The lift is the force created by the airplane's passage through the air. Lift is an aerodynamic force. ("aero" stands for the air, and "dynamic" denotes motion).
Plane take-offThe mechanical energy becomes kinetic energy when the airplane's speed rises. The mechanical energy is transformed into gravitational potential energy as the plane soars higher. Drag during flight results in some energy being wasted to thermal (heat) energy and sound energy.The engines, which turn chemical energy (fuel) into mechanical energy, supply the energy needed for the airplane to lift off. (the spinning of fan blades, or, in some cases, propellers). The airplane's speed is increased by the mechanical energy that creates thrust.For more information on aero plane take-off kindly visit to
https://brainly.com/question/27936456
#SPJ1
As you sit in a fishing boat, you notice that 12 waves pass the boat every 45 s. If the distance from one crest to the next is 9.0 m what is the speed of these waves?
Express your answer to two significant figures and include the appropriate units.
The frequency of the waves can be calculated as the number of waves passing a given point per unit of time. In this case, the frequency is:
f = (number of waves) / (time)
f = 12 waves / 45 s
f = 0.267 Hz
The wavelength is the distance between two adjacent wave crests, which is given as 9.0 m in the problem.
What is the speed of these waves?The speed of the wave can be calculated using the formula:
v = f × λ
where v is the wave speed, f is the frequency, and λ is the wavelength.
Substituting the values given, we get:
v = 0.267 Hz × 9.0 m
v = 2.40 m/s
Therefore, the speed of the waves is 2.40 m/s (to two significant figures).
Learn more about wave from
https://brainly.com/question/23739080
#SPJ1
A 25 kg child plays on a swing having support ropes that are 2.20 m long. A friend pulls her back until the ropes are ăÿÿfrom the vertical and releases her from rest. (a) What is the potential energy for the child just as she is released compared with the potential energy at the bottom of the swing? (b) How fast will she be moving at the bottom of the swing? (c) How much work does the tension in the ropes do as the child swings from the initial position to the bottom?
Answer:
A) P.E = 138.44 J
B) The velocity of swing at bottom, v = 3.33 m/s
C) The work done, W = -138.44 J
Explanation:
Given,
The mass of the child, m = 25 Kg
The length of the swing rope, L = 2.2 m
The angle of the swing to the vertical position, ∅ = 42°
A) The potential energy at the initial position ∅ = 42° is given by the relation
P.E = mgh joule
Considering h = 0 for the vertical position
The h at ∅ = 42° is h = L (1 - cos∅)
P.E = mgL (1 - cos∅)
Substituting the given values in the above equation
P.E = 25 x 9.8 x 2.2 (1 - cos42°)
= 138.44 J
The potential energy for the child just as she is released, compared to the potential energy at the bottom of the swing is, P.E = 138.44 J
B) The velocity of the swing at the bottom.
At bottom of the swing the P.E is completely transformed into the K.E
∴ K.E = P.E
1/2 mv² = 138.44
1/2 x 25 x v² 138.44
v² = 11.0752
v = 3.33 m/s
The velocity of the swing at the bottom is, v = 3.33 m/s
C) The work done by the tension in the rope from initial position to the bottom
Tension on string, T = Force acting on the swing, F
=
= - 2.2 x 25 x 9.8 [cos0 - cos 42°]
= - 138.44 J
The negative sign in the in energy is that the work done is towards the gravitational force of attraction.
The work done by the tension in the ropes as the child swings from the initial position to the bottom of the swing, W = - 138.44 J
101. A propeller is accelerated from rest to an angular velocity of 1000 rev/min over a period of 6.0 seconds by a constant torque of 2.0×103N⋅m . (a) What is the moment of inertia of the propeller? (b) What power is being provided to the propeller 3.0 s after it starts rotating?
The power being provided to the propeller 3.0 seconds after it starts rotating is approximately 21.8 MW and the moment of inertia of the propeller is approximately 0.55 kg⋅m².
What kind of forces do hydraulic systems produce?In hydraulic systems, forces are transferred from one area to another inside an incompressible fluid, such as water or oil. Most aircraft's landing gear and braking systems are hydraulic. In order to function, pneumatic systems need a compressible fluid like air.
I = (τt²) / (2πΔθ)
Substituting the given values, we get:
I = (2.0×10³ N⋅m × (6.0 s)²) / (2π × (1000 rev/min) × (1 min/60 s) × 2π)
I ≈ 0.55 kg⋅m²
P = τω
ω = ω₀ + αt
where ω₀ is the initial angular velocity (0 in this case), α is the angular acceleration, and t is the time.
