probability & statistics
6. (5 points)Student scores on exams given by certain instructor have mean 80 and stan- dard deviation 15. This instructor is about to give an exam to a class of size 50. Approximate the probability that average test score in the class exceeds 83.

Answers

Answer 1

a) The probability is 0.016.

b) The probability is  0.0003.

c) The probability is 0.254.

To approximate the probability for both parts (a) and (b), we will use the Central Limit Theorem (CLT). According to the CLT, when the sample size is sufficiently large (typically considered to be n ≥ 30), the distribution of sample means will be approximately normal, regardless of the shape of the population distribution.

Given that the population mean (μ) is 74 and the population standard deviation (σ) is 14, we can calculate the standard error (SE) for the sample means:

SE = σ / [tex]\sqrt{n}[/tex]

Where:

σ = 14 (population standard deviation)

n = sample size

(a) For the class size of 25:

SE = 14 / [tex]\sqrt{25}[/tex] = 14 / 5 = 2.8

To approximate the probability that the average test score in the class of 25 exceeds 80, we need to find the z-score associated with 80 and then find the probability of the z-score being greater than that.

z = (x - μ) / SE = (80 - 74) / 2.8 ≈ 2.14

Using a standard normal distribution table or calculator, we find that the probability associated with a z-score of 2.14 is approximately 0.016 (or 1.6%).

Therefore, the approximate probability that the average test score in the class of 25 exceeds 80 is approximately 0.016 or 1.6%.

(b) For the class size of 64:

SE = 14 / [tex]\sqrt{64}[/tex] = 14 / 8 = 1.75

To approximate the probability that the average test score in the class of 64 exceeds 80, we can follow the same steps as in part (a):

z = (x - μ) / SE = (80 - 74) / 1.75 ≈ 3.43

Using a standard normal distribution table or calculator, we find that the probability associated with a z-score of 3.43 is approximately 0.0003 (or 0.03%).

Therefore, the approximate probability that the average test score in the class of 64 exceeds 80 is approximately 0.0003 or 0.03%.

(c) To approximate the probability that the average test score in the larger class exceeds that of the other class by over 2.2 points, we can calculate the standard error for the difference in means ([tex]SE_diff[/tex]) using the formula:

[tex]SE_diff[/tex] = [tex]\sqrt{SE_1^{2}+SE_2^{2} }[/tex]

Where:

[tex]SE_1[/tex] = standard error for class size 25

[tex]SE_2[/tex] = standard error for class size 64

[tex]SE_1[/tex] = 2.8 (from part a)

[tex]SE_2[/tex] = 1.75 (from part b)

[tex]SE_diff[/tex] = [tex]\sqrt{2.8^{2}+1.75^{2} }[/tex] ≈ 3.35

Next, we need to find the z-score associated with a difference of 2.2 points:

z = (difference - 0) / [tex]SE_diff[/tex] = (2.2 - 0) / 3.35 ≈ 0.66

Using a standard normal distribution table or calculator, we find that the probability associated with a z-score of 0.66 (or greater) is approximately 0.254 (or 25.4%).

Therefore, the approximate probability that the average test score in the larger class exceeds that of the other class by over 2.2 points is approximately 0.254 or 25.4%.

Correct Question :

Student scores on exams given by a certain instructor have mean 74 and standard deviation 14. This instructor is about to give two exams, one to a class of size 25 and the other to a class size 64

a)approximate the probability that the average test score in the class of 25 exceeds 80

b)repeat for class size 64

c)approximate the probability that the average test score in the larger class exceed s that of the other class by over 2.2 points.

To learn more about probability here:

https://brainly.com/question/31828911

#SPJ4


Related Questions

*1. Test for convergence or divergence. 2n n! 1·3·5...(2n — 1) · (2n + 1) n=1

Answers

The terms of the series do not approach zero, and the series diverges.

To test for convergence or divergence of the given series, let's analyze the terms of the series and check for any patterns.

The given series is:

[tex]\dfrac{2n \times n!} { (1.3.5...(2n -1) . (2n + 1))}[/tex], with n starting from 1.

Let's simplify the terms:

[tex]2n \times n! = 2n \times n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1\\(1.3.5...(2n - 1) . (2n + 1)) = (2n + 1) \times (2n - 1) \times (2n - 3) \times ... \times 5 \times 3 \times 1[/tex]

Now, we can rewrite the given series as:

[tex]\dfrac{(2n \times n!)}{((2n + 1) \times (2n - 1) \times (2n - 3) \times ... \times 5 \times 3 \times 1)}[/tex]

Notice that each term in the numerator is twice the previous term, while each term in the denominator alternates between odd and even numbers. We can observe that the numerator grows much faster than the denominator.

As n approaches infinity, the numerator grows exponentially, while the denominator grows at a slower rate. Therefore, the terms of the series do not approach zero, and the series diverges.

In conclusion, the given series diverges.

