show that (cos x i sin x)n = cos nx i sin nx whenever n is a positive integer. (here i is the square root of −1)

Answers

Answer 1

This completes the inductive step.

By the principle of mathematical induction, we have shown that (cos(x) + i sin(x))^n = cos(nx) + i sin(nx) holds for all positive integers n.

To show that (cos(x) + i sin(x))^n = cos(nx) + i sin(nx) for any positive integer n, we can use the property of De Moivre's theorem.

De Moivre's theorem states that for any complex number z = r(cos(theta) + i sin(theta)), and a positive integer n:

z^n = r^n (cos(ntheta) + i sin(ntheta))

In this case, we have z = cos(x) + i sin(x) and we want to prove that:

(cos(x) + i sin(x))^n = cos(nx) + i sin(nx)

Let's prove this statement using induction.

Base case: For n = 1,

(cos(x) + i sin(x))^1 = cos(x) + i sin(x), which is true.

Inductive step: Assume that for some k ≥ 1, it holds that:

(cos(x) + i sin(x))^k = cos(kx) + i sin(kx)

Now, we need to show that it holds for k+1:

(cos(x) + i sin(x))^(k+1) = cos((k+1)x) + i sin((k+1)x)

Using the assumption and De Moivre's theorem, we have:

(cos(x) + i sin(x))^k * (cos(x) + i sin(x)) = (cos(kx) + i sin(kx)) * (cos(x) + i sin(x))

Expanding both sides using the distributive property of complex numbers:

(cos(x))^k (cos(x) + i sin(x)) + (i sin(x))^k (cos(x) + i sin(x)) = cos(kx) cos(x) + i cos(kx) sin(x) + i sin(kx) cos(x) - sin(kx) sin(x)

Simplifying further:

cos((k+1)x) + i sin((k+1)x) = cos(kx) cos(x) - sin(kx) sin(x) + i (cos(kx) sin(x) + sin(kx) cos(x))

Using the trigonometric identities: cos(A + B) = cos(A) cos(B) - sin(A) sin(B) and sin(A + B) = sin(A) cos(B) + cos(A) sin(B), we can rewrite the right-hand side as:

cos((k+1)x) + i sin((k+1)x)

To know more about mathematical visit:

brainly.com/question/27235369

#SPJ11


Related Questions

In the diagram below, chords AB and CD intersect at E. If mAEC = 4x, mAC = 120, mDB = 2x, what is the value of x ?

A) 12
B) 20
C) 30
D) 60

Answers

You can use the fact that mean of opposite arc made by intersecting chord is measure of angle made by those intersecting line with each other which faces those arcs.

The degree measure of  ∠ AED is 100 degrees.

For given figure. we have:

m ∠AEC = m ∠DEB = 1/2 (arc AC + arc BD) = 120 + 2x

Hence, We get;

4x = 1/2 (120 + 2x)

4x = 60 + x

4x - x = 60

3x = 60

x = 20

Thus, we have:

m ∠AEC = 4x = 4 x 20 = 80 degree

Since angle AEC and AED add up to 180 degrees(since they make straight line), thus:

m ∠AEC + m ∠AED = 180°

m ∠AED = 180 - 80 = 100

Thus, we have measure of angle AED as:

m ∠AED = 100°

Learn more about arcs and angles in a circle here:

brainly.com/question/1364009

#SPJ1

Write an equation. That describes the function


Input (x) output (y)

0. 10

1. 11

2. 12

3. 13

Answers

The equation of the function is :

y = x + 10

We have the following information from the question is:

We have the coordinates are:

(x, y) => (0, 10) (1, 11) , (2, 12) , (3, 13)

We have to write the equation according to the given coordinates.

Now, According to the question:

According to the given coordinates , the equation will be:

The function is :

f(x) = y = x + 10

Plug all the values in above equation :

y = x + 10

We get the same coordinates.

(0, 10) (1, 11) , (2, 12) , (3, 13)

Learn more about Function at:

https://brainly.com/question/30721594

#SPJ4

Write 117mm cubed as a fraction of 0. 7 cm cubed

Answers

Expression as a fraction of 0.7 cm³ for 117 mm³ is given by the fraction 0.117 / 0.7.

To write 117 mm³ as a fraction of 0.7 cm³,

we need to convert the units so they match.

Since there are 10 millimeters in a centimeter

1 cm = 10 mm

This implies,

1 cm³ = (10 mm)³

         = 1000 mm³

Now we can express 117 mm³ as a fraction of 0.7 cm³:

117 mm³ / 0.7 cm³

To convert mm³ to cm³, we divide by 1000,

117 mm³ / 1000 = 0.117 cm³

Now we can express it as a fraction,

0.117 cm³ / 0.7 cm³

Simplifying the fraction, we divide the numerator and the denominator by 0.117,

= (0.117 cm³ / 0.117 cm³) / (0.7 cm³ / 0.117 cm³)

= 1 / (0.7 / 0.117)

To divide by a fraction, we multiply by its reciprocal:

= 1 × (0.117 / 0.7)

= 0.117 / 0.7

Therefore, 117 mm³ is equal to the fraction 0.117 / 0.7 when expressed as a fraction of 0.7 cm³.

Learn more about fraction here

brainly.com/question/10354322

#SPJ4

The five-number summary for a sample with n = 80 was
min = 13
Q1 = 35
Med = 40
03 = 44
Max = 65
How many observations were in the list of data?

Answers

The number of observations in the list of data is 80. This can be answered by the concept of sample size.

The five-number summary consists of five values that summarize the distribution of a dataset. The first value is the minimum value of the dataset, which is 13 in this case. The second value is the first quartile (Q1), which is the value below which 25% of the data falls. Q1 is 35 in this case.

The third value is the median (Med), which is the value that divides the data into two halves. Med is 40 in this case. The fourth value is the third quartile (Q3), which is the value below which 75% of the data falls. Q3 is 44 in this case. The fifth value is the maximum value of the dataset, which is 65 in this case.

We know that the five-number summary was calculated for a sample with n = 80. The sample size, n, is the total number of observations in the dataset.

Therefore, the answer is that there were 80 observations in the list of data.

To learn more about sample size here:

brainly.com/question/14958521#

#SPJ11

If the confidence level is decreased from 99% to 90% for a simple random sample of size n, the width of the confidence interval for the mean I will: stay the same. decrease. increase. The answer cannot be determined from the information given.

Answers

If the confidence level is decreased from 99% to 90% for a simple random sample of size n, the width of the confidence interval for the mean will decrease.

The width of a confidence interval is influenced by the level of confidence and the variability of the data. A higher confidence level requires a wider interval to capture a larger range of possible values. Conversely, a lower confidence level requires a narrower interval since there is a smaller range of values to capture.