ω = 0 + (τ/I)t
ω = (2.0×10³ N⋅m) / (0.55 kg⋅m²) × (3.0 s)
ω ≈ 10,909 rad/s
P = (2.0×10³ N⋅m) × (10,909 rad/s)
P ≈ 2.18×10⁷ W
To know more about inertia visit:-
https://brainly.com/question/3268780
#SPJ1
please help me in this exercise
a. We can actually see here that the girl have kinetic energy which is respect to the escalator.
b. The kinetic energy does not depend on the chosen reference.
What is kinetic energy?Kinetic energy is a form of energy that an object possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its current velocity. Kinetic energy is a scalar quantity, meaning it only has magnitude and no direction. The formula for calculating kinetic energy is:
KE = 1/2 × m × v²
Where KE is the kinetic energy, m is the mass of the object, and v is its velocity.
The concept of kinetic energy was first introduced by the French mathematician Gaspard-Gustave de Coriolis in 1829. It was later developed by other scientists such as James Prescott Joule and Hermann von Helmholtz.
Learn more about kinetic energy on https://brainly.com/question/8101588
#SPJ1
a wave has a frequency of 40 hertz and a wavelength of 2 meters . what is the wave speed ?
Answer:
[tex]80\; {\rm m\cdot s^{-1}}[/tex].
Explanation:
The frequency [tex]f[/tex] of a wave is the number of cycles completed in unit time ([tex]1\; {\rm s}[/tex] in this example.) In this question, [tex]f = 40\; {\rm s^{-1}}[/tex] ([tex]1\; {\rm Hz} = 1\; {\rm s^{-1}}[/tex]) means that the wave would complete [tex]40[/tex] cycles in every [tex]1\; {\rm s}[/tex].
The wavelength [tex]\lambda[/tex] of a wave is the distance the wave travels in each cycle. It is given that [tex]\lambda = 2\; {\rm m}[/tex].
The goal is to find the wave speed, which is the distance that this wave travels in unit time ([tex]1\; {\rm s}[/tex].)
In this question, it is given that [tex]\lambda = 2\; {\rm m}[/tex] and [tex]f = 40\; {\rm s^{-1}}[/tex]. Thus, this wave would travel a total of [tex]40\, (2\; {\rm m}) = 80\; {\rm m}[/tex] for the [tex]40[/tex] cycles completed in each unit time of [tex]1\; {\rm s}[/tex] ([tex]\lambda = 2\; {\rm m}[/tex] for each cycle.) The speed of this wave would be [tex]80\; {\rm m\cdot s^{-1}}[/tex].
Formally, the speed [tex]v[/tex] of this wave can be found by multiplying the wavelength [tex]\lambda[/tex] of this wave by its frequency [tex]f[/tex]:
[tex]\begin{aligned}v &= \lambda\, f \\ &= (2\; {\rm m})\, (40\; {\rm s^{-1}) \\ &= 80\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
40 POINTS!!!
A wave travels along a stretched horizontal rope. The vertical distance from crest to trough for this wave is 18 cm and the horizontal distance from crest to trough is 26cm.
Part A
What is the wavelength of this wave?
Express your answer using two significant figures
Part B
What is the amplitude of this wave?
Express your answer using two significant figures.
part a. the wavelength of this wave is 26 cm
part b. The amplitude (A) of a wave is 9 cm
What is wavelength?The wavelength (λ) of a wave is described as the distance between two consecutive points on the wave that are in phase.
In this scenario, the distance between two corresponding points on the wave will be equal to the horizontal distance from crest to trough, which is 26 cm.
Hence, the wavelength of the wave is: λ = 26 cm
The amplitude (A) of a wave is described as the maximum displacement of a particle from its rest position as the wave passes through it.
In this scenario, the vertical distance from crest to trough is 18 cm, which is equal to twice the amplitude.
Learn more about amplitude at:
https://brainly.com/question/3613222
#SPJ1
In the diagram, q₁, q2, and q3 are in a straight line.
Each of these particles has a charge of
-2.35 x 10-6 C. Particles q₁ and q2 are separated
by 0.100 m and particles q2 and q3 are separated
by 0.100 m. What is the net force on particle q₁?
Remember: Negative forces (-F) will point Left
Positive forces (+F) will point Right
The net force on particle q₁ is 9.22 × 10^-13 N, and it points to the left.
How do we calculate?The net force on particle q₁ due to particles q2 and q3 can be found using Coulomb's law.
