Thus, the number of current lawnmowers in the Springtown Hardware is 864,900.
Explain about the percentage:In mathematics, a percentage is a number or ratio that may be expressed as a fraction of 100. The Latin word "per centum," which meaning "per 100," is where the word "percent" comes from. % is the symbol used to represent percentages.
When a number is expressed in decimal form, you can calculate its percentage by multiplying it by 100. For instance, multiplying 0.5 by 100 gives you the percentage 50%.
Given data:
Springtown Hardware's inventory - 697,500 lawnmowers.
Current inventory of 24% more lawnmowers.
Current inventory = old inventory + 24% of old inventory
Current inventory = 697,500 + 24 % of 697,500
Current inventory = 697,500 + 24 * 697,500/ 100
Current inventory = 697,500 + 24* 6,975
Current inventory = 864,900
Thus, the number of current lawnmowers in the Springtown Hardware is 864,900.
Know more about the percentage:
https://brainly.com/question/24877689
#SPJ1
Round the number. Write the result as the product of a single digit and a power of 10.
4,241,933,200
Interpret the probability. In 100 trials of this experiment, it is expected about (Round to the nearest whole number as needed.) to result in exactly 15 flights being on time
Hence, it is expected that 14 flights will arrive on time out of the 100 trials of this experiment.
What is the probability?The probability of an occurrence is a number used in mathematics to describe how likely it is that the event will take place. In terms of percentage notation, between 0% and 100% it is expressed as a number between 0 and 1, or . The higher the likelihood, the more likely it is that the event will take place.
What is the trials?when we refer to an experiment or trial, we mean a random experiment. When difference between a trial and an experiment, think of the experiment as a larger entity created by the fusion of several trials.
Unless otherwise stated,A trial is any specific outcome of a random experiment. In other words, a trial of the experiment is what we call when we conduct an experiment.
according to question, the number of on-time flights in 100 trials as a binomial random variable with parameters n = 100 (the number of trials) and p (the chance of success, i.e., a flight being on time), presuming that the probability of a flight being on time is the same in all trials.
The expected number of on-time flights in 100 trials is E(X) = np if the same of a flight being on time is p. Given that E(X) = 15, we determine p ,
E(X) = n p = 15 n = 100
p = [tex]\frac{E(X)}{n} = \frac{15}{100}[/tex] = 0.15
Therefore, it is probability that 0.15 %of flights will arrive on time.
To determine the expected number of trials from a total of 100
Using the probability mass function of the binomial distribution, we can get the expected probability of trials out of 100 that result in precisely 15 flights departing on time:
[tex]P(X = 15)=(100 choose 15) * 0.15^{15} * 0.85^{85}[/tex]
We can calculate this 0.144 get using a calculator.
therefore it is expected that 14 flights will arrive on time out of the 100 trials of this experiment. It should be noted that while this is an expected value, random fluctuation may cause the actual number of on-time flights in each trial to deviate somewhat from this figure.
Learn more about Probability here:
https://brainly.com/question/13604758
#SPJ1
I need help please I will give brainliest to the best answer...
The value of x in the intersecting chords that extend outside circle is 5
Calculating the value of xFrom the question, we have the following parameters that can be used in our computation:
intersecting chords that extend outside circle
Using the theorem of intersecting chords, we have
4 * (x + 6 + 4) = 6 * (x - 1 + 6)
Evaluate the like terms
So, we have
4 * (x + 10) = 6 * (x + 5)
Using a graphing tool, we have
x = 5
Hence. the value of x is 5
Read more about intersecting chords at
https://brainly.com/question/13950364
#SPJ1
Using the graph, determine the coordinates of the x-intercepts of the parabola.
Answer:
x = -5, x = 1
As (x, y) coordinates, the x-intercepts are (-5, 0) and (1, 0).
Step-by-step explanation:
The x-intercepts are the x-values of the points at which the curve crosses the x-axis, so when y = 0.
From inspection of the given graph, we can see that the parabola crosses the x-axis at x = -5 and x = 1.
Therefore, the x-intercepts of the parabola are:
x = -5x = 1As (x, y) coordinates, the x-intercepts are (-5, 0) and (1, 0).
a plane travels 600 from salt lake city, utah, to oakland, california, with a prevailing wind of 30. the return trip against the wind takes longer. find the average speed of the plane in still air.
the average speed of the plane in still air is s + 30.