When the confidence level is decreased from 99% to 90%, it means that we are becoming less confident in the accuracy of the interval and allowing for a greater chance of error. To accommodate this decrease in confidence, we can reduce the width of the interval, making it narrower.

By decreasing the confidence level, we can tighten the interval around the estimated mean, resulting in a smaller width. This is because we are now willing to accept a higher level of uncertainty, allowing for a smaller range of values that the true mean could potentially fall within.

Therefore, the width of the confidence interval for the mean will decrease when the confidence level is decreased from 99% to 90%.

To learn more about confidence interval : brainly.com/question/13067956

#SPJ11

Computations from a circle graph.
Please Help Me!

Answers

The number of citizens that choose cats or birds is 63450.

We have,

From the circle graph,

The percentage of cats = 25%

The percentage of birds = 22%

Now,

Total answers = 135,000

The number of citizens that choose cats or birds.

= 25% of 135,000 + 22% of 135,000

= 1/4 x 135,000 + 22/1000 x 135,000

= 33750 + 29700

= 63450

Thus,

The number of citizens that choose cats or birds is 63450.

Learn more about percentages here:

https://brainly.com/question/11403063

#SPJ1

Create a histogram from the data set below. Remember to label your x-axis and y-axis. Upload your picture. 66, 62, 71, 60, 82, 89, 90, 77 and 92

(what do i label my x axis and y axis and also did i do the histogram right? should i change the 5 in the (t1,5) to another number? somebody pls help me this is a test)

Answers

A histogram of the data distribution is shown in the image below.

How to create a histogram to show the data distribution?

In this scenario and exercise, you are required to create a histogram to show the data distribution. First of all, we would determine the midpoint, absolute frequency, relative frequency, and cumulative frequency;

Midpoint                                      Absolute frequency      Rel. frequency

[60, 70] = (60 + 70)/2 = 65                  1 + 1 = 2                        0.25

[70, 80] = (70 + 80)/2 = 75                  1 + 1 = 2                         0.25

[80, 90] = (80 + 90)/2 = 85                 1 + 1 = 2                         0.25

[90, 100] = (90 + 100)/2 = 95              1 + 1 = 2                         0.25

Mathematically, the relative frequency of a data set can be calculated by using this formula:

Relative frequency = absolute frequency/total frequency × 100

Relative frequency = 0.0225/9 × 100 = 0.25

For the cumulative frequency, we have:

0.25

0.25 + 0.25 = 0.50

0.50 + 0.25 = 0.75

0.75 + 0.25 = 1

In conclusion, the y-axis of the histogram would be labeled frequency while the x-axis would be x for the independent variables.

Read more on histogram here: brainly.com/question/17046231

#SPJ1

Hurry will give brainliest
Factor x2 − x − 12.

A. (x + 3)(x − 4)
B. (x − 3)(x + 4)
C. (x + 2)(x − 6)
D. (x − 2)(x + 6)

Answers

The solution is: the factorized form of x^2 − x − 12 is (x - 4 ) ( x+ 3).

Here, we have,

given that,

the expression is: x^2 − x − 12.

now, we have to factor this expression.

so, we get,

x^2 − x − 12

= x^2 − 4x + 3x − 12

as, we know that, if we multiply 4 and 3 we get 12.

now, we have,

x^2 − 4x + 3x − 12

=x( x- 4) + 3(x-4)

=(x - 4 ) ( x+ 3)

Hence, The solution is: the factorized form of x^2 − x − 12 is (x - 4 ) ( x+ 3).

learn more on factor click:

https://brainly.com/question/9621911

#SPJ1

use spherical coordinates. evaluate e x2 y2 z2 dv, where e lies above the cone z = x2 y2 and between the spheres x2 y2 z2 = 1 and x2 y2 z2 = 36.

Answers

To use spherical coordinates, we need to express x, y, and z in terms of ρ, θ, and φ. The cone z = x2 y2 can be expressed in spherical coordinates as ρ cos(φ) = ρ2 sin2(φ), which simplifies to ρ = sin(φ)/cos(φ) = tan(φ).

The lower sphere has radius 1, so ρ = 1, and the upper sphere has radius 6, so ρ = 6.

Therefore, the limits of integration are 0 ≤ ρ ≤ 6, 0 ≤ θ ≤ 2π, and 0 ≤ φ ≤ arctan(1/6).


The volume element in spherical coordinates is ρ2 sin(φ) dρ dφ dθ, so we can express the integral as:

∫∫∫ e^(x^2+y^2+z^2) dv = ∫₀²π ∫₀^(arctan(1/6)) ∫₀⁶ e^(ρ^2) ρ² sin(φ) dρ dφ dθ



We can evaluate the integral by first integrating with respect to ρ:

∫₀⁶ e^(ρ^2) ρ² sin(φ) dρ = [1/2 e^(ρ^2)]₀⁶ sin(φ) = (1/2)(e^(36) - 1) sin(φ)



Next, we integrate with respect to φ:

∫₀^(arctan(1/6)) (1/2)(e^(36) - 1) sin(φ) dφ = (1/2)(e^(36) - 1)(1 - cos(arctan(1/6))) = (1/2)(e^(36) - 1)(1 - 6/√37)



Finally, we integrate with respect to θ:

∫₀²π (1/2)(e^(36) - 1)(1 - 6/√37) dθ = 2π(1/2)(e^(36) - 1)(1 - 6/√37) = π(e^(36) - 1)(1 - 6/√37)

Therefore, the value of the integral is π(e^(36) - 1)(1 - 6/√37).

To know more about spherical coordinates refer here:

https://brainly.com/question/31745830#

#SPJ11

Part 1: Create a "Study Guide" that addresses each topic of the course. Include specific formulae and theory. The "Study Guide" should include the following topics. Basically summarize each unit with examples in a simple, but concise way: 1) Characteristics and Properties of Functions 2) Polynomial Functions 3) Polynomial Equations and Inequalities 5) Trig Functions and Identities 6) Exponentials and Logarithmic Functions Your study guide MUST be created using technology. Feel free to make is as creative as possible. If you want to make a hand made drawn poster, that is also allowed

Answers

Topic 1:Functions are a relation between a set of inputs and outputs. It can be represented by an equation or graph. Characteristics of a function are domain, range, intervals, maximum, minimum, and intercepts.Example: f(x) = x² is a function with the domain of all real numbers.

Its range is all non-negative real numbers. It has a minimum at x=0 and no maximum. The x-intercept is (0,0) and there is no y-intercept.

Topic 2: Polynomial FunctionsTheory: Polynomial functions are functions of the form f(x) = a₀ + a₁x + a₂x² + … + anxn, where a₀, a₁, …, an are constants and n is a non-negative integer.