Coulomb's law states that the force between two charged particles is given as
F= k * (q₁ * q₂) / r^2
Since q₁ and q₂ have the same charge, the force between them is repulsive, i.e., it points to the left. Using Coulomb's law, we can find the magnitude of this force:
F₁₂ = k * (q₁ * q₂) / r₁₂^2
F₁₂ = (9 × 10^9 Nm^2/C^2) * (-2.35 × 10^-6 C)^2 / (0.100 m)^2
F₁₂ = -4.61 × 10^-13 N
Here, the force between q₁ and q₂ points to the left, and its magnitude is 4.61 × 10^-13 N.
The force between q₂ and q₃ also points to the left, and its magnitude is given as
F₂₃ = k * (q₂ * q₃) / r₂₃^2
F₂₃ = (9 × 10^9 Nm^2/C^2) * (-2.35 × 10^-6 C)^2 / (0.100 m)^2
F₂₃ = -4.61 × 10^-13 N
Here, the force between q₂ and q₃ also points to the left, and its magnitude is 4.61 × 10^-13 N.
F_net = -F₁₂ - F₂₃
F_net = -(-4.61 × 10^-13 N) - (-4.61 × 10^-13 N)
F_net = 9.22 × 10^-13 N
Learn more about force at: https://brainly.com/question/12970081
#SPJ1
A researcher investigated whether job applicants with popular (i.e. common) names are viewed more favorably than equally qualified applicants with less popular (i.e. uncommon) names. Participants in one group read resumes of job applicants with popular (i.e. common) names, while participants in the other group read the same resumes of the same job applicants but with unpopular (i.e. uncommon) names. The results showed that the differences in the evaluations of the applicants by the two groups were not significant at the .001 level
The researcher did not find strong evidence to support the idea that job applicants with popular names are viewed more favorably than equally qualified applicants with less popular names.
What factors plan an important role in the hiring process for a job?It sounds like the researcher conducted an experiment to investigate whether job applicants with popular names are viewed more favorably than equally qualified applicants with less popular names.
Based on the information provided, the researcher found that the differences in the evaluations of the applicants by the two groups were not significant at the .001 level.
The factors that play an important role in the hiring process for a job:
(1) Qualifications and experience: Employers typically look for candidates who possess the necessary qualifications and experience for the job. This includes education, training, certifications, and work experience.
(2) Skills and abilities: Employers also consider a candidate's skills and abilities related to the job. These may include technical, interpersonal, communication, and problem-solving skills.
(3) Personal characteristics: Personal characteristics, such as motivation, work ethic, and adaptability, can also play a role in the hiring process. Employers may look for candidates who demonstrate a positive attitude, a willingness to learn, and the ability to work well with others.
(4) Fit with company culture: Companies may also consider whether a candidate fits with their company culture, values, and mission. This can include factors such as teamwork, creativity, and innovation.
Learn more about evaluations here:
https://brainly.com/question/20067491
#SPJ1
A locust jumps at an angle of 55.0° and lands 0.750 m from where it jumped.
Aproximately 1.09 m/s was the locust's first speed.
What role do vectors have in mechanics?In engineering mechanics, vectors are used to express values with both a magnitude and a direction. For analysis, vector representations of a variety of engineering quantities—including forces, displacements, velocities, and accelerations—are required.
Δy = vsin(θ)t - 0.5gt²
0 = v*sin(55°)t - 0.5(-9.81 m/s²)*t²
t = 2vsin(55°)/g
Now, we can use the horizontal motion of the locust to find the initial velocity v. The horizontal distance traveled by the locust is given by:
Δx = v*cos(55°)*t
Substituting the expression for t that we just found:
0.750 m = vcos(55°)2vsin(55°)/g
Solving for v:
v = √(0.750 mg/(2sin(55°)*cos(55°)))
v ≈ 1.09 m/s
To know more about speed visit:-
https://brainly.com/question/28224010
#SPJ1
A large piston in a hydraulic lift has an area of 100 cm2. The force needed to a small piston with an area of 15 cm2 to lift a 1800 kg car is _ kg
The force needed to lift the 1800 kg car with the small piston is 2,649 N or approximately 270 kg (since 1 kg is equal to 9.81 N).
The hydraulic lift works based on Pascal's principle, which states that the pressure applied to a confined fluid is transmitted equally in all directions throughout the fluid.
Assuming there is no loss of energy due to friction or other factors, the force exerted on the small piston will be equal to the force exerted on the large piston. This can be expressed as:
F1/A1 = F2/A2
where F1 is the force exerted on the large piston, A1 is the area of the large piston, F2 is the force exerted on the small piston (which we want to find), and A2 is the area of the small piston.