To know more about the function follow

https://brainly.com/question/31585447

#SPJ4

give an example of 2×2 matrix with non zero entries
that has no inverse

Answers

A 2×2 matrix with non zero entries that has no inverse is:
[1 2]
[2 4]

To find the inverse of a matrix, we need to calculate its determinant. The determinant of this matrix is 0 because the second row is a multiple of the first row. Therefore, this matrix does not have an inverse.

Another way to explain why this matrix has no inverse is to use the formula for the inverse of a 2×2 matrix. If A is a 2×2 matrix with non zero entries, its inverse is given by:
A^-1 = 1/det(A) × [d -b]
                         [-c a]
where det(A) is the determinant of A, and a, b, c, and d are the entries of A.
For the matrix [1 2] [2 4], we have det(A) = 1×4 - 2×2 = 0. Therefore, the formula for the inverse is not defined, and this matrix has no inverse.
In general, a matrix with determinant 0 is called singular, and it does not have an inverse. Such matrices can arise in many contexts, including linear systems of equations, transformations in geometry, and quantum mechanics. It is important to identify singular matrices and handle them appropriately, as they can lead to numerical instability and incorrect results.

To know more about matrix  visit :-

https://brainly.com/question/29132693

#SPJ11

Calculate the Taylor polynomials T 2

and T 3

centered at x=a for the function f(x)=23ln(x+1),a=0. (Express numbers in exact form. Use symbolic notation and fractions where needed.)

Answers

the Taylor polynomial T2 centered at x = 0 is 23x - (23/2)x^2, and the Taylor polynomial T3 centered at x = 0 is 23x - (23/2)x^2 + (23/3)x^3.

To find the Taylor polynomials T2 and T3 centered at x = a for the function f(x) = 23ln(x+1), where a = 0, we need to calculate the function's derivatives at x = a and evaluate them at a.

First, let's find the derivatives:

f(x) = 23ln(x+1)

f'(x) = 23 * 1/(x+1) * (d/dx)(x+1) = 23/(x+1)

f''(x) = (d/dx)(23/(x+1)) = -23/(x+1)^2

f'''(x) = (d/dx)(-23/(x+1)^2) = 46/(x+1)^3

Now, let's evaluate the derivatives at x = a = 0:

f(0) = 23ln(0+1) = 23ln(1) = 23 * 0 = 0

f'(0) = 23/(0+1) = 23/1 = 23

f''(0) = -23/(0+1)^2 = -23/1 = -23

f'''(0) = 46/(0+1)^3 = 46/1 = 46

Now we can construct the Taylor polynomials:

T2(x) = f(0) + f'(0)(x-a) + (f''(0)/2!)(x-a)^2

= 0 + 23(x-0) + (-23/2)(x-0)^2

= 23x - (23/2)x^2

T3(x) = T2(x) + (f'''(0)/3!)(x-a)^3

= 23x - (23/2)x^2 + (46/6)(x-0)^3

= 23x - (23/2)x^2 + (23/3)x^3

Therefore, the Taylor polynomial T2 centered at x = 0 is 23x - (23/2)x^2, and the Taylor polynomial T3 centered at x = 0 is 23x - (23/2)x^2 + (23/3)x^3.

Learn more about polynomial here:

https://brainly.com/question/11536910

#SPJ11

The best line is the Least Squares Line because it has the largest sum of squares error (SSE) A. True B. False

Answers

Answer:

False

explain:

The statement "The best line is the Least Squares Line because it has the largest sum of squares error (SSE)" is false.In fact, the Least Squares Line is chosen to minimize the sum of squared errors (SSE), which is the sum of the squared differences between the predicted values and the actual values of the response variable. This line is obtained by finding the line that minimizes the sum of the squared residuals, which is also known as the sum of squared errors or SSE.The SSE represents the amount of variability in the response variable that is not explained by the regression model. Therefore, the goal of regression analysis is to find the line that minimizes this variability, and the least squares line is the line that achieves this goal.Therefore, the statement that the best line is the Least Squares Line because it has the largest sum of squares error (SSE) is false. In fact, the Least Squares Line is the line that minimizes the SSE, and it is considered to be the best line for fitting a linear regression model to a set of data points.

Question 10 of 10
If you know the circumference of a circle, which step(s) can you follow to find
its radius?
O
A. Divide by 2, then multiply by .
B. Divide by .
C. Divide by 2.
D. Divide by , then divide by 2.

Answers

Answer: Divide by [tex]\pi[/tex], then divide it by 2

Step-by-step explanation:

Circumference formula: [tex]\pi[/tex]*(r*2)

[tex]\pi[/tex]*(r*2)/[tex]\pi[/tex]=r*2

(r*2)/2=r

So, divide by exactly pi (or 3.14), then divide by 2. DON'T divide by 2 first, then pi because you won't end up with the same answer.

is the model a good fit for the data? explain. a. no; the data are too far from the line of fit. b. no; the data are too close to the line of fit. c. yes; the data are distributed evenly around the line of fit. d. yes; the line of fit touches at least one point in the data set.