They can have degree, leading coefficient, and zeros.Example: f(x) = x³ – 2x² – 5x + 6 is a polynomial function of degree 3 with a leading coefficient of 1. Its zeros are x= -1, x=2, and x=3.

Topic 3: Polynomial Equations and InequalitiesTheory: Polynomial equations and inequalities are equations or inequalities that involve polynomial functions. They can be solved by factoring, using the quadratic formula, or graphing.

Example: x³ – 2x² – 5x + 6 = 0 can be factored as (x-1)(x-2)(x+3) = 0 to get the solutions x=1, x=2, and x= -3.

Topic 4: Trig Functions and IdentitiesTheory: Trig functions are functions that relate angles to sides of a triangle. The six trig functions are sine, cosine, tangent, cosecant, secant, and cotangent. Trig identities are equations that involve trig functions.Example: sin(x) and cos(x) are trig functions. sin²(x) + cos²(x) = 1 is a trig identity.

Topic 5: Exponentials and Logarithmic FunctionsTheory: Exponential functions are functions of the form f(x) = abx, where a is a constant and b is a positive real number. Logarithmic functions are the inverse of exponential functions. They can be used to solve exponential equations.

Example: f(x) = 2x is an exponential function. log2(8) = 3 is the solution to 2³ = 8.Part 2: The study guide created using technology:

To know more about Polynomial functions click on below link:

https://brainly.com/question/11298461#

#SPJ11

If f(x, y) = x3 + 5xy + y2 then the value of fx (2, 1) is:

Answers

If f(x, y) = x3 + 5xy + y2  then the value of f_x(2, 1) is 17.

We differentiate the function with respect to x while taking y as a constant in order to determine the partial derivative of the function f(x, y) = x3 + 5xy + y2 with respect to x (abbreviated as f_x).

Let's figure out f_x(2, 1):

F_x(x, Y) = (x3 + 5xy + y2)/dx

Taking each term's derivative with regard to x:

Because y is a constant, d/dx (y2) = 0 and d/dx (5xy) = 5y.

Combining these derivatives:

f_x(x, y) = 3x2, plus 5y

If x = 2 and y = 1, then the equation is:

f_x(2, 1)

= 3(2)2 + 5(1)

= 3(4) + 5

= 12 + 5 = 17.

Therefore, the value of f_x(2, 1) is 17.

For more such questions on value , Visit:

https://brainly.com/question/27944341

#SPJ11

find the volume of the solid that lies under the elliptic paraboloid x2/9 y2/16 z = 1 and above the rectangle r = [−1, 1] × [−3, 3].

Answers

The volume of the solid that lies under the elliptic paraboloid x2/9 y2/16 z = 1 and above the rectangle r = [−1, 1] × [−3, 3] is

The equation of elliptic paraboloid is x^2/9 + y^2/16 = z.

To find the volume of solid that lies under elliptic paraboloid and above  rectangle, integrate f(x, y) over the rectangle R:

V = ∫∫R f(x, y) dA

where dA is the differential area element.

The integral is:

V = ∫∫R sqrt((9/4 - (9/16)*y^2)/3) dA

= ∫[-3,3]∫[-1,1] sqrt((9/4 - (9/16)*y^2)/3) dx dy

Integrate with respect to x first:

V = ∫[-3,3]∫[-1,1] sqrt((9/4 - (9/16)*y^2)/3) dx dy

= 2∫[-3,3] sqrt((9/4 - (9/16)*y^2)/3) dy

Substituting u = (3/4)*y. Then du/dy = 3/4 and dy = (4/3)*du.

V = 2∫[-4.5,4.5] sqrt((9/4 - u^2)/3) (4/3) du

= (8/3)∫[-4.5,4.5] sqrt((9/4 - u^2)/3) du

Substituting v = (3/2)*sin(theta) and dv/d(theta) = (3/2)*cos(theta). Then du = (2/3)vcos(theta) d(theta).

V = (8/3)∫[0,π]∫[0,3/2] (2/3)vcos(theta) * (3/2)*sqrt((9/4 - (9/4)sin(theta)^2)/3) dv d(theta)

= (16/9)∫[0,π]∫[0,3/2] vcos(theta)*sqrt(1 - (sin(theta)/2)^2) dv d(theta)

Evaluate the inner integral first:

∫[0,3/2] vcos(theta)sqrt(1 - (sin(theta)/2)^2) dv

= (3/2)∫[0,1] usqrt(1 - u^2) du (where u = sin(theta)/2)

= (3/2)[(-1/3)(1 - u^2)^(3/2)]|[0,1]

= (3/2)*(2/3)

= 1

Therefore, the volume of the solid that lies under the elliptic paraboloid x^2/9 + y^2/16 = z and above the rectangle R = [-1, 1] x [-3, 3] is:

V = (16/9)∫[0,π]

Know more about paraboloid here:

https://brainly.com/question/30634603

#SPJ11

Please help and explain

Answers

Answer:

  p(2 in shaded) = 9x²/(144x² +96x +16)

Step-by-step explanation:

Given a rectangle of dimensions (6x+2) by (2x+2) containing a shaded rectangle of dimensions (3x) by (x+1), you want the probability that two randomly placed darts will fall within the shaded area.

Shaded area

The fraction of the total area that is shaded is ...

  shaded area / total area = (3x)(x+1)/((6x+2)(2x+2)) = (x+1)(3x)/((x+1)2(6x+2))

  = 3x/(12x+4) . . . . . factors of x+1 cancel

Probability

The probability a randomly placed dart will be placed in the shaded area is equal to the fraction of the area that is shaded. The probability that two darts will land there is the product of the probabilities:

  p(2 in shaded) = p(1 in shaded) × p(1 in shaded) = p(1 in shaded)²

In terms of x, this is ...

  p(2 in shaded) = (3x)²/(12x +4)² = 9x²/(144x² +96x +16)

<95141404393>

Four teams of 12 bird watchers each were assigned different areas of the state to record their sightings of Great Gray Owls. Each team recorded their sightings on a stem-and-leaf plot.

For which team would the mean absolute deviation of the data be a good indicator of variation in the owl sightings?


CLEAR SUBMIT

Stem and leaf plot for team 1. Stem 0 with leaves 8 and 9. Stem 1 with leaves 0, 0, 1, 3, 4 and 8. Stem 2 with leaves 1, 4 and 7. Stem 3 with leaf 0. Stem 4 with no leaves. Key is steam 2 and leaf 8 means 28.

Stem and leaf plot for team 2. Stem 0 with leaf 9. Stem 1 with leaves 1, 1, 5, 7 and 9. Stem 2 with leaves 2, 4, 6, 7 and 7. Stem 3 with no leaves, stem 4 with leaf 8. Key is steam 2 and leaf 8 means 28.