We can rearrange this equation to solve for F2:
F2 = (F1/A1) x A2
Given that the area of the large piston is 100 cm², we can calculate the force exerted on the large piston by using the weight of the car and the gravitational acceleration:
F1 = m x g = 1800 kg x 9.81 m/s² = 17,658 N
Substituting the values into the equation, we get:
F2 = (17,658 N / 100 cm2) x 15 cm² = 2,649 N
Therefore, the force needed to lift the 1800 kg car with the small piston is 2,649 N or approximately 270 kg (since 1 kg is equal to 9.81 N).
To know more about Pascal's principles, visit:
https://brainly.com/question/30258629
#SPJ1
What would be the intensity of a sound wave produced by a 150 Watt speaker from a distance of 5.8 meters? (write your answer to two digits)
The relationship between a sound wave's intensity and pressure amplitude (also known as pressure variation p) is. I is equal to (p) 2 2 v w, where is the thickness of the substance that the sound is contained in.
Describe a sound wave.
Hence, a sound wave is made up of periodically occurring compressions and compression and rarefaction, or areas of high and low pressure, that are travelling at a specific pace. In other words, it consists of a regular (i.e., oscillating or vibrating) change in pressure that takes place around the optimum pressure that is present at a specific time and location.
A sound wave is created by a speaker in what way?
A speaker creates a sound by vibrating a cone, which causes air molecules to vibrate. A speaker in Figure 17.2. 2 vibrates with a consistent frequency and amplitude, causing motions in the molecules of the surrounding air. The speaker transfers power to the air as it vibrates back and forth, primarily as thermal energy.
To know more about sound wave visit:
https://brainly.com/question/11797560
#SPJ1
What inductance must be put in series with a 100-kiloohm resistor at 1.0-MHz for a total impedance
of 150 kiloohm
An inductance of 0.0191 H (19.1 mH) must be put in series with the 100-kiloohm resistor to achieve a total impedance of 150 kiloohm at 1.0 MHz.
What is Induction?
Induction refers to the production of an electric or magnetic effect through the relative motion or change in magnitude of a magnetic field or electric current. This phenomenon is based on the principles of electromagnetism and is commonly used in various electrical and electronic devices, including transformers, motors, generators, and wireless charging systems.
The total impedance can be calculated using the following formula:
Z_total = sqrt([tex]R^{2}[/tex] X_[tex]L^{2}[/tex])
where R is the resistance (100 kiloohm) and X_L is the inductive reactance. We can rearrange this formula to solve for X_L:
At 1.0 MHz, the angular frequency is:
w = 2πf = 2π × 1.0 × [tex]10^{6}[/tex] = 6.28 × [tex]10^{6}[/tex]ad/s
The inductive reactance can be calculated using the following formula:
X_L = wL
where L is the inductance in henries. We can rearrange this formula to solve for L:
L = X_L / w
Now we can substitute the given values and solve for L:
X_L = sqrt((150 ×[tex]10^{3}[/tex]) - (100 ×[tex]10^{3}[/tex])) = 120 × [tex]10^{3}[/tex] ohm
L = X_L / w = 120 × [tex]10^{3}[/tex] ohm / 6.28 × [tex]10^{6}[/tex] rad/s = 0.0191 H
Learn more about Induction from the given link
https://brainly.com/question/30049273
#SPJ1
I need help please thank you .:)
Protons, neutrons, and electrons are the three main subatomic particles that make up atoms.
What is mass number and what is the mass number, number of protons, neutrons, and electrons of the given elements?An oxygen atom has 8 protons, 8 electrons, and its number of neutrons may vary depending on the isotope of oxygen. The more frequently encountered isotope of oxygen is oxygen-16, with 8 neutrons.
The element with 13 protons is aluminum (Al). To find the mass number, we add the number of protons and neutrons in the nucleus. Therefore, the mass number of this aluminum isotope would be 13 + 14 = 27.
If an atom has 7 electrons, it must be nitrogen (N), which has an atomic number of 7.
Number of neutrons = Mass number - Atomic number
Thus, we obtain the number of neutrons by the equation: 14 - 7 = 7
Learn more about elements in the periodic table here:
https://brainly.com/question/14347616
#SPJ1
Question 15 of 32
A bungee jumper jumps off a bridge and bounces up and down several times.
She finally comes to rest 30 m below the bridge from which she just jumped.
If her mass is 50 kg and the spring constant of the bungee cord is 10 N/m,
how much energy was lost due to air resistance while she was bouncing?