Answers

According to the statement the correct answer is option C - yes, the data are distributed evenly around the line of fit.

To determine if a model is a good fit for a data set, one needs to evaluate how closely the data points align with the line of fit. The line of fit represents the best possible straight line that can be drawn through the data points. If the data points are too far from the line of fit or too close to the line of fit, then it is an indication that the model is not a good fit for the data.
Option A states that the data points are too far from the line of fit, indicating that the model is not a good fit for the data. Option B states that the data points are too close to the line of fit, which is not necessarily a good or bad thing as it depends on the level of accuracy required for the analysis. Option C states that the data points are evenly distributed around the line of fit, which indicates that the model is a good fit for the data. Lastly, option D states that the line of fit touches at least one point in the data set, which is not sufficient to determine if the model is a good fit for the entire data set.
Therefore, the correct answer is option C - yes, the data are distributed evenly around the line of fit.

To know more about data set visit :

https://brainly.com/question/28479961

#SPJ11

lime a has an equation of y = 1/3x - 5. line t is perpendicular to line a and passes through (-2, 9). what is the equation of line t?

Answers

The equation for the line t is:

f(x) = -3x + 3

How to find the equation of the line t?

Let's say that line t can be written as:

f(x) = a*x + b

Remember that two lines are perpendicular if the product between the slopes is -1, then if our line is perpendicular to:

y = 1/3x - 5

Then we will have:

a*(1/3) = -1

a = -3

The line is:

f(x) = -3*x + b

And this line must pass through (-2, 9), then:

9 = -3*-2 + b

9 = 6 + b

9 - 6 = b

3 = b

The line t is:

f(x) = -3x + 3

Learn more about linear equations at:

https://brainly.com/question/1884491

#SPJ1

How do I find absolute value of an equation

Answers

To find the absolute value of an equation, you set up two separate equations representing the positive and negative cases, solve each equation, and check the solutions by substituting them back into the original equation.

Finding the absolute value of an equation involves determining the magnitude or distance of a number or expression from zero on the number line. The absolute value function is denoted by the symbol "|" surrounding the number or expression. The absolute value function always returns a positive value or zero, regardless of the sign of the number or expression inside it. Here's how you can find the absolute value of an equation:

Identify the number or expression inside the absolute value notation.

For example, consider the equation |x - 5| = 3.

Set up two separate equations.

The first equation represents the positive case:

x - 5 = 3

The second equation represents the negative case:

-(x - 5) = 3

Solve each equation separately.

Solve the first equation:

x - 5 = 3

x = 3 + 5

x = 8

Solve the second equation:

-(x - 5) = 3

-x + 5 = 3

-x = 3 - 5

-x = -2

x = 2 (multiply both sides by -1 to remove the negative sign)

Check the solutions.

Substitute the found values of x back into the original equation to ensure they satisfy the absolute value condition.

For |x - 5| = 3:

When x = 8: |8 - 5| = 3 (True)

When x = 2: |2 - 5| = |-3| = 3 (True)

State the solutions.

The solutions to the equation |x - 5| = 3 are x = 8 and x = 2.

In summary, to find the absolute value of an equation, you set up two separate equations representing the positive and negative cases, solve each equation, and check the solutions by substituting them back into the original equation.

For more such questions on absolute value, click on:

https://brainly.com/question/24368848

#SPJ8

Find the distance between x=1 and y = The distance between x and y is (Type an exact answer, using radicals as needed.) Find the distance between ...

Answers

the distance between x = 1 and y = √2 is √3.

To find the distance between two points (x1, y1) and (x2, y2) in a two-dimensional coordinate system, we can use the distance formula:

Distance = sqrt((x2 - x1)^2 + (y2 - y1)^2)

In this case, we want to find the distance between x = 1 and y = √2.

Let's consider the points (1, 0) and (0, √2) as the coordinates (x1, y1) and (x2, y2), respectively.

Using the distance formula:

Distance = sqrt((0 - 1)^2 + (√2 - 0)^2)

= sqrt((-1)^2 + (√2)^2)

= sqrt(1 + 2)

= sqrt(3)

To know more about coordinate visit:

brainly.com/question/22261383

#SPJ11

find the sum of all numbers that are congruent to 1 ( modulo 3)
from 1 to 100

Answers

We need to find the sum of all numbers that are congruent to 1 (modulo 3) from 1 to 100. We can solve this problem by using an arithmetic series formula.

The formula to find the sum of the first n terms of an arithmetic series is Sn = n/2(a1 + an), where a1 is the first term, an is the nth term, and n is the number of terms. In this problem, the common difference between each term is 3, since we are looking at numbers congruent to 1 (modulo 3). Therefore, we can write the nth term as 3n - 2. To find the number of terms, we can divide 100 by 3 and round up to the nearest whole number, since we want to include the last term.

