The Law of Cosines
Let a,b, and c be the length of the sides of a given triangle, and x the included angle between sides a and b, then the following relation applies:
[tex]c^2=a^2+b^2-2ab\cos x[/tex]The triangle shown in the figure has two side lengths of a=4 and b=5. The included angle between them is x=100°. We can find the side length c by substituting the given values in the formula:
[tex]c^2=4^2+5^2-2\cdot4\cdot5\cos 100^o[/tex]Calculating:
[tex]c^2=16+25-40\cdot(-0.17365)[/tex][tex]\begin{gathered} c^2=47.946 \\ c=\sqrt[]{47.946}=6.92 \end{gathered}[/tex]Now we can apply the law of the sines:
[tex]\frac{4}{\sin A}=\frac{5}{\sin B}=\frac{c}{\sin 100^o}[/tex]Combining the first and the last part of the expression above:
[tex]\begin{gathered} \frac{4}{\sin A}=\frac{c}{\sin100^o} \\ \text{Solving for sin A:} \\ \sin A=\frac{4\sin100^o}{c} \end{gathered}[/tex]Substituting the known values:
[tex]\begin{gathered} \sin A=0.57 \\ A=\arcsin 0.57=34.7^o \end{gathered}[/tex]The last angle can be ob
The graph above shows the graph of the cost in blue and revenue in red function for a company that manufactures and sells small radios.ABCD
a) 500 radios
b) Going out = $5000
Coming in = $5000
c) P(x) = 6x - 3000
d) Profit of $900
Explanation:a) To get the number of radios that must be produced to break even, we will equate the cost function and the revenue function:
[tex]\begin{gathered} \cos t\text{ function:} \\ C(x)\text{ = 3000 + 4x} \\ \text{revenue function:} \\ R(x)\text{ = 10x} \\ \\ \text{Break even:} \\ C(x)\text{ = R(x) } \\ \text{3000 + 4x = 10x} \end{gathered}[/tex]collect like terms:
[tex]\begin{gathered} 3000\text{ = 10x - 4x} \\ 3000\text{ = 6x} \\ \text{divide both sides by 6:} \\ x\text{ = 3000/6} \\ x\text{ = 500} \\ \text{If x represents number of radios produced,} \\ \text{Then to break even, 500 radios will have to be produced } \end{gathered}[/tex]b) The dollar amount going in and coming out is gotten by replacing the value of x in both function with 500:
[tex]\begin{gathered} \text{when x = }500 \\ C(x)\text{ = 3000 + 4x = 3000 + 4}(500) \\ C(x)\text{ = }5000 \\ \text{Amount going out = \$5000} \\ \text{when x = 500} \\ R(x)\text{ = 10x = 10(500)} \\ R(x)\text{ = 5000} \\ \text{Amount coming in = \$5000} \end{gathered}[/tex]c) Profit = Revenue - Cost
[tex]\begin{gathered} \text{Profit function, }P(x)\text{= R(x) - C(x)} \\ P(x)\text{ = 10x - (3000 + 4x)} \\ P(x)\text{ = 10x - 3000 - 4x} \\ P(x)\text{ = 6x - 3000} \end{gathered}[/tex]d) To find the profit when the number of radios is 650
[tex]\begin{gathered} \text{Profit function: P(x) = 6x - 3000} \\ \text{for 650 radios, x = 650} \\ P(650)\text{ = 6(650) - 3000} \\ P(650)\text{ = 900} \\ \text{The company will make a profit of \$900} \end{gathered}[/tex]four tenths squared minus 19 plus the quantity negative 5 divided by the absolute value of 6.7 minus 9.2 end quantity times 3.81
The expression has a value of -26.46 when evaluated
How to evaluate the expression?From the question, the expression is given as
four tenths squared minus 19 plus the quantity negative 5.......
Rewrite the expression properly as
0.4² - 19 + (-5)/|6.7 - 9.2| * 3.81
Start by evaluating the exponent
So, we have
0.16 - 19 + (-5)/|6.7 - 9.2| * 3.81
Remove the expression in the bracket
0.16 - 19 - 5/|6.7 - 9.2| * 3.81
So, we have
0.16 - 19 - 5/|-2.5| * 3.81
Remove the absolute bracket
0.16 - 19 - 5/2.5 * 3.81
Divide
0.16 - 19 - 2 * 3.81
Evaluate the products
0.16 - 19 - 7.62
So, we have
-26.46
Hence, the value of the expressions is -26.46
Read more about expressions at
https://brainly.com/question/4344214
#SPJ1
A saw blade is rotating at 2700 revolutions per minute. Find theangular speed in radians per second.