(Recall that g = 9.8 m/s²)
A. 7330 N
B. 9200 N
C. 10,200 N
D. 8605 N
C. 10,200 N is how much energy was lost due to air resistance while she was bouncing
How much energy was lostThe energy lost due to air resistance while the bungee jumper was bouncing can be calculated by finding the total mechanical energy of the system at the beginning of the jump and comparing it to the total mechanical energy at the end of the jump.
At the beginning of the jump, the total mechanical energy is given by:
Ei = mgh
where m is the mass of the bungee jumper, g is the acceleration due to gravity, and h is the height of the bridge. Therefore, at the beginning of the jump:
50 x 30 x 10 - 1/2 x 30^2 x 10
= 15000 - 4500
= 10,200 N
Read more on energy here:https://brainly.com/question/13881533
#SPJ1
A U-tube is open to the atmosphere at both ends. Water is poured into the tube until the water rises part-way along the straight sides, and then some oil with a density of is poured into one end. This causes the water surface on that side of the tube to go down by and the surface on the other side to go up by the same amount. How much higher is the top surface of the oil on that side of the tube compared with the surface of the water on the other side of the tube?
The top surface of the oil on that side of the tube is 0.6 times higher than the surface of the water on the other side of the tube.
Describe principle of hydrostatics?The principle of hydrostatics, also known as Pascal's principle, states that when an external pressure is applied to a fluid in a container, that pressure is transmitted uniformly in all directions within the fluid, regardless of the shape or volume of the container. In other words, the pressure applied to a confined fluid will be distributed evenly throughout the fluid and will not change in magnitude at any point within the fluid. This principle is important in a number of applications, such as hydraulic systems, which use fluids to transmit force and pressure from one point to another. It is also used to explain how liquids exert pressure on the walls of their container and how objects can float or sink in fluids.
We can use the principles of hydrostatics to solve this problem. Let's call the height difference between the two water surfaces h. We can assume that the oil completely covers the water on one side of the tube and does not mix with it, so the oil and water form two separate liquid columns with a common interface. Let's call the height difference between the oil and water surfaces on the same side of the tube H.
The pressure at any given point in a fluid depends only on the depth of that point below the surface of the fluid and the density of the fluid. Since the two water columns are at the same height, they experience the same pressure from the atmosphere. Similarly, the two oil columns experience the same pressure from the atmosphere.
Now consider a point on the interface between the oil and water on the same side of the tube. This point is at a depth of h+H below the water surface on the other side of the tube, so the pressure at this point is greater than atmospheric pressure by an amount equal to the product of the density of water, the acceleration due to gravity, and the total depth (h+H):
P = Patm + ρwatergh
where P is the pressure at the interface, Patm is atmospheric pressure, ρwater is the density of water, g is the acceleration due to gravity, and h+H is the total depth.
Similarly, the pressure at this point is less than atmospheric pressure by an amount equal to the product of the density of oil, the acceleration due to gravity, and the depth of the oil column (H):
P = Patm - ρoilgH
Since the interface between the oil and water is at the same pressure, we can equate these two expressions for P:
Patm + ρwatergh = Patm - ρoilgH
Solving for H, we get:
H = h(ρwater/ρoil)
Substituting the given values, we get:
H = 0.6h
Therefore, the top surface of the oil on that side of the tube is 0.6 times higher than the surface of the water on the other side of the tube.
To know more about pressure visit:
https://brainly.com/question/20816077
#SPJ1
Which are different forms of an element that have different numbers of neutrons?
ions
isotopes
compounds
molecules
.
.
Answer:A
Explanation:
Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons. The number of protons in a nucleus determines the element's atomic number on the Periodic Table.
1. A kid jumps straight up at 7.20 m/s. How long will he remain in the air?
The time takes the kid to remain in the air is 0.735 s.
What is time?Time is the duration of an events. The s.i unit of time is seconds.
To calculate how long the kid will be in the air, we use the formula below.
Formula:
t = (v-u)/g.................................... Equation 1Where:
t = Timev = Final Velocityu = Initial velocityg = Acceleration due to gravityFrom the question,
Given:
u = 7.20 m/sv = 0 m/sg = -9.8 m/s² (Going against the force of gravity)Substitute these values into equation 1
t = (0-7.20)/-9.8t = -7.20/-9.80t = 0.735 secondsHence, the time is 0.735 s.
Learn more about time here: https://brainly.com/question/10428039
#SPJ1
The following graph shows the kinetic energy of a roller coaster car as it passes through a loop.
Roller Coaster Car's Kinetic Energy
O B.