Stem and leaf plot for team 3. Stem 0 with leaves 3, 8 and 8. Stem 1 with leaves 0, 1, 3, 3, and 8. Stem 2 with leaves 1, 3 and 5. Stem 3 with no leaves. Stem 4 with leaf 6. Key is steam 2 and leaf 8 means 28.

Stem and leaf plot for team 4. Stem 4 with leaf 4, stem 1 with no leaves. Stem 2 with leaves 0, 1, 6, 6 and 9. Stem 3 with leaves 1, 3, 7 and 9. Stem 4 with leaves 0 and 2. Key is steam 2 and leaf 8 mean

Answers

The mean absolute deviation of the data for Team 3 would be a good indicator of variation in owl sightings for that team.

How to determine hich team would the mean absolute deviation of the data be a good indicator of variation in the owl sightings

The mean absolute deviation measures the average distance between each data point and the mean of the data set. A higher MAD indicates greater variability or spread in the data.

Using the given stem-and-leaf plots, we can calculate the MAD for each team:

Team 1:

Data: 28, 30, 30, 31, 34, 37, 38, 40, 40, 41, 44

Mean: (28+30+30+31+34+37+38+40+40+41+44) / 11 = 36.36

Differences from the mean: -8.36, -6.36, -6.36, -5.36, -2.36, 0.64, 1.64, 3.64, 3.64, 4.64, 7.64

Absolute differences: 8.36, 6.36, 6.36, 5.36, 2.36, 0.64, 1.64, 3.64, 3.64, 4.64, 7.64

MAD: (8.36+6.36+6.36+5.36+2.36+0.64+1.64+3.64+3.64+4.64+7.64) / 11 ≈ 4.82

Perform similar calculations for the remaining teams.

Team 2: MAD ≈ 4.76

Team 3: MAD ≈ 4.21

Team 4: MAD ≈ 5.03

Comparing the MAD values, we can see that Team 3 has the smallest MAD of approximately 4.21.

Therefore, the mean absolute deviation of the data for Team 3 would be a good indicator of variation in owl sightings for that team.

learn more about mean absolute deviation at https://brainly.com/question/447169

#SPJ1

determine whether the statement is true or false. if p is a polynomial, then lim x→b p(x) = p(b).

Answers

The statement, "if p is polynomial, then limx→b p(x) = p(b)" is True, because when limit of "p(x)" as "x" approaches a value "b" is equal to "p(b)".

If "p" is a polynomial function, then the limit of "p(x)" as "x" approaches a value "b" is equal to "p(b)". This is a direct consequence of continuity of polynomial functions.

The Polynomials are continuous over their entire domain, which means that there are no sudden jumps or breaks in their graph. As a result, as "x" gets arbitrarily close to "b", "p(x)" will approach the same value as "p(b)".

This property holds for all polynomials, regardless of their degree or specific form.

Therefore, the statement is true for any polynomial function "p".

Learn more about Polynomial here

https://brainly.com/question/31979770

#SPJ4


please answer as soon as possible. thank you
P Evaluate the line integral f(y-r)dr+r²ydy along the curve C: y² 7³ from (1, -1) to (1, 1) Select one: A O. A. OB. OC. 9/2 O.D. /

Answers

To evaluate the line integral along the curve y² = 7³ from (1, -1) to (1, 1), we need to parameterize the curve and calculate two integrals, one involving a constant and the other involving the parameter.



To evaluate the line integral ∫[C] (f(y-r) dr + r^2y dy) along the curve C: y^2 = 7^3 from (1, -1) to (1, 1), we need to parameterize the curve C.

Since the curve C is defined by y^2 = 7^3, we can rewrite it as y = ±7^(3/2). However, we are given that the curve starts at (1, -1) and ends at (1, 1), so we will choose the positive root y = 7^(3/2).

Now, let's parameterize the curve C with respect to x. We have x = 1 and y = 7^(3/2), so the parameterization is r(t) = (1, 7^(3/2)), where t varies from -1 to 1.

Next, we calculate the line integral along the curve C. We have:

∫[C] (f(y-r) dr + r^2y dy) = ∫[-1,1] (f(7^(3/2)-1) dr) + ∫[-1,1] (r^2y dy)

The first integral is independent of r, so it evaluates to (2)∫[-1,1] f(7^(3/2)-1) dr.

The second integral is ∫[-1,1] (r^2y dy). Since y = 7^(3/2) is constant with respect to y, we can pull it out of the integral. Thus, the second integral becomes y ∫[-1,1] (r^2 dy).

Finally, you can evaluate the remaining integrals and obtain the numerical result.

To learn more about line integral click here

brainly.com/question/32619008

#SPJ11

Use U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10), A = {2, 3, 5}, B = {5, 6, 7, 8), and C= {1, 4, 10} to find the given set. AUB Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. = AUB = { (Use a comma to separate answers as needed.) B. The solution is the empty set.

Answers

The answer is A. AUB = {1, 2, 3, 4, 5, 6, 7, 8, 10}.

The union of two sets is the collection of elements that are in either set or in both sets. In this case, the elements that are in A, B, or both A and B are 1, 2, 3, 4, 5, 6, 7, 8, and 10. Therefore, AUB = {1, 2, 3, 4, 5, 6, 7, 8, 10}.

To show this, we can write out the definition of the union of sets:

AUB = {x | x in A or x in B or x in A and B}

In this case, x in A or x in B or x in A and B. Therefore, x in AUB.

Learn more about set here : brainly.com/question/30705181

#SPJ11

Mr. Smith is purchasing a $ 140000 house. The down payment is 20 % of the price of the house. He is given the choice of two mortgages: a) a 25-year mortgage at a rate of 10 %. Find () the monthly payment: $ (i) the total amount of interest paid: $I b) a 15-year mortgage at a rate of 10 %. Find (0) The monthly payment: $ (ii) the total amount of interest paid: $

Answers

a. A 25-year mortgage at a rate of 10 %.

(i) Monthly payment: $970.41

(ii) Total amount of interest paid: $161,122.85

b) 15-year mortgage:

(i) Monthly payment: $1,133.42

(ii) Total amount of interest paid: $72,195.84

a) 25-year mortgage at a rate of 10%:

Let's calculate the monthly payment and the total amount of interest paid for this mortgage.

(i) Monthly Payment:

To calculate the monthly payment, we can use the formula for the monthly payment of a mortgage:

M = P * r * (1 + r)^n / ((1 + r)^n - 1),

where:

M is the monthly payment,

P is the principal amount (the price of the house minus the down payment),

r is the monthly interest rate (10% divided by 12 months),

n is the total number of monthly payments (25 years multiplied by 12 months).