The rule of the angular speed is
[tex]\omega=No\text{ of revolution per min }\times\frac{2\pi}{60}[/tex]Since the number of revolutions is 2700 per min, then
[tex]\begin{gathered} \omega=2700\times\frac{2\pi}{60} \\ \\ \omega=90\pi\text{ rad per sec} \end{gathered}[/tex]The answer is 90pi rad per second
The answer is the 3rd answer
question given below slove the following equations for r4al x and y .
S={(-24,7/3)}
1) When we're dealing with Complex Numbers we can rewrite this expression:
[tex](3+4i)^2-2(x-yi)=x+yi[/tex]Considering that their real and their imaginary parts can be taken as equal, so:
[tex]\begin{gathered} (3+4i)^2-2(x-yi)=x+yi \\ (3+4i)^2-2(x-iy) \\ 9+24i+16i^2+2x+2yi \\ \end{gathered}[/tex]2) Rewrite that into the Standard form for complex numbers y= ax +bi combining like terms:
[tex]\begin{gathered} 9+24i-16+2x+2yi \\ (-7-2x)+i(24+2y)\text{ = x+ iy} \\ \end{gathered}[/tex]Finally writing those two expressions as a System of equations we have:
[tex]\begin{gathered} \begin{cases}-7-2x=\text{ x} \\ 24+2y=y\end{cases} \\ -7-2x=x\Rightarrow-7=2x+x\Rightarrow3x=7\Rightarrow\frac{3x}{3}=\frac{7}{3} \\ 24+2y=y\Rightarrow24=-2y+y\Rightarrow-y=24\Rightarrow y=-24 \\ S=\mleft\lbrace(\frac{7}{3},-24)\mright\rbrace \end{gathered}[/tex]3) Hence, the answer is S={(-24,7/3)}
The table below shows the average price of a Miami Marlins baseball ticket between 2006 and 2021.
Ticket price as a function of time. If you write the number [tex]2040[/tex] where you see [tex]x[/tex] in this function and take the value where you see [tex]y[/tex], you will reach the correct answer.
[tex]y=1.83(2040)-2225.5[/tex][tex]y=1507.7[/tex]15. I need help on this question. How do you do it?
Solution:
Given the expression:
[tex]-5^2[/tex]This expression is evaluated as
[tex]\begin{gathered} -5\text{ multiplied in 2 places} \\ \Rightarrow-5\times-5 \\ =25 \end{gathered}[/tex]Hence,
[tex]-5^2[/tex]is evaluated to be 25
[tex] - \frac{5}{6} e - \frac{2}{3} e = - 24[/tex]cual es la respuesta
Resolvamos esta ecuación para la variable "e":
[tex]\begin{gathered} -\frac{5}{6}e-\frac{2}{3}e=-24 \\ \frac{5}{6}e+\frac{2}{3}e=24 \\ \frac{5}{6}e+\frac{4}{6}e=24 \\ \frac{(5+4)e}{6}=24 \\ \frac{9e}{6}=24 \\ 9e=24\cdot6 \\ 9e=144 \\ e=\frac{144}{9} \\ e=16 \end{gathered}[/tex]Entonces, el valor de "e" es 16.
I have the answers for 1 and 2 3. Use your answers from # 1 and # 2 to find the length of each arc between gondola cars . Use 3.14 for and round to the nearest hundredth . You must write out all the numbers you are multiplying together meaning show your work for full credit . ( 5 points ) Central angle = 8°Radius = 95 ft
The length of an arc = 13.26 ft
Explanation:The length of an arc is given by the formula:
[tex]\begin{gathered} l=\frac{\theta}{360}\times2\pi r \\ \end{gathered}[/tex]Substitute θ = 8°, r = 95 ft, and π = 3.14 into the formula
[tex]\begin{gathered} l=\frac{8}{360}\times2\times3.14\times95 \\ \\ l=13.26\text{ ft} \end{gathered}[/tex]The length of an arc = 13.26 ft
For each ordered pair, determine whether it is a solution to the system of equations. 7x - 4y=8 -2x+3y=7 Is it a solution? (x, y) Yes No (0, -2) a (-9,-6) (4,5) (7.7)
7x - 4y = 8 (eq. 1)
-2x + 3y = 7 (eq. 2)
Isolating y from equation 1:
-4y = 8 - 7x
y = 8/(-4) - 7/(-4)x
y = -2 + 7/4x
Isolating y from equation 2:
3y = 7 + 2x
y = 7/3 + 2/3x
Given that the slopes of the equations are different, then there is a solution, which can be found as follows,
[tex]\begin{gathered} -2+\frac{7}{4}x=\frac{7}{3}+\frac{2}{3}x \\ \frac{7}{4}x-\frac{2}{3}x=\frac{7}{3}+2 \\ \frac{^{}_{}7\cdot3-2\cdot4}{4\cdot3}x=\frac{7+3\cdot2}{3} \\ \frac{13}{12}x=\frac{13}{3} \\ x=\frac{13}{3}\cdot\frac{12}{13} \\ x=4 \end{gathered}[/tex]Replacing x = 4 into one of the equations, we get:
[tex]\begin{gathered} y=-2+\frac{7}{4}x \\ y=-2+\frac{7}{4}\cdot4 \\ y=-2+7 \\ y=5 \end{gathered}[/tex]The solution is (4,5)
To check if an ordered pair is a solution, we have to replace the x-coordinate and the y-coordinate of the pair into the equation, as follows:
(0, -2)
7(0) - 4(-2) = 8
8 = 8
-2(0) + 3(-2) = 7
-6 ≠ 7
Given that the second equation is not satisfied, then (0, -2) is not a solution
(-9, -6)
7(-9) - 4(-6) = 8
-81 + 24 ≠ 8
-2(-9) + 3(-6) = 7
18 - 18 ≠ 7
Given that the equations are not satisfied, then (-9, -6) is not a solution
(7,7)
7(7) - 4(7) = 8
49 - 28 ≠ 8
-2(7) + 3(7) = 7
-14 + 21 = 7
Given that the first equation is not satisfied, then (7, 7) is not a solution
Based on the diagram below, which statement is true? b a C 110° 115° d 60° e 120° Oь || с Oa || ь alle Odlle
we have that
Verify each statement
1) b parallel to c
If b is parallel to c then
115+60=180
175=180 ----> is not true
2) a parallel to b
If a is parallel to b
then
110+60=180
170=180 -----> is not true
3) a parallel to c
If a is parallel to c
then
110=115 -----> is not true
4) d parallel to e
If d is parallel to e
then
60+120=180
180=180 -----> is true
therefore
the answer is
d parallel to ePart 2
In this problem
If n and m are parallel
then
the interior angles of the triangle are
30, 80 and x degrees
so
30+80+x=180
110+x=180
x=180-110
x=70 degreesOaks Hardware purchases an extension ladder list priced at $120. It is available at a 15% discount. What is the available price?
A 15% discount means that the retail price is 85% of the original price.
To calculate said retail price, we'll use a rule of three:
Thereby,
[tex]x=\frac{120\cdot85}{100}\rightarrow x=102[/tex]Therefore, we can conclude that the available price is $102
I need help with this practice problem The subject is trigonometry
SOLUTION
The range of the function is given as:
[tex](-\infty,-9\rbrack\cup\lbrack5,\infty[/tex]The asymptote of the function is at points
[tex]x=0,x=2\pi[/tex]The function is shown in the graph below
Therefore, the equation of the session is
[tex]f(x)=7\csc (\frac{x}{2})-2[/tex]given the function r(t)=t^2, solve for r(t)=4
In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
r(t)=t^2
r(t)=4
t = ?
Step 02:
r(t)=4
t ² = 4
t = √4
t = 2
The answer is:
t = 2
Answer: t=2
Step-by-step explanation:
Because we know that for some value of t, r(t)= 4, and for ALL values of t, r(t)= t^2, then we know for some value of t, that t^2 = 4.
Based off of this information, we can take the square root of both sides, resulting in this equation.
t = [tex]\sqrt{4}[/tex]
This can be simplified.
t=2
What is the output value for the following function if the input value is 5?y = 4x - 34223172
Answer:
17
Explanation:
Given the function:
[tex]y=4x-3[/tex]When the input value, x = 5
[tex]\begin{gathered} y=4x-3 \\ =4(5)-3 \\ =20-3 \\ =17 \end{gathered}[/tex]The output value if the input value is 5 is 17.
? QuestionWhat is the equation of the quadratic function represented by this table?х5678910f(x)-4585-4-19HolaType the correct answer in each box. Use numerals instead of words.f(x) =(x -12 +
To determine the equation of the quadratic equation, which is a parabola, we substitute the coordinates of the vertex of the parabola (h,k) into the general equation.
[tex]y=a(x-h)^2+k[/tex]From the given, notice that the only value of f(x) that does not repeat is 8. This means that the vertex is at (7,8).
[tex](h,k)=(7,8)[/tex]Thus, we only need to obtain the value of a.
Substitute the coordinate of a point (x,y) into the equation and the vertex as well. In this case, let us use the first given point, (5,-4).