Kinetic Energy (kilojoules)
OC.
300
250
200
150
100
50
0
1
What was the most likely cause for the rise in kinetic energy after 2.5 seconds?
A. The roller coaster was pulled with decreasing gravitational force.
The roller coaster began slowing down.
The roller coaster started gaining elevation.
O D. The roller coaster began speeding up.
2
3
Time (s)
Reset
Next Question
5
6
Both the object's speed and mass affect how much kinetic energy it contains. Motional energy is produced while the roller coaster descends. The roller coaster's bottom of the track position is where the most kinetic energy is produced. Kinetic energy changes to potential energy when it starts to rise.
Energy changeThrough the transformation of potential energy into kinetic energy, roller coasters are propelled forward. As they are propelled to the peak of the first hill, the roller coaster vehicles accumulate potential energy. The cars drop as the potential energy is transformed into kinetic energy.Kinetic energy is produced by converting potential energy. As the car navigates hills, loops, twists, and turns, this process keeps happening. With height, it increases potential energy, but as it slows down, it loses kinetic energy. Energy only changes from one form to another; it never creates or destroys itself.For more information on kinetic energy of roller coaster kindly visit to
https://brainly.com/question/3437220
#SPJ1
5. Two equal charges are situated in a vacuum 10.0cm apart, if they repel each other with a force of 0.5N, calculate the value of the charge on each. [4π)¹ = 9.0 x 10⁹ I
The value of the charge on each particle is [tex]1.05 x 10^-8 C[/tex].
What is Coulomb's law?Coulomb's law is a fundamental principle of electrostatics that describes the interaction between electric charges. It states that the force between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. We can use Coulomb's law to solve this problem. Mathematically,
[tex]F = k(q1q2)/r^2[/tex]
where F is the force of attraction or repulsion between the two charged particles,[tex]q1[/tex] and [tex]q2[/tex] are the magnitudes of the charges on the two particles, r is the distance between them, and k is Coulomb's constant, which has a value of [tex]9.0 x 10^9 Nm^2/C^2.[/tex]
In this problem, we know that the charges are equal and the distance between them is 10.0 cm. We also know that the force between them is 0.5 N. Therefore,
[tex]0.5 N = k(q^2)/(0.1 m)^2[/tex]
Solving for q, we get:
[tex]q = \sqrt{[(0.5 N)(0.1 m)^2/k]}[/tex]
[tex]q = \sqrt{(0.5 N)(0.01 m)/(9.0 x 10^9 Nm^2/C^2)}[/tex]
[tex]q = 1.05 x 10^-8 C[/tex]
Therefore, the value of the charge on each particle is [tex]1.05 x 10^-8 C.[/tex]
Learn more about electrostatics here:
https://brainly.com/question/31042490
#SPJ1
Within the living area of the colony, what atmospheric gases must be present on Venus?
Humans would need a breathable environment like that on Earth in the living section of a colony on Venus in order to survive. Nitrogen, oxygen, and trace amounts of other gases, such as carbon dioxide, make up the majority of the atmosphere on Earth.
What gases are present in Venus' atmosphere?The clouds are made of sulfuric acid, and the atmosphere is primarily carbon dioxide, the same gas that causes the greenhouse effect on Venus and Earth. And the heated, high-pressure carbon dioxide acts corrosively at the surface.
What gases are found in Mars' and Venus' atmospheres?For instance, compared to Earth, which has 99% nitrogen and oxygen in its atmosphere, Venus and Mars both contain more than 98% carbon dioxide and nitrogen.
To know more about atmosphere visit:-
https://brainly.com/question/885615
#SPJ1
5. A risk factor is an aspect of the child or environment that increases the probability of poor outcomes.
Name at least two (2) risk factors of childhood and how these factors might affect their ability to learn in
school. (2 Points)
Anyone pls
The two risk factors that can affect the ability of a child to learn in school is poor parenting and malnutrition.
What is a risk factor?A risk factor can be defined as any predisposing factor that can expose an individual to harm.
A risk factor that affects a child is an aspect of the child or environment that increases the probability of poor outcomes.
The two risk factors that can affect the ability of a child to learn in school include the following:
Poor parenting: When there is lack of understanding and love between the couple is affects the emotions of the children.Malnutrition: The brain of the child is yet to fully develop and this can be help through adequate nutrition.Learn more about nutrition here:
https://brainly.com/question/29512118
#SPJ1
Look at each written description and equation. Determine if the solution to the equation answers the question by selecting Yes or No.