This gives us n = 34. Therefore, we can plug in these values to the formula to get: Sn = 34/2(1 + 99) = 34/2(100) = 1700. So the sum of all numbers that are congruent to 1 (modulo 3) from 1 to 100 is 1700.

To know more about congruent visit:

brainly.com/question/30596171

#SPJ11

use the guidelines of this section to sketch the curve. y = 3 x2 − 25

Answers

To sketch the curve, we can analyze the equation y = 3x^2 - 25. This is a quadratic function with a coefficient of 3 for the x^2 term and a constant term of -25.

Determine the vertex: The vertex of the parabolic curve can be found using the formula x = -b / (2a). In this case, a = 3 and b = 0. Therefore, the x-coordinate of the vertex is 0.

Determine the y-intercept: Substitute x = 0 into the equation to find the y-intercept. y = 3(0)^2 - 25 = -25. Hence, the y-intercept is (0, -25).

Plot the vertex and y-intercept: Plot the point (0, -25) for the y-intercept and mark the vertex at (0, 0).

Find additional points: To draw the curve, choose a few more x-values and calculate the corresponding y-values. For example, you can choose x = -2, -1, 1, and 2. Substitute these values into the equation to find the corresponding y-values.

Plot the points and sketch the curve: Use the obtained points to plot them on the graph and connect them smoothly to sketch the curve. Since the coefficient of x^2 is positive, the curve opens upward.

By following these steps, you can sketch the curve represented by the equation y = 3x^2 - 25.

Learn more about curve y: brainly.com/question/31012623

#SPJ11

Find the center and radius of the circle with a diameter that has endpoints (-10, 1) and (6, 10). Enter the center as an ordered pair, e.g. (2,3): Enter the radius as a decimal correct to three decimal places:

Answers

The center of the circle is (−2, 5.5) and the radius is 8.131.

   To find the center of the circle, need to find the midpoint of the line segment connecting the endpoints of the diameter.

   The x-coordinate of the midpoint can be found by taking the average of the x-coordinates of the endpoints: (−10 + 6)/2 = −2.

   Similarly, the y-coordinate of the midpoint can be found by taking the average of the y-coordinates of the endpoints: (1 + 10)/2 = 5.5.

   Therefore, the center of the circle is (−2, 5.5).

   The radius of the circle is half the length of the diameter. It can calculate the length of the diameter using the distance formula.

   The distance formula is given by: √[(x2 - x1)² + (y2 - y1)²].

   Substituting the values of the endpoints, the length of the diameter is: √[(-10 - 6)² + (1 - 10)²] = √[256 + 81] = √337.

   Therefore, the radius of the circle is half of √337, which is approximately 8.131 when rounded to three decimal places.

To learn more about midpoint- brainly.com/question/15209124

#SPJ11

Find the area of the region enclosed by one loop of the curve. r = sin(10)

Answers

The curve given by r = sin(10) is a polar curve with one loop.

To find the area enclosed by one loop of the curve, we can use the formula for the area of a polar region, which is given by:

A = (1/2)∫θ2θ1 [r(θ)]^2 dθ

Since the curve has one loop, we need to find the values of θ that correspond to one complete revolution around the origin. Since sin(θ) has period 2π, we have:

r = sin(10) = sin(10 + 2π) for all values of θ

So, one complete revolution occurs when θ increases from 0 to 2π. Thus, the area enclosed by one loop of the curve is:

A = (1/2)∫02π [sin(10)]^2 dθ

Using the identity sin^2(θ) = (1/2)(1 - cos(2θ)), we can simplify this integral to:

A = (1/2)∫02π (1/2)(1 - cos(20θ)) dθ

Simplifying further, we get:

A = (1/4)∫02π (1 - cos(20θ)) dθ

Evaluating this integral gives:

A = (1/4) [θ - (1/20)sin(20θ)]02π

A = (1/4) (2π)

A = π/2

Therefore, the area enclosed by one loop of the curve r = sin(10) is π/2 square units.

To learn more about polar curve click here: brainly.com/question/26193139

#SPJ11

The right triangle on the right is a scaled copy of the right triangle on the left. Identify
the scale factor. Express your answer as a fraction in simplest form.
3
3
11

Answers

The scale factor is found dividing one side length of the right triangle on the right by the equivalent side length on the right triangle on the left.

We have,

A dilation happens when the coordinates of the vertices of an image are multiplied by the scale factor, changing the side lengths of a figure.

For this problem, we have that the original and the dilated figures are given as follows:

Original: right triangle on the left.

Dilated: right triangle on the right.

Hence the scale factor is found dividing one side length of the right triangle on the right by the equivalent side length on the right triangle on the left.

More can be learned about dilation at

brainly.com/question/3457976

#SPJ1

complete question:

The problem is incomplete,

The right triangle on the right is a scaled copy of the right triangle on the left. Identify the scale factor. Express your answer as a fraction in simplest form.

hence the general procedure to obtain the scale factor was presented.