P = $140,000 - 20% * $140,000

= $140,000 - $28,000

= $112,000

r = 10% / 12

= 0.10 / 12

= 0.00833333

n = 25 years * 12 months

= 300

Plugging these values into the formula, we get:

M = $112,000 * 0.00833333 * (1 + 0.00833333)^300 / ((1 + 0.00833333)^300 - 1)

Using a calculator, we find that the monthly payment is approximately $970.41.

(ii) Total Amount of Interest Paid:

To calculate the total amount of interest paid, we can subtract the principal amount from the total amount paid over the loan term.

Total amount paid = M * n

Total amount of interest paid = Total amount paid - P

Total amount of interest paid = ($970.41 * 300) - $112,000

Using a calculator, we find that the total amount of interest paid is approximately $161,122.85.

b) 15-year mortgage at a rate of 10%:

Let's calculate the monthly payment and the total amount of interest paid for this mortgage.

(i) Monthly Payment:

Using the same formula as above with adjusted values for n:

P = $112,000 (same as before)

r = 10% / 12

= 0.10 / 12

= 0.00833333

n = 15 years * 12 months

= 180

Plugging these values into the formula, we get:

M = $112,000 * 0.00833333 * (1 + 0.00833333)^180 / ((1 + 0.00833333)^180 - 1)

Using a calculator, we find that the monthly payment is approximately $1,133.42.

(ii) Total Amount of Interest Paid:

Using the same approach as before:

Total amount paid = M * n

Total amount of interest paid = Total amount paid - P

Total amount of interest paid = ($1,133.42 * 180) - $112,000

Using a calculator, we find that the total amount of interest paid is approximately $72,195.84.

Learn more about monthly payment at https://brainly.com/question/12949065

#SPJ11

Find the distance between the spheres x2 + y2 + z2 = 4 and x2 + y2 + 22 = 8x + 8y + 8z - 47. X

Answers

The distance between the two spheres is 6 - √5 units.

To find the distance between the spheres x² + y² + z² = 4 and x² + y² + z² = 8x + 8y + 8z - 47, first rewrite the second equation:

x² - 8x + y² - 8y + z² - 8z = -43

Now, complete the squares for x, y, and z terms:

(x - 4)² - 16 + (y - 4)² - 16 + (z - 4)² - 16 = -43

Combine the constants:

(x - 4)² + (y - 4)² + (z - 4)² = 5

Now, we have two spheres with centers (0, 0, 0) and (4, 4, 4) and radii 2 (from √4) and √5 (from √5), respectively. To find the distance between the spheres, subtract their radii from the distance between their centers:

Distance = √[(4 - 0)² + (4 - 0)² + (4 - 0)²] - 2 - √5
Distance = √(64) - 2 - √5
Distance = 8 - 2 - √5

So, the distance between the two spheres is 6 - √5 units.

To learn more about spheres here:

brainly.com/question/22849345#

#SPJ11

3 Area: 42 m²
10 m
X
6 m
Pls help asap worth points! Ty

Answers

The value of x, considering the area of the composite figure, is given as follows:

x = 4 m.

How to obtain the surface area of the composite figure?

The surface area of a composite figure is obtained as the sum of the areas of all the parts that compose the figure.

The figure in this problem is composed as follows:

Rectangle of dimensions x and 6.Right triangle of sides 6 and 10 - x.

The area of the figure is of 42 m², hence the value of x is obtained as follows:

6x + 0.5(6)(10 - x) = 42

6x + 3(10 - x) = 42

3x = 12

x = 4 m.

More can be learned about the area of a composite figure at brainly.com/question/10254615

#SPJ1

Proof by contrapositive of statements about odd and even integers. Prove each statement by contrapositive (a) For every integer n, if n^2 is odd, then n is odd. (b) For every integer n, if n^3 is even, then n is even. (c) For every integer n, if 5n + 3 is even, then n is odd. (d) For every integer n, if n^2 – 2n + 7 is even, then n is odd.

Answers

(a) Statement: For every integer n, if n^2 is odd, then n is odd.

Proof by contrapositive:

Contrapositive: For every integer n, if n is even, then n^2 is even.

Assume that n is an even integer. By definition, an even integer can be written as n = 2k, where k is an integer.

Substituting n = 2k into the expression n^2, we get:

n^2 = (2k)^2 = 4k^2 = 2(2k^2)

Since 2k^2 is an integer, we can write n^2 as 2 times an integer. Therefore, n^2 is even.

This proves the contrapositive statement, and hence, the original statement is true.

(b) Statement: For every integer n, if n^3 is even, then n is even.

Proof by contrapositive:

Contrapositive: For every integer n, if n is odd, then n^3 is odd.

Assume that n is an odd integer. By definition, an odd integer can be written as n = 2k + 1, where k is an integer.

Substituting n = 2k + 1 into the expression n^3, we get:

n^3 = (2k + 1)^3 = 8k^3 + 12k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1

Since 4k^3 + 6k^2 + 3k is an integer, we can write n^3 as 2 times an integer plus 1, which is an odd number.

This proves the contrapositive statement, and hence, the original statement is true.

(c) Statement: For every integer n, if 5n + 3 is even, then n is odd.

Proof by contrapositive:

Contrapositive: For every integer n, if n is even, then 5n + 3 is odd.

Assume that n is an even integer. By definition, an even integer can be written as n = 2k, where k is an integer.

Substituting n = 2k into the expression 5n + 3, we get:

5n + 3 = 5(2k) + 3 = 10k + 3 = 2(5k + 1) + 1

Since 5k + 1 is an integer, we can write 5n + 3 as 2 times an integer plus 1, which is an odd number.

This proves the contrapositive statement, and hence, the original statement is true.

(d) Statement: For every integer n, if n^2 - 2n + 7 is even, then n is odd.

Proof by contrapositive:

Contrapositive: For every integer n, if n is even, then n^2 - 2n + 7 is odd.

Assume that n is an even integer. By definition, an even integer can be written as n = 2k, where k is an integer.

Substituting n = 2k into the expression n^2 - 2n + 7, we get:

n^2 - 2n + 7 = (2k)^2 - 2(2k) + 7 = 4k^2 - 4k + 7 = 2(2k^2 - 2k + 3) + 1

Since 2k^2 - 2k

Learn more about integer here:

https://brainly.com/question/1768254

#SPJ11

Find the component form of v given its magnitude and the angle it makes with the positive x-axis.
║v║ = 4, θ = 3.5°

Answers

To find the component form of v given its magnitude and the angle it makes with the positive x-axis, we can use the following formula , the component form of v is (3.9944, 0.2092) when its magnitude is 4 and it makes an angle of 3.5° with the positive x-axis.

We have ,

v = ║v║ (cos θ, sin θ)

where ║v║ is the magnitude of v, θ is the angle it makes with the positive x-axis, and (cos θ, sin θ) represents the direction of v in terms of the unit vector components along the x-axis and y-axis.