Let's call the average speed of the plane in still air "s" (in miles per hour).
We can use the formula:
time = distance / speed
to find the time it takes the plane to travel from Salt Lake City to Oakland with the wind and against the wind.
With the wind:
time with wind = [tex]600 / (s + 30)[/tex]
Against the wind:
time against wind =[tex]600 / (s - 30)[/tex]
time against wind > time with wind
So we can set up an inequality:
[tex]600 / (s - 30) > 600 / (s + 30)[/tex]
Multiplying both sides by [tex](s - 30)(s + 30)[/tex], we get:
[tex]600(s + 30) > 600(s - 30)[/tex]
Expanding and simplifying, we get:
[tex]600s + 18000 > 600s - 18000[/tex]
Subtracting 600s from both sides, we get:
[tex]18000 > -18000[/tex]
This inequality is true for all values of s. In other words, there are no restrictions on the value of s that would make the return trip take longer than the trip with the wind.
Therefore, we can use the average of the two speeds (with and against the wind) to find the average speed of the plane in still air:
Average speed = [tex]2s(s + 30) / (s + 30 + s - 30)[/tex]
Simplifying, we get:
Average speed = [tex]2s(s + 30) / (2s)[/tex]
Canceling the common factor of 2s, we get:
Average speed = s + 30
We know that the distance from Salt Lake City to Oakland is 600 miles, and we can use the formula:
time = distance / speed
to find the time it takes the plane to travel this distance:
time = [tex]600 / (s + 30)[/tex]
We also know that the return trip (against the wind) takes longer, so we can set up another equation:
time return trip =[tex]600 / (s - 30)[/tex]
We can use these two equations to solve for s:
[tex]600 / (s + 30) = 600 / (s - 30)[/tex]
Cross-multiplying, we get:
[tex]600(s - 30) = 600(s + 30)[/tex]
Expanding and simplifying, we get:
[tex]600s - 18000 = 600s + 18000[/tex]
Subtracting 600s from both sides, we get:
[tex]-18000 = 18000[/tex]
This is not a valid equation, so there must be no solution.
However, we can still find the average speed of the plane in still air by using the equation we derived earlier:
Average speed = s + 30
So the average speed of the plane in still air is s + 30. We don't have a specific value for s, but we can say that the average speed is equal to the speed with the wind plus 30 (which is the speed of the wind).
for such more questions on average speed
https://brainly.com/question/4931057
#SPJ11
Please help.
If the radius of the clock is 24 cm and the distance from the top of the clock at point D to the hanger at point B is 2 cm, what is the length from point A to point B?
2 cm
10 cm
12 cm
24 cm
The length from point A to point B on the clock is approximately 24.083 cm, which is closest to 24 cm. This is calculated using the Pythagorean theorem.
Using the Pythagorean theorem, we can calculate the length from point A to point B as follows
First, we need to find the length of the vertical line segment from point D to point A. This is equal to the radius of the clock, which is 24 cm.
Next, we can find the length of the horizontal line segment from point D to point B. This is equal to the distance from the top of the clock at point D to the hanger at point B, which is given as 2 cm.
Now, we can use the Pythagorean theorem to find the length from point A to point B
AB² = AD² + DB²
AB² = (24 cm)² + (2 cm)²
AB² = 576 cm² + 4 cm²
AB² = 580 cm²
AB ≈ 24.083 cm
Therefore, the length from point A to point B is approximately 24.083 cm, which is closest to 24 cm.
To know more about Pythagorean theorem:
https://brainly.com/question/14930619
#SPJ1
Answer:
The length from point A to point B on the clock is approximately 24.083 cm, which is closest to 24 cm. This is calculated using the Pythagorean theorem.
Hope this helps :)
Pls brainliest...
true or false: a linear programming problem can have an optimal solution that is not a corner point. select one: true false
It is true that a linear programming problem can have an optimal solution that is not a corner point.
How given statement is true? Explain further?In linear programming, the optimal solution represents the point where the objective function is optimized while still satisfying all the constraints.
In some cases, the optimal solution may occur at a corner point of the feasible region, where two or more of the constraints intersect.
However, it is possible for the optimal solution to occur at a point that is not a corner point, but rather lies on an edge or a line segment of the feasible region.
