrous acid is Ka = 4.5 × 10^-4 at 25°C.

Using the expression for the equilibrium constant, we can solve for the concentration of hydronium ions:

Ka = [H3O+][NO2-] / [HNO2]

[H3O+] = Ka × [HNO2] / [NO2-] = 4.5 × 10^-4 × 0.0400 mol/L / 0.0400 mol/L = 4.5 × 10^-4

Therefore, the pH of the solution after the addition of 10.0 mL of sodium hydroxide solution is:

pH = -log[H3O+] = -log(4.5 × 10^-4) = 3.35

So the pH of the solution after the addition of 10.0 mL of base is 3.35.

Click the below link, to learn more about Titration:

https://brainly.com/question/2728613

#SPJ11

PLEASE HELP ASAP!!!

Answers

As a result, the gas will be about 205 kelvin, or -68.5 degrees Celsius, in temperature.

What temperature is a gas at a 2 atm pressure and 2 l ?

If a gas's temperature is increased to 927°C, so its pneumatic cylinder will be. A gas has a temperature of 127°C at 2 atm and 2 litres of volume. O 6 atm.

1 mole = 22.4 litres, correct?

One mole ($6.023 times 1023 typical particles) of the any gas at STP takes up 22.4L of space. A mole of any gas takes up 22.4 litres at standard pressure and temperature (273K and 1atm).

To know more about kelvin visit:

https://brainly.com/question/12183328

#SPJ1

(a) Briefly describe the phenomena of superheating and supercooling.(b) Why do these phenomena occur?

Answers

(a) Superheating is a phenomenon where a liquid is heated above its boiling point without actually boiling.

(b) Superheating and supercooling occur because they represent a state of thermodynamic instability

(a) This occurs when the liquid is free of impurities or nucleation sites that can trigger boiling. Supercooling is the opposite phenomenon, where a liquid is cooled below its freezing point without actually freezing. This occurs when the liquid is pure and there are no nucleation sites for the formation of ice crystals.
(b). In the case of superheating, the liquid is at a temperature above its boiling point but is prevented from boiling due to the absence of nucleation sites. In the case of supercooling, the liquid is at a temperature below its freezing point but is prevented from freezing due to the absence of nucleation sites. These phenomena can be observed in nature and can have practical applications in various fields, such as materials science and engineering.

learn  more about superheating Refer: https://brainly.com/question/24249319

#SPJ11

Superheating and supercooling are two phenomena that occur when a substance is heated or cooled beyond its boiling or freezing point, respectively.

Superheating is when a liquid is heated above its boiling point without boiling. This occurs because the liquid is in a stable state with no nucleation sites for bubbles to form. When a nucleation site is introduced, such as when the liquid is disturbed or when a foreign object is added, the liquid will rapidly boil and can potentially cause a dangerous explosion. Supercooling, on the other hand, is when a liquid is cooled below its freezing point without solidifying. This occurs because the liquid is also stable with no nucleation sites for ice crystals to form. When a nucleation site is introduced, such as when the liquid is agitated or when a foreign object is added, the liquid will rapidly freeze.These phenomena occur because a substance's boiling or freezing point is dependent on pressure, and when the pressure is decreased or increased, the boiling or freezing point will also change. Additionally, the lack of nucleation sites in a superheated or supercooled substance means that the substance is not able to transition to a new state until a nucleation site is introduced.

Learn more about Superheating here:

https://brainly.com/question/31496362

#SPJ11


a sample of 35.1 g of methane gas has a volume of 2.55 l at a pressure of 2.70 atm. calculate the temperature.

Answers

A sample of 35.1 g of methane gas has a volume of 2.55 l at a pressure of 2.70 atm. The temperature of the sample of methane gas is 224.8 K.

The temperature of the sample of methane gas can be calculated using the ideal gas law equation, PV = nRT, where P is the pressure in atmospheres, V is the volume in liters, n is the amount of gas in moles, R is the ideal gas constant, and T is the temperature in Kelvin.