6. What is the difference in the populations means if a 95%
Confidence Interval for μ1 - μ2 is (-2.0,8.0)
a. 0
b. 5
c. 7
d. 8
e. unknown
8. A 95% CI is calculated for comparison of two population me

Answers

The solution for this question is (e) unknown is not the estimated difference in means.

6. The difference in the population means is estimated to be between -2.0 and 8.0 with a 95% confidence interval. The midpoint of this interval gives us the estimate of the difference in means.

Midpoint = (Upper bound + Lower bound) / 2

Midpoint = (8.0 + (-2.0)) / 2

Midpoint = 6.0 / 2

Midpoint = 3.0

Therefore, the estimated difference in the population means is 3.0.

(a) 0 is not the estimated difference in means.

(b) 5 is not the estimated difference in means.

(c) 7 is not the estimated difference in means.

(d) 8 is not the estimated difference in means.

(e) unknown is not the estimated difference in means.

The correct answer is (e) unknown.

8. The question about the comparison of two population means is incomplete. Please provide the complete question, and I'll be happy to help you with it.

To know more about Population related question visit:

https://brainly.com/question/15889243

#SPJ11

show that cov(x,y)=0 if x,y are independent. hint: find a computational formula for covariance, similar to the computational formula for variance, var(x)=e(x2)[e(x)]2.

Answers

If x and y are independent, then the covariance between x and y, cov(x, y), is equal to 0.

Covariance measures the linear relationship between two random variables. If x and y are independent, it means that the occurrence of one variable does not affect the occurrence of the other. In other words, there is no linear relationship between x and y.

The computational formula for covariance is given by:

cov(x, y) = E[(x - E[x])(y - E[y])],

where E[x] and E[y] are the expected values of x and y, respectively.

If x and y are independent, it implies that E[x] and E[y] are also independent, and therefore the term (x - E[x])(y - E[y]) will equal 0 for all possible values of x and y. Consequently, the expected value of this term will also be 0.    

Since cov(x, y) is defined as the expected value of (x - E[x])(y - E[y]), and this term is 0, it follows that cov(x, y) must be equal to 0.

Hence, if x and y are independent, their covariance cov(x, y) is always 0, indicating that there is no linear relationship between the variables.

Visit here to learn more about covariance:

brainly.com/question/28135424

#SPJ11


Write an equation of the line using the points you chose above.
y-0
c. About how many miles per hour do you travel?
You travel about
miles per hour.
d. About how far were you from home when you started?
When you started, you were about [
15
miles from home.
e. Predict the distance from home in 7 hours.
In 7 hours, you will be about miles from home.

Answers

c) You travel about 50 miles per hour.

d) You were 15 miles from home when you started.

e) After 7 hours, you will be 365 miles away from home.

How to define a linear function?

The slope-intercept representation of a linear function is given by the equation shown as follows:

y = mx + b

The coefficients m and b have the meaning presented as follows:

m is the slope of the function, representing the increase/decrease in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, representing the numeric value of the function when the input variable x has a value of 0. On a graph, it is the value of y when the graph of the function crosses or touches the y-axis.

When x = 0, y = 15, hence the intercept b is given as follows:

b = 15.

In six hours, the distance increased by 300 miles, hence the slope m is given as follows:

m = 300/6 = 50.

Hence the equation is:

y = 50x + 15.

After seven hours, the predicted distance is given as follows:

y = 50(7) + 15 = 365 miles.

Missing Information

The points on the line are:

(0,15) and (6, 315).

More can be learned about linear functions at https://brainly.com/question/15602982

#SPJ1

suppose that you learn that the die landed on a number strictly greater than 10 only if it landed on a multiple of four. what is the probability that it landed on a multiple of four that is no greater than 10?

Answers

The probability that it landed on a multiple of four that is no greater than 10 is 0.3333.

If we know that the die landed on a number strictly greater than 10 only if it landed on a multiple of four, it means that if the dice landed on a number less than or equal to 10, it cannot be a multiple of four.

There are three multiples of four that are less than or equal to 10: 4, 8, and 12 (which we exclude since it's greater than 10).

Out of these three possibilities, only one satisfies the condition that the die landed on a number strictly greater than 10 only if it landed on a multiple of four, which is 8.

Therefore, the probability that the die landed on a multiple of four that is no greater than 10 is 1 out of 3, or 1/3.

In other words, the probability is approximately 0.3333.

Learn more about probability at https://brainly.com/question/13143685

#SPJ11

Q16
QUESTION 16 1 POINT Find the domain of the following function. Give your answer in interval notation. f(x)=√4x-24

Answers

The domain of the given function is [6, ∞) in interval notation. The above domain of f(x) ensures that the expression inside the square root is non-negative.

The given function is f(x) = √4x - 24. The domain of a function is the set of all possible values of x for which the function is defined and gives real outputs.

Since f(x) is a square root function, its argument must be greater than or equal to 0.