This can occur when the objective function is parallel to one of the constraint lines or when there are redundant constraints that limit the feasible region.
Therefore, it is true that a linear programming problem can have an optimal solution that is not a corner point.
Learn more about linear programming.
brainly.com/question/15417573
#SPJ11
Red=10
blue=8
yellow=5
what is the ratio of red balls to blue balls?
Answer:1.25
Step-by-step explanation:
it just math
Help please? I just need an answer. A clear explanation earns brainliest.
the simplified form of expression is: -(x² + 2x - 2)/((x+2)*(x+4))
what is expression ?
In mathematics, an expression is a combination of numbers, variables, operators, and/or functions that represents a mathematical quantity or relationship. Expressions can be simple or complex
In the given question,
To evaluate the expression 1/(x+2) - (x+1)/(x+4), we need to find a common denominator for the two terms. The least common multiple of (x+2) and (x+4) is (x+2)(x+4).
So, we can rewrite the expression as:
(1*(x+4) - (x+1)(x+2))/((x+2)(x+4))
Expanding the brackets, we get:
(x+4 - x² - 3x - 2)/((x+2)*(x+4))
Simplifying the numerator, we get:
(-x² - 2x + 2)/((x+2)*(x+4))
Therefore, the simplified expression is:
-(x² + 2x - 2)/((x+2)*(x+4))
To know more about Expressions , visit:
https://brainly.com/question/14083225
#SPJ1
Solve for x to make A||B.
A = x + 12
B = x + 48
X = [?]
Answer:
Step-by-step explanation:= x+48=180 ( linier pair )
= x=180-48
= x=132
= x+12=180 (liner pair)
= x=180-12
= x=168
Kiran swims z laps in the pool. Clare swims 18 laps, which is 9/5
times as many laps as Kiran. How many laps did Kiran swim?
Equation:
Solution: z=
we use linear equation in one variable to solve the problem. Kiran swam 10 laps in the pool.
Let's represent the number of laps Kiran swam as "z".
We know that Clare swam 18 laps, which is 9/5 times as many laps as Kiran. We can represent this relationship with the following equation:
18 = (9/5)z
To solve for z, we can isolate it by multiplying both sides of the equation by the reciprocal of 9/5, which is 5/9:
18 * (5/9) = (9/5)z * (5/9)
10 = z
Therefore, Kiran swam 10 laps in the pool.
To know more about linear equation in one variable Visit:
https://brainly.com/question/31529190
#SPJ1
19.
Solve the problem.
2
Find the critical value XR corresponding to a sample size of 5 and a confidence
level of 98%.
(1 point)
O11.143
00.297
13.277
00.484
The critical value of the chi-square distribution corresponding to a sample size of 5 and a confidence level of 98% is given as follows:
0.297 and 13.277.
How to obtain the critical value?To obtain a critical value, we need three parameters, given as follows:
Distribution.Significance level.Degrees of freedom.Then, with the parameters, the critical value is found using a calculator.
The parameters for this problem are given as follows:
Chi-square distribution.1 - 0.98 = 0.02 significance level.5 - 1 = 4 degrees of freedom.Using a chi-square distribution calculator, the critical values are given as follows:
0.297 and 13.277.
More can be learned about the chi-square distribution at https://brainly.com/question/4543358
#SPJ1
STRUCTURE The ratio of circumference to diameter is the same for every circle. Is the ratio of circumference to radius the same for every circle? Make sure to explain!
No, the ratio of circumference to radius is not the same for every circle.
What is ratio?Ratio refers to the quantitative relation between two or more values, typically expressed in the form of a fraction or a proportion.
According to given information:No, the ratio of circumference to radius is not the same for every circle. The ratio of circumference to diameter, also known as pi (π), is a constant value that remains the same for every circle. It is approximately equal to 3.14 or 22/7. However, the ratio of circumference to radius varies depending on the size of the circle.
The formula for circumference of a circle is C=2πr, where C is the circumference and r is the radius. Therefore, the ratio of circumference to radius is C/r = 2π. This means that for circles of different sizes, the ratio of circumference to radius will differ since the value of pi remains the same while the radius changes.