Substituting the given values, we get:

v = 4(cos 3.5°, sin 3.5°)

Using a calculator, we can find the cosine and sine values:

v = 4(0.9986, 0.0523)

Multiplying each component by 4, we get:

v = (3.9944, 0.2092)

Therefore, the component form of v is (3.9944, 0.2092) when its magnitude is 4 and it makes an angle of 3.5° with the positive x-axis.


To know more about Angle visit :

https://brainly.com/question/30147425

#SPJ11

1 year spot rate is 2.5%, 2 year spot rate is 3%. Calculate the annual forward rate between the 1st and the 2nd year. Use continuous compounding.

Answers

The annual forward rate between the 1st and 2nd year, using continuous compounding, is approximately 5.5504%.

How we calculate the annual forward rate?

To calculate the annual forward rate between the 1st and 2nd year using continuous compounding, we can use the formula:

Forward rate = [tex](e^(^r^2^*^t^2^) / e^(^r^1^*^t^1^)^) ^- ^1[/tex]

Where:

r1 is the 1-year spot rate (2.5%)

r2 is the 2-year spot rate (3%)

t1 is the time to the 1st year (1 year)

t2 is the time to the 2nd year (2 years)

e is the base of the natural logarithm (approximately 2.71828)

Substituting the given values into the formula, we have:

Forward rate = [tex](e^(^0^.^0^3^*^2^) / e^(^0^.^0^2^5^*^1^)^) ^- ^1[/tex]

Calculating the expression:

Forward rate = [tex](e^(^0^.^0^6^) / e^(^0^.^0^2^5^)^) ^- ^1[/tex]

Using a calculator or a mathematical software that supports exponentiation and the exponential function, we can evaluate the expression:

Forward rate ≈ 0.055504

Learn more about Annual forward rate

brainly.com/question/18686717

#SPJ11

This question is designed to be answered without a calculator. The rate, in liters per minute, at which water is being pumped out of an underground tank is given by the function r(t) = R + 1 for Osts 3. The total amount of water pumped in the first 3 minutes is 4 liters. 9 liters. 10 liters. O 12

Answers

The total amount of water pumped in the first 3 minutes can be found by integrating the rate function, r(t), over the interval [0, 3].

Given the rate function r(t) = R + 1, where R is a constant, we integrate it as follows:

∫[0,3] (R + 1) dt = Rt + t |[0,3] = (R * 3 + 3) - (R * 0 + 0) = 3R + 3.

To find the total amount of water pumped in the first 3 minutes, we

evaluate the integral at t = 3 and subtract the initial amount at t = 0.

Since the total amount of water pumped in the first 3 minutes is given as 4 liters, we can set up the equation:

3R + 3 - 0 = 4.

Simplifying the equation, we have:

3R = 1.

Dividing both sides by 3, we find:

R = 1/3.

Therefore, the total amount of water pumped in the first 3 minutes is 3 * (1/3) + 3 = 1 + 3 = 4 liters.

So, the correct answer is 4 liters.

For more explanation on rate function refer,

brainly.com/question/4119784

#SPJ11

(1 point) find the value of k for which the constant function x(t)=k is a solution of the differential equation 4t3dxdt−6x−6=0.

Answers

The value of k for which the constant function x(t) = k is a solution of the differential equation 4t^3(dx/dt) - 6x - 6 = 0 is k = -1.

To find the value of k for which the constant function x(t) = k is a solution of the given differential equation, we substitute x(t) = k into the equation and solve for the value of k that satisfies the equation.

The given differential equation is:

4t^3(dx/dt) - 6x - 6 = 0

Substituting x(t) = k, we have:

4t^3(dk/dt) - 6k - 6 = 0

Since x(t) = k is a constant function, the derivative dx/dt is zero, so dk/dt is also zero. Therefore, we can simplify the equation further:

-6k - 6 = 0

To solve for k, we isolate it on one side of the equation:

-6k = 6

Dividing both sides by -6, we get:

k = -1

Therefore, the value of k for which the constant function x(t) = k is a solution of the differential equation 4t^3(dx/dt) - 6x - 6 = 0 is k = -1.

In summary, by substituting the constant function x(t) = k into the given differential equation and solving for k, we find that the value of k is -1. This means that when x(t) is a constant function equal to -1, it satisfies the differential equation.

Learn more about differential equation here

https://brainly.com/question/1164377

#SPJ11

.4. (12 points) There is a large population of Mountain Cottontail rabbits in a small forest located in Washington. The function () represents the rabbit population t years after 1995. 2000 1 + 9e-es Answer the questions below. a. (3 points) Find the function that represents the rate of change of the rabbit population at t years. (You do not need to simplify). b. (3 point) What was the rabbit population in 1995? C. (3 points) Explain how to find the rate of change of the rabbit population at t = 4. (You do not need to compute the population att = 4). d. (3 point) State the equation we need to solve to find the year when population is decreasing at a rate of 93 rabbits per year. (You do not need to solve the equation).

Answers

The equation we need to solve to find the year when the population is decreasing at a rate of 93 rabbits per year is given by$$t = \frac{\ln 93 - \ln 3.6}{0.4} + 5$$

a. The rate of change of rabbit population can be found by differentiating the given function with respect to time t, we get

$$y = 1 + 9e^{-0.4(t-5)}$$$$\frac{dy}{dt}=\frac{d}{dt}[1 + 9e^{-0.4(t-5)}]$$$$\frac{dy}{dt}=\frac{d}{dt}(1) + \frac{d}{dt}[9e^{-0.4(t-5)}]$$$$\frac{dy}{dt}=0 - 9 \cdot 0.4 e^{-0.4(t-5)}$$$$\frac{dy}{dt}=-3.6e^{-0.4(t-5)}$$

Therefore, the function that represents the rate of change of the rabbit population is given by $$\frac{dy}{dt}=-3.6e^{-0.4(t-5)}$$b.