A
A long-distance athlete can run 12
kilometer in 3 minutes. How many kilometers can he run in an hour?
12 km360 hr=12×603
Yes No B
A search and rescue drone can scan 0.5 hectare in 2 minutes. How many hectares per minute can the drone scan?
510 ha2 min=510×21
Yes No C
In 15 minutes a crew of highway workers paved 110
mile. If they work at the same rate, what portion of a mile will they pave in 1 hour?
14 hr110 mi=14×101
Yes No D
A soup recipe uses 112
cups of water for every 14
teaspoon of seasoning. If a large batch of soup is made using 1 teaspoon of seasoning, how many cups of water is needed?
32 c14 tsp=32×41
Yes No
A .35 kg block at -27.5 ºC is added to .217 kg of water at 25.0 ºC. They come to equilibrium at 16.4 ºC. What is the specific heat of the block?
Answer:
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
To solve this problem, we can use the formula for heat transfer:
q = mcΔT
where q is the heat transferred, m is the mass of the object, c is its specific heat capacity, and ΔT is the change in temperature.
We know that the mass of the block is 0.35 kg and that its initial temperature is -27.5 ºC. We also know that the mass of water is 0.217 kg and that its initial temperature is 25.0 ºC.
When they come to equilibrium at 16.4 ºC, we can calculate how much heat was transferred from the water to the block:
q = mcΔT q = (0.217 kg)(4186 J/kg ºC)(25.0 ºC - 16.4 ºC) q = 1825 J
This amount of heat was transferred from the water to the block, so we can set it equal to the amount of heat absorbed by the block:
q = mcΔT 1825 J = (0.35 kg)c(16.4 ºC - (-27.5 ºC)) 1825 J = (0.35 kg)c(43.9 ºC) c = 148 J/kg ºC
Therefore, the specific heat capacity of the block is 148 J/kg ºC.
Explanation:
(´▽`ʃ♡ƪ)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
The length of the river span of a bridge is 2799.0 ft. The total length of the bridge is 6998ft. Convert the length of the river span of the bridge to meters.
According to the question the length of the river span of the bridge in meters is 853.3232 m.
What is Length?Length is a physical quantity that measures the distance between two points. It is one of the fundamental units in the International System of Units (SI). It is usually measured in meters, although it can also be measured in other units such as centimeters, kilometers, feet, yards, miles, and so on.
The length of the river span of the bridge is 2799.0 ft. To convert this length to meters, we need to use a conversion factor. There are 0.3048 meters in one foot, so the conversion factor we will use is 1 ft
= 0.3048 m.
To convert 2799.0 ft to meters, we multiply by the conversion factor:
2799.0 ft * 0.3048 m/ft
= 853.3232 m
Therefore, the length of the river span of the bridge in meters is 853.3232 m.
To learn more about Length
https://brainly.com/question/20599103
#SPJ1
5) A Brachiosaurus moves with a momentum of 134,052 kgm / s What is the Brachiosaurus' mass it is moving at 3.9m / s ?
The mass of Brachiosaurus moves with a momentum of 134,054 kgm/s and the velocity is 3.9 m/s, which is 34.37 kg.
The momentum is the product of mass and velocity. The momentum is the vector quantity and the unit of momentum is Kgm/s.
Momentum = mass × velocity
mass = momentum/velocity
momentum = 134,052 kgm / s
velocity = 3.9 m/s
mass = 134052 / 3.9
= 34.37 kg
Thus, the mass of Brachiosaurus is 34.37 kg.
To learn more about Momentum :
https://brainly.com/question/30677308
#SPJ1
Would you expect the smallest guitar string to produce waves in the glass of water at a higher or lower frequency?
Answer:
Explanation:
The frequency of the waves produced in the glass of water will depend on the frequency of the sound wave produced by the guitar string.
The frequency of a guitar string is inversely proportional to its length, thickness, and tension. Therefore, the thinnest string on a guitar will have the highest frequency, assuming that all other variables are kept constant.
Since the frequency of the sound wave produced by the thinnest guitar string is higher, we would expect the waves produced in the glass of water to also have a higher frequency than those produced by a thicker guitar string.
Raphael wants to test the effect of different food types on the growth rate of mice. He measures the mass of thirty mice and separates them into three groups. Each group is given a different type of feed. All of the mice are kept in identical environments and given access to clean water.
After three months, Raphael measures the mass of the mice again. The results of Raphael's experiment are shown below.
Food Type Average Growth (g)
oat grains 1.5 g
cereal flakes 0.3 g
sunflower seeds 2.1 g
Which of the following is a fact that Raphael can determine from his experiment?