For example, if we consider two circles, one with a radius of 2 cm and the other with a radius of 4 cm, the ratio of circumference to radius for the first circle will be 2π (since C = 2πr = 2π x 2 = 4π) and for the second circle, it will be 2π (since C = 2πr = 2π x 4 = 8π). Thus, the ratio of circumference to radius is not the same for every circle.
To know more about ratio visit:
https://brainly.com/question/12024093
#SPJ1
Which expressions are equivalent to 27^4/3?
Select the three correct answers.
A. 4^3
B. (27^1/3)^4
C. 3^1/4
D. 81
D) 81 is equivalent to 27^(4/3).
The expression 27^4/3 can be simplified using the rule that (a^m)^n = a^(m*n). Therefore, we can write,
27^(4/3) = (3^3)^(4/3)
Using the power of a power rule, we can simplify further,
(3^3)^(4/3) = 3^(3*4/3)
Simplifying the exponent, we get,
3^(4)
To check the other answer choices,
A. 4^3 is not equivalent to 27^4/3.
B. (27^1/3)^4 is equivalent to 27^(4/3), which we already simplified to 3^4. Therefore, this expression is also equivalent to 3^4.
C. 3^1/4 is not equivalent to 27^4/3.
D. 81 is equivalent to 3^(4).
Therefore, the expression 27^4/3 is equivalent to 3^4, which is answer choice D) 81.
To learn more about equivalent here:
https://brainly.com/question/31532746
#SPJ4
PLEASE HELP AND EXPLAIN AND SHOW WORK ON HOW YOU GOT THE ANSWER I WILL MARK YOU BRAINLIEST. PLEASE EXPLAIN HOW YOU GOT THE ANSWER!!!
The terms arranged in order from smallest to biggest are: (-2)³, -√25, √11, 10, and 4² after comparing the values of the final numbers.
How to arrange the terms of numbers in ascending orderWe shall first simplify the numbers to get their final values and then compare to which is smaller as follows:
4² = 4 × 4 = 16
-√25 = -5
10 = 10
√11 = 3.3166
(-2)³ = -2 × -2 × -2 = -8
In conclusion, we have by comparing the final values of the numbers the terms arranged from smallest to the biggest as: (-2)³, -√25, √11, 10, and 4².
Read more about numbers here:https://brainly.com/question/1094377
#SPJ1
a p-value a. can be positive or negative. b. is a probability. c. can be smaller than 0 but no larger than 1. d. can be larger than 1 but no smaller than 0. e. can only range in value from -1 to 1.
A p-value is a probability.
A p-value is the probability of obtaining a test statistic as extreme or more extreme.
The observed value, assuming the null hypothesis is true.
It ranges in value from 0 to 1 and represents the strength of evidence against the null hypothesis.
A p-value cannot be negative, as it is a probability and probabilities are always between 0 and 1.
A p-value also cannot be larger than 1, as it represents a probability.
A probability cannot exceed 1.
Finally, a p-value cannot be smaller than 0, as it represents a probability.
A probability cannot be negative.
the correct option is b. is a probability.
For similar questions on P-Value
https://brainly.com/question/13786078
#SPJ11
dora drove east at a constant rate of 75 kph. one hour later, tim started driving on the same road at a constant rate of 90 kph. for how long was tim driving, before he caught up to dora? a. 5 hours b. 4 hours c. 3 hours d. 2 hours
Tim was driving for 5 hours before he caught up to Dora.
The answer is (a) 5 hours.
To solve this problem, we can use the formula:
distance = rate × time
Let's denote the time Tim drove as t hours.
Since Dora started driving one hour earlier, her driving time would be (t + 1) hours.
Dora's distance: 75 kph × (t + 1)
Tim's distance: 90 kph × t
Since Tim catches up to Dora, their distances will be equal:
75(t + 1) = 90t
Now we can solve for t:
75t + 75 = 90t
75 = 15t
t = 5.
The answer is (a) 5 hours.
For similar question on distances.
https://brainly.com/question/29657955
#SPJ11
Compare the numbers using <, >, or =. 0. 78 ___ 0. 708 < > =
For the given numbers, 78 < 0. 708
To compare two numbers, we need to look at their values and determine which one is larger or smaller. In this case, we have 78 and 0.708. We can start by comparing their whole number parts, which are 78 and 0, respectively. Since 78 is greater than 0, we know that 78 is a larger number.