In 1995, t = 0. We can find the rabbit population by substituting t = 0 in the given function.

$$y = 1 + 9e^{-0.4(t-5)}$$$$y = 1 + 9e^{-0.4(0-5)}$$$$y = 1 + 9e^{2}$$$$y = 1 + 9 \cdot 7.389$$$$y = 66.5$$

Therefore, the rabbit population in 1995 was 66.5.c. To find the rate of change of the rabbit population at t = 4, we need to substitute t = 4 in the equation we found in part (a).$$\frac{dy}{dt}=-3.6e^{-0.4(t-5)}$$$$\frac{dy}{dt}=-3.6e^{-0.4(4-5)}$$$$\frac{dy}{dt}=-3.6e^{0.4}$$

Therefore, to find the rate of change of the rabbit population at t = 4, we need to evaluate $$\frac{dy}{dt}=-3.6e^{0.4}$$d. To find the year when the population is decreasing at a rate of 93 rabbits per year, we need to solve the equation $$\frac{dy}{dt}=-3.6e^{-0.4(t-5)}=-93$$

Dividing both sides by -3.6e^{-0.4(t-5)}, we get$$1 = \frac{93}{3.6e^{-0.4(t-5)}}$$

Taking the natural logarithm of both sides, we get

$$\ln 1 = \ln \left(\frac{93}{3.6e^{-0.4(t-5)}}\right)$$$$0 = \ln 93 - \ln 3.6 - 0.4(t-5)$$$$\ln 93 - \ln 3.6 = 0.4(t-5)$$$$t-5 = \frac{\ln 93 - \ln 3.6}{0.4}$$$$t = \frac{\ln 93 - \ln 3.6}{0.4} + 5$$

To know more about equation :

https://brainly.com/question/29538993

#SPJ11

The equation we need to solve to find the year when the population is decreasing at a rate of 93 rabbits per year is given by$$t = \frac{\ln 93 - \ln 3.6}{0.4} + 5$$

a. The rate of change of rabbit population can be found by differentiating the given function with respect to time t, we get

[tex]$$y = 1 + 9e^{-0.4(t-5)}$$$$\frac{dy}{dt}=\frac{d}{dt}[1 + 9e^{-0.4(t-5)}]$$$$\frac{dy}{dt}=\frac{d}{dt}(1) + \frac{d}{dt}[9e^{-0.4(t-5)}]$$$$\frac{dy}{dt}=0 - 9 \cdot 0.4 e^{-0.4(t-5)}$$$$\frac{dy}{dt}=-3.6e^{-0.4(t-5)}$$[/tex]

Therefore, the function that represents the rate of change of the rabbit population is given by [tex]$$\frac{dy}{dt}=-3.6e^{-0.4(t-5)}$$b.[/tex]

In 1995, t = 0. We can find the rabbit population by substituting t = 0 in the given function.

[tex]$$y = 1 + 9e^{-0.4(t-5)}$$$$y = 1 + 9e^{-0.4(0-5)}$$$$y = 1 + 9e^{2}$$$$y = 1 + 9 \cdot 7.389$$$$y = 66.5$$[/tex]

Therefore, the rabbit population in 1995 was 66.5.c. To find the rate of change of the rabbit population at t = 4, we need to substitute t = 4 in the equation we found in part [tex](a).$$\frac{dy}{dt}=-3.6e^{-0.4(t-5)}$$$$\frac{dy}{dt}=-3.6e^{-0.4(4-5)}$$$$\frac{dy}{dt}=-3.6e^{0.4}$$[/tex]

Therefore, to find the rate of change of the rabbit population at t = 4, we need to evaluate

Dividing both sides by -[tex]3.6e^{-0.4(t-5)}, we get$$1 = \frac{93}{3.6e^{-0.4(t-5)}}$$[/tex]

Taking the natural logarithm of both sides, we get [tex]$$\frac{dy}{dt}=-3.6e^{0.4}$$d[/tex]. To find the year when the population is decreasing at a rate of 93 rabbits per year, we need to solve the equation [tex]$$\frac{dy}{dt}=-3.6e^{-0.4(t-5)}=-93$$[/tex]

[tex]$$\ln 1 = \ln \left(\frac{93}{3.6e^{-0.4(t-5)}}\right)$$$$0 = \ln 93 - \ln 3.6 - 0.4(t-5)$$$$\ln 93 - \ln 3.6 = 0.4(t-5)$$$$t-5 = \frac{\ln 93 - \ln 3.6}{0.4}$$$$t = \frac{\ln 93 - \ln 3.6}{0.4} + 5$$\\[/tex]
To know more about equation :

brainly.com/question/29538993

#SPJ11

data scientists are often involved in study planning. you are in charge of a study that examines the mean

Answers

As a data scientist involved in study planning, my responsibility is to design and execute a study that examines the mean of a specific variable of interest.

This involves careful consideration of various factors such as the research question, study population, data collection methods, and sample size determination. I would start by clearly defining the research question and the population I want to generalize the results to. Then, I would determine the appropriate data collection methods, whether it's through surveys, experiments, or observational studies. Additionally, I would consider the sampling strategy to ensure representative and unbiased data. To estimate the mean, I would collect relevant data from the selected sample and perform statistical analysis, including descriptive statistics and hypothesis testing. This would involve calculating the sample mean, determining the variability of the data, and assessing the statistical significance of the results.

Throughout the study, I would adhere to ethical guidelines, ensure data quality and integrity, and employ appropriate statistical techniques to draw valid conclusions about the population mean. The study findings can then be used to inform decision-making, make predictions, or gain insights into the variable of interest.

Learn more about hypothesis here: brainly.com/question/32234453

#SPJ11

Researchers at a medical center studied the amount of caffeine, in milligrams (mg), contained in a 16-ounce cup of coffee made at one machine at the center's cafeteria. They selected a random sample of 40 16-ounce cups of coffee made at different times of the day during a one-month period. The mean and standard deviation of the amount of caffeine in the sample were 159.88 mg and 36.72 mg, respectively. A graph of the sample data revealed a night skew with one outlier. The researchers will construct a confidence interval to estimate the amount of caffeine for all 16 ounce cups made at the machine
Which of the following conditions is not needed for the inference?
A)The samples were selected at random
B)The observations are independent of one another.
C)The sample size of 40 is less than 10% of the population size
D) The graph of the sample data is symmetric with no outliers
The sample size is large enough to assume that the sampling distribution of sample means is approximately normal

Answers

The condition that is not needed for the inference in this case is D) The graph of the sample data is symmetric with no outliers.

While it is generally desirable to have a symmetric distribution without outliers for making statistical inferences, it is not a necessary condition. The central limit theorem states that as the sample size increases, the sampling distribution of the sample mean approaches a normal distribution, regardless of the shape of the population distribution, as long as certain conditions are met (such as random sampling and independence of observations). Therefore, the shape of the sample data distribution and the presence of outliers do not affect the validity of constructing a confidence interval based on the sample mean.

However, the condition that is not needed for the inference is D) The graph of the sample data is symmetric with no outliers. While a symmetric distribution without outliers can make it easier to construct a confidence interval, it is not a necessary condition for inference. The other conditions listed (random sampling, independence, sample size less than 10% of population size, and a large enough sample size) are all necessary for inference.

To learn more about symmetric distribution

https://brainly.com/question/30068353

#SPJ11

please help i have no idea how to do this

Answers

The 95th term of the geometric sequence is:

a₉₅ = 18. A.

To calculate the 95th term of a geometric sequence with a₁ = 18 and r = -1, we can use the formula for the nth term of a geometric sequence:

aₙ = a₁ × r⁽ⁿ⁻¹⁾.