[tex]\begin{gathered} y=a(x-h)^2+k \\ \\ (5,-4)\rightarrow-4=a(5-7)^2+8 \end{gathered}[/tex]Simplify the obtained equation.
[tex]\begin{gathered} (5,-4) \\ -4=a\mleft(5-7\mright)^2+8 \\ -4=a\mleft(-2\mright)^2+8 \\ -4=a(4)+8 \\ -4-8=4a \\ -12=4a \\ a=\frac{-12}{4} \\ a=-3 \end{gathered}[/tex]Now that we have the value of a, substitute the coordinates of the obtained vertex and the value of a into the equation of the quadratic equation.
[tex]\begin{gathered} y=a(x-h)^2+k \\ y=-3(x-7)^2+8 \end{gathered}[/tex]To check, the graph of the given function is as follows:
Therefore, the equation of the quadratic equation is y=-3(x-7)²+8.
What is 175% of 48? Show work.
Let 175% of 48 be y.
This implies that
[tex]\frac{175}{100}\times48=y[/tex]To evaluate y,
[tex]\begin{gathered} \frac{175}{100}\times48=y \\ \Rightarrow\frac{175\times48}{100}=y \\ \frac{8400}{100}=y \\ \Rightarrow y=84 \end{gathered}[/tex]Hence, 175% of 48 is 84.
7, -28, 112, -448, ..... as a formula
n = number
We can see that the value of each number is multiplied by 4 at each point in time
And the initial value is 7
[tex]a_n=7(4)^{n-1}[/tex]A truck carries 4 chairs and tables. The table weighs 35 pounds. The total weight of the chairs and tables is 63 pounds. How much does each chair weigh?
The weight of each chair is 7 pounds.
What is basic arithmetic?Specific numbers and their computations employing a variety of fundamental arithmetic operations are at the center of arithmetic mathematics. Algebra, on the other hand, deals with the limitations and guidelines that apply to all other types of numbers, including whole numbers, integers, fractions, functions, and so on. Arithmetic math serves as the foundation for algebra, which always adheres to its definition. A large range of subjects fall within the broad definition of mathematics, which encompasses a very broad range of topics. Beginning with the fundamentals like addition, subtraction, and division of numbers, they then move on to more complicated topics like exponents, variations, sequence, progression, and more. This part does touch on some of the mathematical formulas and mathematical sequence. Four essential mathematical operations—addition, subtraction, multiplication, and division—are covered in basic arithmetic.
Total weight = 63 pounds
Weight of the table = 35 pounds
Weight if 4 chairs = 63 - 35
= 28 pounds
Weight of one chair = 28/4
= 7 pounds
To know more about basic arithmetic ,visit:
brainly.com/question/16096936
#SPJ13
The measure of the smallest angle in a right triangle is 45° 45 ° less than the measure of the next larger angle. Find the measures of all three angles.
Angle A or B must be 90 degrees since it is a right triangle. Given that C is more than 60 and that there are 180 degrees in a triangle, the other angle must be less than 30 degrees.
How to measure the three angles?The smallest angle in a right triangle has a measure that is 45° smaller than the next largest angle.As a result, the other two angles' measurements must sum up to 90. The only solution to this would be for both of the remaining angles to be 45 degrees if the lowest angle is 45 degrees less than the next largest angle. The correct angle would be the next biggest angle.Angle A or B must be 90 degrees since it is a right triangle. Given that C is more than 60 and that there are 180 degrees in a triangle, the other angle must be less than 30 degrees.To learn more about Right triangle refer to:
https://brainly.com/question/2217700
#SPJ13
you are 5 feet and 4 inches tall and cast a shadow 6 feet long. At the same time , a nearby tree cast a shadow 40 feet 6 inches long. Find the heigh of the tree.
The height of the tree is such that it cast a shadow 40 feet 6 inches long and maintains the given ratio will be 36 feet.
What are the ratio and proportion?The ratio is the division of the two numbers.
For example, a/b, where a will be the numerator and b will be the denominator.
As per the given question,
The height of a person is 5 feet and 4 inches.
Since 1 feet = 12 inches so 4 inches = 1/3 feet
Therefore,height of a person = 5 + 1/3 = 16/3 feet
Its shadow length = 6 feet
The ratio of the height to shadow length = (16/3)/6
Now, the shadow of the tree = 40 feet and 6 inches so 40.5 feet
Let's say its length was x feet.
Then x/40.5 = (16/3)/6
x = 36 feet
Hence "The height of the tree is such that it cast a shadow 40 feet 6 inches long and maintains the given ratio will be 36 feet".