But what about the decimal parts of these numbers? To compare them, we need to look at the place value of each digit. The first digit after the decimal point in 78 is 0, and the first digit after the decimal point in 0.708 is 7. Since 7 is greater than 0, we know that 0.708 is a larger number than 0.78 in terms of their decimal parts.
Now that we have compared the whole number parts and decimal parts separately, we can combine the results to determine the final comparison. Since 78 is larger than 0 and 0.708 is larger than 0.78 in terms of their decimal parts, we can conclude that:
78 < 0.708
We use the symbol "<" here because 78 is smaller than 0.708.
To know more about number here
https://brainly.com/question/17429689
#SPJ4
erin is playing darts at the adventure arcade. she scores a bullseye 15% of the time, and she is about to throw 5 darts. how likely is it that she will get at least one bullseye?
the likelihood of Erin getting at least one bullseye in 5 throws is 0.5563 or 55.63%.
To calculate the likelihood of Erin getting at least one bullseye, we need to first calculate the probability of her not getting a bullseye in a single throw. Since she scores a bullseye 15% of the time, the probability of her not getting a bullseye in a single throw is 85% (100% - 15%).
Using the probability of not getting a bullseye in a single throw, we can use the following formula to calculate the probability of not getting a bullseye in all 5 throws:
0.85 x 0.85 x 0.85 x 0.85 x 0.85 = 0.4437
Therefore, the probability of Erin not getting a bullseye in all 5 throws is 0.4437 or 44.37%.
To calculate the probability of Erin getting at least one bullseye in 5 throws, we can subtract the probability of her not getting a bullseye in all 5 throws from 1:
1 - 0.4437 = 0.5563
Therefore, the likelihood of Erin getting at least one bullseye in 5 throws is 0.5563 or 55.63%.
learn more about probability
https://brainly.com/question/30034780
#SPJ11
The probability that Erin will get at least one bullseye in her 5 throws at the adventure arcade is approximately 55.63%.
To find the probability that she will get at least one bullseye in 5 throws, we can use the complementary probability.
This means we will first find the probability of her not getting a bullseye in all 5 throws, and then subtract that from 1.
Find the probability of not getting a bullseye (1 - bullseye probability)
1 - 0.15 = 0.85
Calculate the probability of not getting a bullseye in all 5 throws
0.85^5 ≈ 0.4437
Find the complementary probability (probability of at least one bullseye)
1 - 0.4437 ≈ 0.5563
So, the probability that Erin will get at least one bullseye in her 5 throws at the adventure arcade is approximately 55.63%.
for such more question on probability
https://brainly.com/question/13604758
#SPJ11
The solid below is dilated by a scale factor of 1/2. Find the volume of the
solid created upon dilation.
24
26
10
34
Answer: 4080
Step-by-step explanation:
First you have to find the area of the triangle. 24*10 = 240. 240/2 = 120. Then you multiply the area of the triangle and multiply it by 34. 120 * 34 = 4080. This means the answer is 4080
Someone help me i will give brainliest!
The probability that the golfer will hit at least 6 times in his next 10 attempts is A. 20 %
How to find the probability ?To estimate the probability of the golfer hitting at least 6 times in his next 10 attempts using a table of random numbers, we can perform a simulation.
Let's use the given table of random numbers to simulate 10 attempts for each trial. We can consider each pair of digits as one attempt. We will perform 10 trials and count how many times the golfer hits at least 6 times in 10 attempts.
Now count the number of trials with at least 6 hits:
Trial 2, Trial 5, and Trial 9 have at least 6 hits. That's 3 out of 10 trials.
To estimate the probability, divide the number of successful trials (at least 6 hits) by the total number of trials:
Probability = (Number of successful trials) / (Total number of trials)
Probability = 3 / 10 = 0.3
The estimated probability that the golfer will hit at least 6 times in his next 10 attempts is 30%. There is no exact match among the possible answers, but the closest one is 20%.
Find out more on probability at https://brainly.com/question/30618573
#SPJ1
Find the points on the surface z2 = xy +16 closest to the origin. The points on the surface closest to the origin are (Type an ordered triple. Use a comma to separate answers as needed. )
The points on the surface z² = xy + 16 closest to the origin are: (-4,4,0) and (4, -4, 0)
We know that the distance between an arbitrary point on the surface and the origin is d(x, y, z) = √(x² + y² + z²)
Using Lagrange multipliers,
L(x, y, z, λ) = x² + y² + z² + λ(z² - xy - 16)
We have partial derivatives.