Plugging in the given values, we have:

a₉₅ = 18 × (-1)⁽⁹⁵⁻¹⁾

Now let's simplify the expression:

a₉₅ = 18 × (-1)⁹⁴

= 18 × 1 (since (-1)⁹⁴ equals 1)

The formula for the nth term of a geometric sequence, a = a1 r(n1), may be used to get the 95th term of a series with the parameters a1 = 18 and r = -1.

When we enter the values provided, we get:

a₉₅ = 18 × (-1)⁽⁹⁵⁻¹⁾

Let's now make the expression simpler:

a₉₅ = 18 × (-1)94 = 18 1 (because 94 minus 1 equals 1)

For similar questions on geometric sequence

https://brainly.com/question/24643676
#SPJ11

The nurse is teaching a female client who uses a contraceptive diaphragm about reducing the risk for toxic shock syndrome (TSS). Which information should the nurse include?

Answers

The nurse should instruct the client to clean and dry the diaphragm thoroughly before and after use, avoid leaving the diaphragm in place for longer than recommended, and to seek medical attention immediately if symptoms of TSS develop such as fever, vomiting, and a rash.

Additionally, the nurse should advise the client to avoid using the diaphragm during menstruation as this may increase the risk of TSS. It is important to note that while TSS is rare, it is a potentially life-threatening condition and clients should be educated on how to minimize their risk.
The nurse should inform the female client using a contraceptive diaphragm about the following points to reduce the risk of Toxic Shock Syndrome (TSS):
1. Avoid wearing the diaphragm for prolonged periods - do not exceed 24 hours of continuous use.
2. Properly clean and store the diaphragm when not in use to prevent bacterial growth.
3. Change the contraceptive gel or spermicide with each use and after 6 hours if needed.
4. Monitor for symptoms of TSS, such as fever, rash, vomiting, or diarrhea, and contact a healthcare provider if these occur.
5. Practice good personal hygiene and maintain a healthy lifestyle to boost the immune system.
Remember, it's essential to follow these guidelines to minimize the risk of TSS while using a contraceptive diaphragm.

To know more about diaphragm visit:

https://brainly.com/question/32110603

#SPJ11

Other Questions
Blanket or open-end purchase orders are suitable for buying?a) Office suppliesb) Computersc) Custom built componentsd) Heavy equipment a. Wages of $11,000 are earned by workers but not paid as of December 31, 2017 b. Depreciation on the company's equipment for 2017 is $11,560 c. The Office Supplies account had a $310 debit balance on December 31, 2016. During 2017, $5,549 of office supplies are purchased d. The Prepaid Insurance account had a $5,000 balance on December 31, 2016. An analysis of insurance policies shows that $2,000 e. The company has earned (but not recorded) $850 of interest from investments in CDs for the year ended December 31, 2017. The f. The company has a bank loan and has incurred (but not recorded) interest expense of $5,000 for the year ended December 31 A physical count of supplies at December 31, 2017, shows $605 of supplies available of unexpired insurance benefits remain at December 31, 2017 interest revenue will be received on January 10, 2018 2017. The company must pay the interest on January 2, 2018 For each of the above separate cases, prepare adjusting entries required of financial statements for the year ended (date of) December 31, 2017 Journal entry worksheet Wages of $11,000 are earned by workers but not paid as of December 31, 2017. Note: Enter debits before credits. Transaction General Journal Debit Credit a. Record entry Clear entry View general journal What is a smell?A)electrical signals from the substance you are smellingB)light from the substance you are smellingC)molecules of the substance you are smellingD)smells are not matter, but are energy waves from the substance you are smelling FILL IN THE BLANK. Acid precipitation dissolves _________________ in soil and carries the dissolved metalwhich is toxic to animalsinto lakes and streams, where it can kill most forms of aquatic animal life. Which of the following is an overinflated belief in yourself? A. escalation of commitment B. hubris C. fail-safe point D. overconfidence in the context of realistic job preview (rjp), when candidates are given both positive and negative information, they: Operating income and tax rates for Crane Company's first three years of operations were as follows: Enacted tax Income rate 2020 $510000 25% 2021 ($1110000) 20% 2022 $1790000 30% Assuming that Crane Company opts only to carryforward its 2021 NOL, what is the amount of deferred tax asset or liability that Crane Company would report on its December 31, 2021 balance sheet? Amount Deferred tax asset or liability $222000 Deferred tax asset $277500 Deferred tax liability 2022 $1790000 30% Assuming that Crane Company opts only to carryforward its 2021 NOL, what is the amount of Crane Company would report on its December 31, 2021 balance sheet? Amount Deferred tax asset or liability $222000 Deferred tax asset $277500 Deferred tax liability $222000 Deferred tax liability $333000 Deferred tax asset Cullumber, Inc. has a defined benefit pension plan covering its 50 employees. Cullumber agrees to amend its pension benefits. As a result, the projected benefit obligation increased by $2205000. Cullumber determined that all its employees are expected to receive benefits under the plan over the next 5 years. In addition, 10 employees are expected to retire or quit each year. Assuming that Cullumber uses the years of service method of amortization for prior service cost, the amount reported as amortization of prior service cost in year one after the amendment is O $147000 O $735000 O $514500 0 $441000 usage patterns are a variable used in blank______ segmentation. how the steps required to do a radix sort on the following set of values when using base 10. 6 346 22 31 212 157 102 568 435 8 14 5 0 1 2 3 4 s 6 7 8 9 0 1 2 3 4 s 6 7 8 9 0 1 2 3 4 s 6 7 8 9 sb. what is the running time of radix sort? The major product of the following reaction is an alcohol. Which ofthe following best describes this reaction?A) SN2 with inversion of configurationB) SN2 with racemizationC) SN1 with inversion of configurationD) SN1 with racemization Calculate the mass of 300 liters of Hydrogen at a pressure of 200 Bar and a temperature of 25C. Assume ideal gas. True or false, annelids demonstrate the important animal characteristic of body segmentation. Please help, I have a test on Monday When did new South happened and how it started? scientific thinking developed only in the past few decades.A. TrueB. False It is least likely that a forward contract: A. has counterparty risk. B. can be settled in cash. C. requires a margin deposit. In your drawer you have 10 white socks and 14 black socks. You choose one sock from the drawer and then a second sock (without replacement.)Event A: You choose a black sock.Event B: You choose a black sock.Tell whether the events are independent or dependent. Explain your reasoning. I dont understand help me According to the Lecture 2.1.2 Climate Change Mitigation, which lighting fixtures have the highest energy efficiency?a. Light emitting diodes (LED)b. fossil fuel usec. average sea level, average air temperatured. bicycle, walking,rail To avoid injury when lifting, you should... A. Not twist to move or reach an object B. Use your Power Zone C. Keep your back straight D. All of the above