Thus,4x - 24 ≥ 0 ⇒ 4x ≥ 24 ⇒ x ≥ 6 .

Hence, the domain of the given function is [6, ∞) in interval notation.

The above domain of f(x) ensures that the expression inside the square root is non-negative.

To know more about Function  visit :

https://brainly.com/question/30721594

#SPJ11

A random sample of 7 patients are selected from a group of 25 and their cholesterol levels were recorded as follows:
128, 127, 153, 144, 132, 120, 115
Find the sample mean.
a. 142.87
b. 135.16
c. 131.29
d. 130.32
e. 143.26

Answers

The correct answer is option (c) 131.29. To find the sample mean, we need to calculate the average of the given cholesterol levels. The sample mean is computed by summing up all the values and dividing by the total number of values.

In this case, the cholesterol levels of the 7 patients are given as follows: 128, 127, 153, 144, 132, 120, 115.

To find the sample mean:

Sample mean = (Sum of all values) / (Total number of values)

Sum of all values = 128 + 127 + 153 + 144 + 132 + 120 + 115 = 919

Total number of values = 7

Sample mean = 919 / 7 = 131.29

Therefore, the sample mean of the given cholesterol levels is 131.29.

Hence, the correct answer is option (c) 131.29.

Learn more about sample mean here:

brainly.com/question/17514579

#SPJ11

please include steps
Determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system. [1 h 5 4 12 15

Answers

For any value of h that is not equal to 3, the matrix represents the augmented matrix of a consistent linear system.

To determine the value(s) of h such that the matrix represents the augmented matrix of a consistent linear system, we need to check if the matrix can be row reduced to the form [A | B] where A is a non-singular matrix (has full rank) and B is a column vector.

Let's perform row reduction on the given matrix:

[1  h   5]

[4  12  15]

Row 2 minus 4 times Row 1:

[1   h    5]

[0   12-4h  -5]

We need to ensure that the second row is not all zeros, which would make the system inconsistent.

Therefore, we set 12-4h ≠ 0.

Solving for h:

12 - 4h ≠ 0

-4h ≠ -12

h ≠ 3

Thus, for any value of h that is not equal to 3, the matrix represents the augmented matrix of a consistent linear system.

Learn more about matrices click;

https://brainly.com/question/30646566

#SPJ4

can someone explain this

Answers

Aaron has $53 in his account and he spends $3.25 per lunch.

After spending money the balance reflects the amount left in account.

So after paying for 4 lunches the balance is:

53 - 4*3.25 = 40

After paying for 6 lunches the balance is:

53 - 6*3.25 = 33.5

After paying for n lunches the balance is:

53 - n*3.25 = 53 - 3.25n

according to the national retail federation, the average shopper will spend $1,007.24 during the holiday shopping season. what is the null and alternate hypothesis?
a. Sample population is needed to complete the hypothesis
b. Hθ:ն≥1007.24;HAն≤1007.24
c. Hθ:ն≠1007.24;HAն≤1007.24
d. Hθ:ն=1007.24;HAն≤1007.24

Answers

Option B  Hθ:ն≥1007.24;HAն≤1007.24  represents the null hypothesis (H₀) stating that the average expenditure is equal to or greater than $1,007.24, and the alternative hypothesis (Hₐ) stating that the average expenditure is less than $1,007.24.

The null hypothesis (H₀) and alternative hypothesis (Hₐ) for the given scenario can be determined as follows:

Null Hypothesis (H₀): The average shopper will spend an amount equal to or greater than $1,007.24 during the holiday shopping season.

Alternative Hypothesis (Hₐ): The average shopper will spend an amount less than $1,007.24 during the holiday shopping season.

Based on the given options, the correct choice is:

b. Hθ:ն≥1007.24;HAն≤1007.24

To know more about hypothesis,

https://brainly.com/question/25804900

#SPJ11

In a recent poll of 350 likely voters, 42% of them preferred the incumbent candidate. At the 95% confidence level, which of the following would be closest to the margin of error of this statistic?
a. 2.6% b. 4.2% c. 3.7% d. 5.3%

Answers

The answer closest to the margin of error is option b: 4.2%.

To determine the margin of error at the 95% confidence level for the proportion of likely voters who prefer the incumbent candidate, we can use the formula:

Margin of Error = (Z * √(p*(1-p))/√n)

Where:

Z is the Z-score corresponding to the desired confidence level (95% corresponds to approximately 1.96)

p is the proportion of voters who prefer the incumbent candidate (42% or 0.42)

n is the sample size (350)

Calculating the margin of error:

Margin of Error = (1.96 * √(0.42*(1-0.42))/√350)

Using a calculator, the closest value to the margin of error is approximately 4.2%. Therefore, the answer closest to the margin of error is option b: 4.2%.