Since the pressure and volume are given, we can calculate the moles of methane gas using the relationship n= PV/RT.

Plugging in the given values, n = (2.7 atm)(2.55 L)/(0.08206 L·atm/mol·K)(T) = 0.824 mol.

Then, rearranging the ideal gas law equation, T = PV/nR, and plugging in our values, T = (2.7 atm)(2.55 L)/(0.824 mol)(0.08206 L·atm/mol·K) = 224.8 K.

As a result, the sample of methane gas had a temperature of 224.8 K.

To learn more about methane gas visit:

https://brainly.com/question/23151003

#SPJ4

compounds f, g, and k are isomers of molecular formula c13h18o. how could 1h nmr spectroscopy distinguish these three compounds from each other?

Answers

1H NMR spectroscopy can be used to distinguish between isomers of a given molecular formula based on the differences in their chemical environments and the resulting shifts in their NMR signals.

In the case of compounds F, G, and K, which all have the molecular formula C13H18O, there are several ways in which their 1H NMR spectra could differ.

Firstly, the number of unique proton environments in each compound can differ, leading to a difference in the number of signals observed in their respective spectra. For example, if compound F contains a methyl group, a methylene group, and an isolated proton, it would exhibit three distinct signals in its 1H NMR spectrum, whereas if compound G contains a cyclohexane ring with no substituents, it would only exhibit a single signal corresponding to the equivalent protons in the ring.

Secondly, the chemical shifts of the protons in each compound can differ due to differences in the electronic environment around them. For example, a proton in a more electronegative environment will experience a downfield shift, whereas a proton in a more shielded environment will experience an upfield shift. Therefore, compounds F, G, and K could exhibit different chemical shifts for their equivalent protons, allowing for differentiation between them.

Learn more about spectroscopy ,

https://brainly.com/question/28523860

#SPJ4

1H NMR spectroscopy can be used to distinguish between isomers of a given molecular formula based on the differences in their chemical environments and the resulting shifts in their NMR signals.

In the case of compounds F, G, and K, which all have the molecular formula C13H18O, there are several ways in which their 1H NMR spectra could differ.

Firstly, the number of unique proton environments in each compound can differ, leading to a difference in the number of signals observed in their respective spectra. For example, if compound F contains a methyl group, a methylene group, and an isolated proton, it would exhibit three distinct signals in its 1H NMR spectrum, whereas if compound G contains a cyclohexane ring with no substituents, it would only exhibit a single signal corresponding to the equivalent protons in the ring.

Secondly, the chemical shifts of the protons in each compound can differ due to differences in the electronic environment around them. For example, a proton in a more electronegative environment will experience a downfield shift, whereas a proton in a more shielded environment will experience an upfield shift. Therefore, compounds F, G, and K could exhibit different chemical shifts for their equivalent protons, allowing for differentiation between them.

Learn more about spectroscopy ,

brainly.com/question/28523860

#SPJ11

Please show all work:
1. Two standard deviations is the acceptable limit of error in the clinical lab. If you run the normal control 100 times, how many values would be out of control due to random error?
2. A mean value of 100 and a standard deviation of 1.8 mg/dL were obtained from a set of measurements for a control. The 95% confidence interval in mg/dL would be:
3. How many milliliters of a 3% solution can be made if 6 g of solute are available?

Answers

200 milliliters of a 3% solution can be made if 6 grams of solute are available.