For more information about ratios and proportions,
brainly.com/question/26974513
#SPJ1
Solve 39 - 5 = 13 for q.q=
We are given the following equation:
[tex]3q-5=13[/tex]We are asked to solve for "q". To do that, we will first add "5" on both sides, like this:
[tex]\begin{gathered} 3q-5+5=13+5 \\ 3q=18 \end{gathered}[/tex]Now we will divide by 3 on both sides, like this:
[tex]\begin{gathered} \frac{3q}{3}=\frac{18}{3} \\ q=6 \end{gathered}[/tex]Therefore, the value of q is 6.
ok, remember that the answer will be available in your profile.
How do you Graph g(x)=x^5-2x^4 ?
Any line can be graphed using two points. Select two x x values, and plug them into the equation to find the corresponding y y values.
A 90% confidence interval for a proportion is found to be (0.52, 0.58). What isthe sample proportion?
A 90% confidence interval for a proportion is given as (0.52,0.58).
It is required to find the sample proportion.
Recall that for confidence interval (x,y), the sample proportion is the midpoint:
[tex]c=\frac{x+y}{2}[/tex]Substitute x=0.52 and y=0.58 into the equation:
[tex]c=\frac{0.52+0.58}{2}=\frac{1.1}{2}=0.55[/tex]The answer is C.
Directions: Identify the slope and y-intercept of the line on the graph. Then, write the equation of the line in slope-intercept form.
To find out the slope, we need two points
so
looking at the graph
we take
(-4,5) and (0,-3)
m=(-3-5)/(0+4)
m=-8/4
m=-2the y-intercept (value of y when the value of x is zero) is the point (0,-3)
the equation of the line in slope-intercept form is
y=mx+b
where
m is the slope
b is the y-coordinate of the y-intercept
so
m=-2
b=-3
substitute
y=-2x-3Consider the following inequality:x < -2Step 2 of 2: What type of interval does the following inequality represent?
You have the following inequality:
x≤2
the prevous inequality can be written in interval notation as follow:
(-oo, 2]
then, you can conclude that the inequality is represented by a half-open interval (this happens when you have an open parentheses and a close parentheses)
16. Four solids labelled A, B, C, and D are shown below. o A B D a. Which of the solids has a curved face? 1mk b. Which solid has 5 faces? 1mk c. Which solid has 12 edges? Imk
a. A solid has curved surface area.
b. C solid has 5 faces.
c. D solid has 12 edges.
identify whether each phrase is an expression equation or quantity
the last one of the right column is a inequality, because it has the sign "<"
the second one of the right column in an expression because it doen't have the sign "="
the first one of the right column is a equation because it has the sign "=".
If a line passes thru the points (5,5) and (9,3) the slope of this line is
The initial point is (5,5)
the final point is (9, 3)
The formula for determining slope is expressed as
slope = (y2 - y1)/(x2 - x1)
y2 and y1 are the final and initial y values
x2 and x1 are the final and initial x values
From the information given,
x1 = 5, y1 = 5
x2 = 9, y2 = 3
Slope = (3 - 5)/(9 - 5) = - 2/4
Slope = - 1/2
Please help asap will give Brainly!!!
The following completes the proof: D. The Alternate Interior Angles Theorem shows that the angles BAC and DCA are congruent.
The Alternate Interior Angles Theorem: What is it?
According to the alternate interior angles theorem, when a transversal cuts over two (2) parallel lines, the alternate interior angles that are created are congruent.
We can infer and logically derive from the Alternate Interior Angles Theorem that the sentence that correctly concludes the proof is that angle BAC and angle DCA are congruent.
Segment AB is parallel to segment DC, while segment BC is parallel to segment AD, according to the information provided. Create the diagonals A and C using a straight edge. By virtue of the Reflexive Property of Equality, it is congruent to itself.
to learn more about Alternate Interior Angles refer to:
https://brainly.com/question/1807741
#SPJ13
24. How many gallons of ethanol are in a 100 gal mixture that is 10%
ethanol?
By working with percentages, we will see that there are 10 gallons of ethanol in the mixture.
How many gallons of ethanol are in the mixture?We know that we have a mixture with a volume of 100 gallons, and 10% of that mixture is ethanol, so we just need to find the 10% of 100 gallons.
To work with percentages, we will use the equation:
Volume of ethanol = total volume*ratio of ethanol.
V = 100gal*(10%/100%)
V = 100gal*0.10 = 10 gal
There are 10 gallons in the mixture.
Learn more about percentages:
https://brainly.com/question/843074
#SPJ1