To know more about margin of error refer here:

https://brainly.com/question/29419047

#SPJ11

find a quadratic function f whose graph matches the one in the figure. (-7,0),(-3,4)

Answers

In summary, the quadratic function f whose graph matches the points (-7,0) and (-3,4) is:
f(x) = -0.5x^2 + 2.5x + 14

To find the quadratic function f whose graph matches the given points (-7,0) and (-3,4), we can start by using the standard form of a quadratic equation, y = ax^2 + bx + c.
We can use the two given points to form a system of equations:
0 = a(-7)^2 + b(-7) + c
4 = a(-3)^2 + b(-3) + c
Simplifying these equations, we get:
49a - 7b + c = 0
9a - 3b + c = 4
We can then solve for one of the variables, such as c:
c = -49a + 7b
c = -9a + 3b - 4
Setting these two equations equal to each other, we get:
-49a + 7b = -9a + 3b - 4
Simplifying, we get:
40a = 4b - 4
10a = b - 1
We can substitute this value of b into one of our original equations, such as:
0 = a(-7)^2 + b(-7) + c
0 = 49a - 7(10a + 1) + c
0 = 29a - 7 + c
c = 7 - 29a
So now we have the values of a, b, and c, and we can write the equation for f:
f(x) = ax^2 + bx + c
f(x) = a(x^2) + (b - 1)x + (7 - 29a)

To know more about quadratic visit:

https://brainly.com/question/22364785

#SPJ11

Cody invests £6500 in a savings account for 5 years.

The account pays simple interest at a rate of 1. 6% per year.

Work out the total amount of interest Cody gets by the end of the 5 years.

Answers

The total amount of interest Cody gets on £6500 by the end of the 5 years is equal to £520.

Amount invest by Cody in saving account =  £6500

Time period = 5 years

Rate of interest = 1.6% per year

To calculate the total amount of interest Cody gets by the end of the 5 years,

Use the formula for simple interest:

Interest = Principal × Rate × Time

Where,

Initial investment 'Principal' = £6500

Rate = 1.6%

       = 0.016 (converted to decimal)

Time = 5 years

Plugging in the values, calculate the interest we get,

Interest = £6500 × 0.016 × 5

⇒ Interest = £520

Therefore, Cody will receive a total amount of £520 as interest by the end of the 5 years.

Learn more about interest here

brainly.com/question/11645432

#SPJ4

3) Given the function f(x)=-6x² +15x, evaluate Зpts 4) Solve fx +4x+2=2

Answers

(A) The function f(x) = -6x² + 15x when x = 3, f(x) = -9

(B) The solution to the equation fx + 4x + 2 = 2 is x = 0.

To evaluate the function f(x) = -6x² + 15x, we need to substitute the given values of x into the function and simplify the expression.

Let's evaluate f(x) at x = 3:

f(3) = -6(3)² + 15(3)

= -6(9) + 45

= -54 + 45

= -9

Therefore, when x = 3, f(x) = -9.

To solve the equation fx + 4x + 2 = 2, we need to isolate the variable x.

fx + 4x + 2 = 2

First, let's simplify the equation:

fx + 4x = 0

Combine like terms:

5x = 0

Divide both sides by 5:

x = 0

Therefore, the solution to the equation fx + 4x + 2 = 2 is x = 0.

To know more about function click here :

https://brainly.com/question/26582052

#SPJ4

the distribution of leaves falling from trees in the month of november is positively skewed. this means that:

Answers

A positively skewed distribution means that the majority of the data is clustered toward the lower end of the range, with a long tail to the right indicating a smaller number of extreme values on the higher end. In the case of the distribution of leaves falling from trees in November, this suggests that most trees lose a similar number of leaves, but there are some trees that lose a very large number of leaves, resulting in a long tail to the right of the distribution.

Identify a counterexample to disprove n^3 ≤ 3n^2, where n is a real number.
a. n = 0
b. n = −1
c. n = 0.5
d. n = 4

Answers

The counterexample that disproves the inequality n³ ≤ 3n² is n = 4.

To disprove the statement n³ ≤ 3n², we need to find a counterexample, which is a value of n for which the inequality is false.

Let's evaluate the inequality for the given options:

a. n = 0:

0³ ≤ 3(0)²

0 ≤ 0

The inequality holds for n = 0.

b. n = -1:

(-1)³ ≤ 3(-1)²

-1 ≤ 3

The inequality holds for n = -1.

c. n = 0.5:

(0.5)³ ≤ 3(0.5)²

0.125 ≤ 0.75

The inequality holds for n = 0.5.

d. n = 4:

4³ ≤ 3(4)²

64 ≤ 48

The inequality does not hold for n = 4.

Therefore, the counterexample that disproves the inequality n³ ≤ 3n² is n = 4.

Learn more about Inequality here:

https://brainly.com/question/20383699

#SPJ1

Can you please help me with
this question showing detailed work?
Question 1:
Find dy dx x=0 if y= (x-2)³-(2x+1)4 2x. √√x+8 Use logarithmic differentiation.

Answers

the value of dy/dx at x = 0 is 41/972.