[tex]L_x[/tex] = 2x - λy
[tex]L_y[/tex] = 2y - λx
[tex]L_z[/tex] = 2z + 2zλ
[tex]L_\lambda[/tex] = z² - xy - 16
Now we set each partial derivative to zero to find critical points.
[tex]L_x[/tex] = 0
2x - λy = 0
[tex]L_y[/tex] = 0
2y - λx = 0
After solving above equations simultaneously we get (x + y)(x - y) = 0
i.e., x = -y OR x = y
[tex]L_z[/tex] = 0
2z + 2zλ = 0
z = 0 OR λ = 0
Consider [tex]L_\lambda[/tex] = 0
z² - xy - 16 = 0
-xy = 16 ............(as z = 0)
when x = y then -y² = 16 which is not true.
So, consider x = -y
-(-y)y = 16
y² = 16
y = ±4
when y = 4 then we get x = -4
and when y = -4 then we get x = 4
Therefore, the closest points are:(-4,4,0) and (4, -4, 0)
Learn more about the Lagrange multipliers here:
https://brainly.com/question/30776684
#SPJ4
40000 is divided by the smallest number so that the result is a perfect cube. find the cube root of the resulting number.
The Cube root of the resulting number is 8.
The smallest number that 40000 can be divided by so that the result is a perfect cube, we need to factorize 40000 into its prime factors:
[tex]40000 = 2^6 \times 5^4[/tex]
To make this a perfect cube, we need to ensure that the powers of each prime factor are multiples of 3.
The smallest number we can divide 40000 by so that the result is a perfect cube is:
[tex]40000 = 2^6 \times 5^4[/tex]
Now we can find the cube root of the resulting number:
[tex]3\sqrt (40000 \div 100) = 3\sqrt400 = 8.[/tex]
Factories 40000 into its prime components in order to determine.
The least number that the result may be divided by while still producing a perfect cube.
The powers of each prime factor must be multiples of three in order for this to be a perfect cube.
The least number that 40000 may be divided by to produce a perfect cube is:
For similar questions on Cube Root
https://brainly.com/question/26726803
#SPJ11
you roll a 6-sided dice. what is the probability that you rolled a 5, given that the number rolled was greater than 3?
The probability that you rolled a 5, given that the number rolled was greater than 3, is 1/3 or approximately 0.333.
We need to find the probability that you rolled a 5, given that the number rolled was greater than 3. Let's break this down step by step:
1. Identify the total number of outcomes: Since it is a 6-sided dice, there are 6 possible outcomes (1, 2, 3, 4, 5, and 6).
2. Determine the number of outcomes greater than 3: The outcomes greater than 3 are 4, 5, and 6. There are 3 possible outcomes that satisfy this condition.
3. Identify the number of outcomes that result in rolling a 5: There is only 1 outcome that results in rolling a 5.
4. Calculate the probability: To find the probability, divide the number of outcomes that result in rolling a 5 (1) by the total number of outcomes greater than 3 (3).
Probability = (Number of outcomes with a 5) / (Number of outcomes greater than 3) = 1/3
So, the probability that you rolled a 5, given that the number rolled was greater than 3, is 1/3 or approximately 0.333.
Learn more about probability here:
https://brainly.com/question/4135343
#SPJ11
The probability that the number rolled was a 5, given that it was greater than 3, is [tex]$\frac{1}{3}$[/tex].
The number rolled was greater than 3, it must be either a 4, 5, or 6.
The probability that the number rolled was a 5, given that it was greater than 3.
Let [tex]$A$[/tex] be the event that the number rolled is a 5 and let [tex]$B$[/tex] be the event that the number rolled is greater than 3.
Then, we want to find. [tex]$P(A|B)$[/tex], the probability of [tex]$A$[/tex] given [tex]$B$[/tex].
By Bayes' theorem, we have:
Bayes' theorem (alternatively Bayes' law or Bayes' rule), named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
The risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than simply assuming that the individual is typical of the population as a whole.
One of the many applications of Bayes' theorem is Bayesian inference, a particular approach to statistical inference.
The probabilities involved in the theorem may have different probability interpretations.