A.
Mice do not like the taste of cereal flakes.
B.
Sunflower seeds are the best type of food to feed pet mice.
C.
Mice that ate sunflower seeds gained an average of 2.1 grams.
D.
Bigger mice are more desirable as pets than smaller mice.
Mice that ate sunflower seeds gained an average of 2.1 grams that Raphael can determine from his experiment. Each group is given a different type of feed.
What is grams ?Grams (g) is a unit of measurement for mass in the International System of Units (SI). It is the base unit of mass in the SI, and is defined as being equal to the mass of a physical prototype, which is kept at the International Bureau of Weights and Measures. In practical terms, 1 gram is equal to 0.0352739619 ounces, or 0.00220462262 pounds. Grams are often used to measure the weight of food, medicines, and other small objects.
To learn more about grams
https://brainly.com/question/30337264
#SPJ1
The element of an electric fire with an output of 1.5kw is a cylinder 0.3m long and 0.04 in radius calculate temperature if it behave as black body
The temperature of the electric fire element is 18.3 K
How do we calculate?
We use the formula at:
P = σAT^4
where P= power radiated,
A = surface area of the black body,
σ =Stefan-Boltzmann constant (5.67 × 10^-8 W/m^2K^4),
T = temperature in Kelvin.
P = 1500 W
The surface area of a cylinder is gotten by:
A = 2πrh + 2πr^2
A = 2π(0.04 m)(0.3 m) + 2π(0.04 m)^2
A = 0.0902 m^2
Substituting the values into the Stefan-Boltzmann law, we have:
1500 W = (5.67 × 10^-8 W/m^2K^4)(0.0902 m^2)T^4
T^4 = 4196.9
T = 18.3 K
Learn more about surface area at: https://brainly.com/question/951562
#SPJ1
WILL MARK BRAIN THING HURRY PLS
Imagine that you are an extraterrestrial creature who lives in the extrasolar planetary system where Proxima-b resides. You are studying the Sun, which to you appears to be an exceptionally bright star. You do not know it, but your optical technology is almost identical to humanity’s optical technology. What evidence might indicate to you that (a) planets orbit that star (the Sun) and (b) that at least one of those planets appears to lie within the habitable zone and would thus be a potentially habitable planetary body?
a.) The evidence for planets orbiting the Sun might be :
Periodic variations in the brightness of the SunChanges in the position of the starb. Evidence for potentially habitable planets might come in the form of
Transit observationsSpectral observationsWhat is meant by planets?A planet is described as a celestial body that is in orbit around the Sun, has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and has cleared the neighborhood around its orbit.
There is a slight decrease in the brightness of the star as planets pass in front of it, blocking a fraction of its light.
The extraterrestrial being might notice periodic fluctuations that are consistent with a planet's orbital period if it can track the Sun's brightness over time.
Learn more about planets at: https://brainly.com/question/28430876
#SPJ1
The nearest neighboring star to the Sun is about 4 light-years away. If a planet happened to be orbiting this star at an orbital radius equal to that of the Earth-Sun distance, what minimum diameter would an Earth-based telescope's aperture have to be in order to obtain an image that resolved this star-planet system? Assume the light emitted by the star and planet has a wavelength of 550 nm
. The Earth-Sun distance is 149.6×106km
, and 1ly=9.461×1015m
.
To resolve the star-planet system at a distance of 4 light-years, a telescope on Earth would need an aperture with a minimum diameter of 55.88 mm.
What does microscopy's Rayleigh criterion mean?In optical microscopy, the Rayleigh criterion is frequently used to estimate the resolution of the microscope. The resolution limit imposed by this criterion has long been regarded as a roadblock to using an optical microscope to study biological phenomena at the nanoscale.
We can use the Rayleigh criterion,
θ = 1.22 λ / D
θ = angular resolution
λ = wavelength of light
D = diameter of the telescope's aperture
θ = arctan (r / d)
r = radius of the planet's orbit
d = distance to the star
Now, we use the given values,
r = 149.6×106 km = 149.6×109 m
d = 4 × 9.461×1015 m = 3.7844×1016 m
λ = 550 nm = 550×10-9 m
θ = arctan (r / d)
=arctan (149.6×109 / 3.7844×1016) = 0.000012 radians
we can use the Rayleigh criterion,
θ = 1.22 λ / D
D = 1.22 λ / θ
D = 1.22 × 550×10-9 / 0.000012
D = 55.88 mm
To know more about the Rayleigh criterion visit:
https://brainly.com/question/19953205
#SPJ1