Given, y = (x - 2)³ - (2x + 1)4² √x + 8.

To find: dy/dx at x = 0.Using logarithmic differentiation to find the derivative,Firstly, take natural logarithms on both sides of the given equation ln

y = ln [(x - 2)³ - (2x + 1)4² √x + 8].

ln y = ln [(x - 2)³ - (2x + 1)4² √x + 8].

ln y = ln [(x - 2)³ - (2x + 1)16 (x + 8)¹/²].

Differentiating with respect to x ln

y = ln [(x - 2)³ - (2x + 1)16 (x + 8)¹/²].1/y dy/dx

= d/dx ln [(x - 2)³ - (2x + 1)16 (x + 8)¹/²].1/y dy/dx

= [3(x - 2)² - 32(2x + 1)(x + 8)¹/²]/[(x - 2)³ - (2x + 1)16 (x + 8)¹/²].

Now, put x = 0 in the above equation,

1/y dy/dx = [3(-2)² - 32(2 × 0 + 1)(0 + 8)¹/²]/[(-2)³ - (2 × 0 + 1)16 (0 + 8)¹/²].1/y dy/dx

= -82/80 y

= (x - 2)³ - (2x + 1)4² √x + 8.

Then, at x = 0,

y = (-1)⁴ (2)³ - (2 × 0 + 1)4² √0 + 8.y

= -27.

Substituting the value of y and dy/dx in the first equation, we get,

-27 dy/dx

= -82/80.dy/dx

= 82/80 * 1/27.dy/dx

= 41/972.So, the value of dy/dx at

x = 0 is 41/972.

To know more about logarithmic visit;

brainly.com/question/30226560

#SPJ11

Other Questions
f n = 35; e = 11, and alice wants to transmit the plaintext 6 to bob, what is the ciphertext she got which of the following is not a tool of fiscal policy? group of answer choices unemployment benefits taxes money supply social security programs government purchases approximately what percentage of the world's freshwater is frozen? When Jane researched the brands and prices of refrigerators, she wasA. Comparison shopping.B. Compulsive shopping.C. Impulse shopping.D. Trade-off shopping.E. Warranty shopping. hellp pleasse on this change from rectangular to spherical coordinates. (let 0, 0 2, and 0 .) (a) (0, 9, 0) (, , ) = (b) (1, 1, 2 ) (, , ) = Use the Laplace transform to solve the given system of differential equations. dax + x - y = 0 at dy + y - x = 0 at x(0) = 0, x'(0) = -6, y(0) = 0, y'(0) = 1 x(t) = 5 7 t - sint 2 2V2 x 9 - y(t) 7 t + 2 + =sin(21) = 2 2 X rank the following in increasing ability as oxidizing agents According to monetarists, to prevent recessions, the Federal Reserve shouldA) increase taxation.B) decrease the money supply.C) increase the money supply.D) decrease government spending candidiasis often occurs following antibiotic therapy for bacterial infections. (True or False) use the method of half-reactions to balance the chemical equation below. br22bro3 br assume this reaction occurs in an acidic solution. your answers should be whole numbers. what formed the himalayan mountains? continental-continental convergence continental-continental convergence oceanic-continental convergence oceanic-continental convergence oceanic-oceanic convergence oceanic-oceanic convergence divergent zones Calculate the theoretical stopping distances (with aerodynamic resistance) and the SSD (theoretical stopping distance +perception-reaction distance) for the three vehicles in three scenarios, respectively. : Chemiosmosis is: a) When a large concentration gradient exists for Na+ between the inner and outer mitochondria membranes, this describes: b) Glycolysis c) When a large concentyration gradient exists for k+ between the inner and outer mitochondira membranes, this describes. d) ATP catabolism e) when a large concentration gradient exists for H + between the inner and outer mitochondira membranes. ou are recreating Young's double-slit experiment in lab with red laser light (wavelength 700nm) as a source. You perform the experiment once with a slit separation of 4.5mm and obtain an interference patter on a screen a distance 3.0m away. You then change the slit separation to 9.0mm and perform the experiment again. In oder to maintain the same interference pattern spacing as the first experiment, What should the new screen-to-slit distance be? 28) As you move an object from just outside to just inside the focal point of a converging lens, its image, A) goes from real to virtual and from inverted to erect. B) goes from inverted to erect, but remains real. C) goes from inverted to erect, but remains virtual. D) goes from real to virtual, but remains inverted a uniform rod of length 4l, mass m, is suspended by two thin strings, lengths l and 2l as shown. what is the tension in the string at the left end of the rod? the registration of sensory input without conscious awareness refers to why is h a lewis acid if it donates a proton to form hydronium Which is the best option for someone who wants toimprove his or her credit and pay less interest on thedebt?O $15 a month because it will let the person keepmore spending moneyO $100 a month because it will free up credit to buyother thingsO $15 a month because it will save money in the longrunO $100 a month because it will reduce the amount ofinterest paid