1. To calculate the number of values that would be out of control due to random error, we can use the formula for the probability of a value falling outside of a certain number of standard deviations from the mean in a normal distribution. For two standard deviations, this probability is approximately 0.05, or 5%. So, out of 100 normal control values, we would expect around 5 of them to fall outside of the acceptable limit of error due to random deviation.
2. To find the 95% confidence interval, we can use the formula:
95% confidence interval = mean ± (1.96 x standard deviation / square root of sample size)
Plugging in the values given, we get:
95% confidence interval = 100 ± (1.96 x 1.8 / square root of sample size)
We don't know the sample size, so we can't solve for the exact confidence interval. However, we can say that as the sample size increases, the margin of error (the part in parentheses) will decrease, resulting in a narrower confidence interval.
3. To calculate the amount of solute needed to make a 3% solution, we need to know the concentration in grams per milliliter (g/mL). Assuming that the solute is dissolved in water (which has a density of 1 g/mL), we can use the formula:
concentration = mass of solute / volume of solution
Rearranging, we get:
volume of solution = mass of solute / concentration
Plugging in the values given, we get:
volume of solution = 6 g / 0.03 g/mL
Simplifying, we get:
volume of solution = 200 mL
Therefore, 200 milliliters of a 3% solution can be made if 6 grams of solute are available.

learn more about solutions here

https://brainly.com/question/30665317

#SPJ11

For the reaction: 2H₂+O₂ -> 2H₂O, how many grams of water are produced from 6.00 moles of H₂?

Answers

The number of grams of water that are produced from the moles of H₂ is 108.09 grams .

How to find the number of grams produced ?

From the balanced chemical equation, we see that 2 moles of H₂ reacts to produce 2 moles of H₂O. Therefore, 1 mole of H₂ reacts to produce 1 mole of H₂O.

To find the number of moles of water produced from 6.00 moles of H₂, we can use the stoichiometry of the balanced chemical equation:

6.00 moles H₂ x (2 moles H₂O / 2 moles H₂) = 6.00 moles H₂O

So 6.00 moles of H₂ produces 6.00 moles of H₂O. To convert moles of water to grams, we need to use the molar mass of water:

Molar mass of H₂O = 2(1.008 g/mol) + 1(15.999 g/mol) = 18.015 g/mol

So, the mass of 6.00 moles of H₂O is:

6.00 moles H₂O x 18.015 g/mol = 108.09 g

Find out more on grams produced at https://brainly.com/question/20703641

#SPJ1

the gradual increase or decrease in concentration from one point to another constitutes a concentration

Answers

The gradual increase or decrease in concentration from one point to another constitutes a concentration gradient. This gradient can occur within a single substance, such as a solution or gas, or between different substances in a system.

Concentration gradients play an important role in various natural and artificial processes, including diffusion, osmosis, and chemical reactions. A concentration gradient is the change in the concentration of a substance over a distance. It often results in the passive or active movement of particles from areas of high concentration to areas of low concentration, a process known as diffusion or transport.

The direction and magnitude of the concentration gradient can influence the rate and direction of these processes, making it a critical parameter to consider in many scientific and engineering applications.

To know more about diffusion:

https://brainly.com/question/30697046

#SPJ11

Yes, the gradual increase or decrease in the amount or density of a substance from one point to another is referred to as a concentration gradient. This can occur in various settings, such as in chemical reactions or in the distribution of molecules within a cell or organism. The concept of concentration is essential in understanding many biological and chemical processes, as it helps to determine how different substances interact and affect one another.

Concentration gradients are important in a wide range of biological, chemical, and physical processes. For example, in the human body, concentration gradients of ions and other molecules are essential for the functioning of cells and tissues. In addition, concentration gradients can drive the diffusion of gases, the movement of water in and out of cells, and many other important biological processes.

Overall, the gradual increase or decrease in concentration from one point to another constitutes a concentration gradient, which is a fundamental concept in many areas of science and engineering.

Learn more about concentration gradient here:

https://brainly.com/question/11391123

#SPJ11

Evolutionary relationships between proteins can be identified through a substitution matrix, which scores the replacement of one amino acid with another amino acid. A large positive score in a substitution matrix indicates that a substitution occurs frequently. Select the amino acids that never yield a positive score in a substitution matrix. Valine proline arginine glycine cysteine

Answers

The amino acids that will never yield the positive score in the substitution matrix is the glycine, proline and the cysteine.

The Evolutionary relationships in between the proteins that would be identified through the substitution reaction, which will scores the replacement for the one amino acid with the another amino acid. The large positive score for the substitution matrix will be indicates that the substitution that occurs frequently.

The Amino acids are the molecules which will combine to form the proteins. The Amino acids and the proteins are the building blocks for the life. The Amino acids are the organic compounds which will contain the both the amino and the carboxylic acid functional groups.

To learn more about amino acids here

https://brainly.com/question/14830732

#SPJ4

Multiply. 15y^3/8ay x 2a/3y
Simplify your answer as much as possible

Answers

The simplified answer to the multiplication of the [tex]$\frac{15y^3}{8ay} \times \frac{2a}{3y}$[/tex] expression is [tex]$\frac{5y^2}{2a}$[/tex].

To multiply the given expression, we need to first simplify each fraction.

Starting with the first fraction:

[tex]$\frac{15y^3}{8ay}$[/tex]

We can simplify this fraction by canceling out the common factors in the numerator and denominator.

[tex]$\frac{15y^3}{8ay} = \frac{35yyy}{222ay}[/tex]

[tex]= \frac{35y^2}{22a}[/tex]

[tex]= \frac{15y^2}{4a}$[/tex]

Now we simplify the second fraction:

2a/3y

We can also simplify this fraction by canceling out the common factors in the numerator and denominator.

2a/3y = 2/(3y)

Now that we have simplified both fractions, we can multiply them together:

[tex]$\frac{15y^2}{4a} \times \frac{2}{3y}$[/tex]

Multiplying the numerators and denominators together gives:

[tex]$\frac{15y^2 \times 2}{4a \times 3y}[/tex]

[tex]= \frac{30y^2}{12ay}[/tex]

[tex]= \frac{5y^2}{2a}$[/tex]

To learn more about expression

https://brainly.com/question/14083225

#SPJ4

how will the types of bonds being broken.formed leading to the two different tpyes of products affect the overall energy of the reactions g

Answers

The types of bonds being broken and formed will impact the overall energy of the reaction, and this can be determined by examining whether the reaction is endothermic or exothermic.

The type of bonds being broken and formed in a reaction will have a significant impact on the overall energy of the reaction. When strong bonds are broken, more energy is required as compared to breaking weaker bonds.

Similarly, when strong bonds are formed, more energy is released as compared to forming weaker bonds. If the reaction involves breaking strong bonds and forming weak bonds, it will be an endothermic reaction, meaning that it requires energy to occur.

Conversely, if the reaction involves breaking weak bonds and forming strong bonds, it will be an exothermic reaction, meaning that it releases energy.

To learn more about : energy

https://brainly.com/question/30083274

#SPJ11

Convert 10kg⋅cm/s^2 to newtons

Answers

10 kg.cm/s² is equivalent to 0.1 N when converted into newton.

The unit of force in the International System of Units (SI) is the newton (N). One Newton is defined as the amount of force required to accelerate a mass of one kilogram at a rate of one meter per second squared (1 N = 1 kg⋅m/s² ).

10 kg⋅cm/s²  can be converted to newtons using the following formula:

1 N = 1 kg⋅m/s²

First, we need to convert cm to meters, as the unit of force is in newtons, which is based on meters.

1 cm = 0.01 m

Therefore, 10 kg⋅cm/s² can be converted to:

10 kg × 0.01 m/s² = 0.1 kg⋅m/s²

Now, using the formula:

1 N = 1 kg⋅m/s²

We can convert 0.1 kg⋅m/s² to newtons:

0.1 kg⋅m/s² = 0.1 N

To learn more about newton follow the link:

https://brainly.com/question/12505464

#SPJ4

Other Questions
in contrast to skinners more traditional approach, banduras theory maintains that discuss 1 policy that you agree with from the Republican Party's party platform and 1 policy that you agree with from the Democratic Party's platform On a given planet, the weight of an object varies directly with the mass of the object. Suppose that an object whose mass is 2 kg weighs 4 N. Calculate the mass of another object that weights 18 N. Do you think it is important to have such regulations in place? Why? What other legislation could be introduced to provide better security? How would these regulations help in enhancing cybersecurity? 1. In the documentary "The Century of the Self" we watched and discussed the contribution of Edward Bernays to the fields of public relations and marketing through his unique techniques that target people's unconscious motives. At his time, Bernays stated that what they needed to do is "to shift America from a needs culture to a desires culture." What does this statement mean? Please argue the importance and role of desires (rather than needs) in turning people into consuming machines. Show workings for all questions Question 1 (1 Mark) You lend a friend $11,000, for which your friend will repay you $28,904at the end of 5 years. What interest rate are you charging your friend? Answer Question 2 (2 Marks) Ahmad, age 10, wants to be able to buy a really cool new car when he turns 16. His really cool car costs $18,000 today, and its cost is expected to increase 4 percent annually. Ahmad wants to make one deposit today into an account paying 8 percent annually in order to buy his car in 6 years. How much will Ahmad's car cost, and how much does Ahmad have to save today in order to buy this car at age 16? Answer when the distance between two charges is halved, the electrical force between the charges is reduced by 1/4. quadruples. halves. doubles. none of the above choices are correct. Question 2 of 15Which statement best describes the function of government corporations?A. Government corporations monitor and regulate issues related tothe economy.OB. Government corporations operate like private business to supportpublic services.OC. Government corporations handle broad policy areas, such asdefense or education.OD. Government corporations handle specific issues, like space travelor the environment. T/F a positive residual income indicates that the segments return on investment is greater than the companys target rate of return. Consider a three-year 10% coupon bond with a face value of $100. Suppose that the yield on the bond is 12% per annum with continuous compounding. . Coupon payments of $5 are made every six months. . What's the price and duration of the bond? Decibel Project Management Services, C/O Spr School, Nethaji Nagar,Ramagiri, Nalgonda, Telangana, India, 508001 is the center for jee mains if anybody same centre please let me know what would you name a fine-grained igneous rock composed of 60% ca-rich plagioclase feldspar, 30% pyroxene, and 10% amphibole? 3. search the internet for four accounts of successful corporate entrepreneurship. what key factors for success are common across all these accounts? which are unique? if one company can foster an entrepreneurial culture within an existing firm, what stops another company from copying its process and taking away the initial advantage? A variety of genotypes and phenotypes in a population is useful because itA) makes life more interesting.B) allows the species to survive if the environment changes.C) means that the gene pool is constant and unchanging.D) makes genetic drift an unlikely occurrence.E) will lead to nonrandom mating. Help pleaseeThe half-life of Palladium-100 is 4 days. After 16 days a sample of Palladium-100 has been reduced to a mass of 2 mg.What was the initial mass (in mg) of the sample? --------------What is the mass 7 weeks after the start?------------- which subjective forecasting method depends upon the anonymous opinion of a panel of individuals to generate sales forecasts? group of answer choices jury of executive opinion. customer surveys. none of the above. sales force composites. delphi method. pamela registered her new phone number on the do not call registry. how long will her number remain on the list? which movement of the multimovement instrumental cycle is likely to be a dance? a. first b. second c. third d. last a free-market economic system is one in which the market of buyers and sellers decides what is produced, how much is produced, and how it is distributed. T/F Read the passage and identify any figurative language. I looked at the road ahead, which twisted up and around the side of the mountain like frosting on the side of a cake. It disappeared around the corner, but I could bet that it kept going upward. You ready? Donna asked, clipping her expensive bicycling shoes into their special pedals. I guess, I shrugged. With a whoop, Donna pushed off, and up the mountain we went. As we pedaled, sweat poured off me until the road behind me was a river. My calves were screaming, and my lungs felt like a boa constrictor was wrapped around them. Donna flew ahead of me. Only her back wheel caught my eye as I turned each corner. More than once, I thought to myself that if I got just a little farther behind, I could get off my bike and walk, and Donna would never know.