Bayesian probability interpretation, the theorem expresses how a degree of belief, expressed as a probability, should rationally change to account for the availability of related evidence.
Bayesian inference is fundamental to Bayesian statistics, being considered by one authority as; "to the theory of probability what Pythagoras's theorem is to geometry."
[tex]$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$[/tex]
[tex]$P(A) = \frac{1}{6}$[/tex], since there is only one way to roll a 5 on a 6-sided die.
[tex]$P(B) = \frac{3}{6} = \frac{1}{2}$[/tex], since there are three outcomes (4, 5, or 6) that satisfy. [tex]$B$[/tex], out of a total of six possible outcomes.
[tex]$P(B|A)$[/tex], the probability of rolling a number greater than 3, given that the number rolled is a 5, note that. [tex]$B$[/tex] is true only if the number rolled is a 4, 5, or 6.
Since there is only one way to roll a 5, and only one of these three outcomes satisfies. [tex]$A$[/tex], we have:
[tex]$P(B|A) = \frac{1}{1} = 1$[/tex]
Substituting these values into Bayes' theorem, we get:
[tex]$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{1 \cdot \frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$[/tex]
For similar questions on probability
https://brainly.com/question/24756209
#SPJ11
Slope-intercept (0, -2) , (9,1)
Determine whether ▰ABCD with vertices A(-4,6), B(-1,7), C(0,4), and D(-3,3) is a rhombus, a rectangle, a square, or none. Select all the apply.
~a.) Rhombus
~b.) Rectangle
~c.) Square
~d.) None
The only statement that is true is b, which states that the quadrilateral is a rectangle.
What is quadrilateral?A quadrilateral is a polygon with four sides and four vertices. The sum of the interior angles of a quadrilateral is always 360 degrees. Quadrilaterals can have sides of different lengths and angles of different measures, giving rise to many different types of quadrilaterals with different properties.
According to the given informationFirst, we find the lengths of the sides of the quadrilateral:
AB = √[(7-6)² + (-1+4)²] = √10
BC = √[(4-7)² + (0-0)²] = 3
CD = √[(3-4)² + (-3+0)²] = √10
AD = √[(6-3)² + (-4+1)²] = √26
Then, we find the slopes of each pair of opposite sides:
AB: (7-6)/(−1+4) = 1/3
BC: (4-0)/(0-(-1)) = 4/1 = 4
CD: (-3-(-4))/(0-(-3)) = 1/3
AD: (6-3)/(-4-(-1)) = -1/5
Now we can analyze each statement:
a.) Rhombus
A rhombus is a quadrilateral with all sides of equal length. We found that AB = CD and AD ≠ BC, so not all sides are of equal length. Therefore, statement a is false.
b.) Rectangle
A rectangle is a quadrilateral with all angles equal to 90 degrees. We can find the slopes of adjacent sides and check if they are opposite reciprocals:
AB: 1/3
BC: 4
CD: 1/3
AD: -1/5
We can see that AB and CD have slopes of 1/3 and are opposite reciprocals, and BC and AD have slopes of 4 and -1/5, respectively, and are also opposite reciprocals. Therefore, all angles of the quadrilateral are 90 degrees. Also, since AB = CD and AD ≠ BC, the quadrilateral is a rectangle. Therefore, statement b is true.
c.) Square
A square is a special type of rectangle with all sides of equal length. We found that AB ≠ AD, so not all sides are of equal length. Therefore, statement c is false.
d.) None
We have determined that the quadrilateral is a rectangle, so it is not "none". Therefore, statement d is false.
Therefore, the only statement that is true is b, which states that the quadrilateral is a rectangle.
To know more about the quadrilateral and rectangle visit:
brainly.com/question/11936810
#SPJ1
please solve correctly my grade depends on it
Just use the pythagorean theorem to solve the hypotenuse!
(3^2)+(2^2)=x^2
9+4=13^2
[tex]\sqrt{13}[/tex] = [tex]\sqrt{x}[/tex]
[tex]13^{2}[/tex] km
Hope this helps <3
a large sample of x-y data values are analyzed and reveal a correlation coefficient of-.88. which statement is correct? group of answer choices a weak negative relationship exists. the correlation is weak because r is less than -1. if r had been .88, the correlation would have been much stronger. there is no relation. a fairly strong negative linear relationship exists. *
The correct statement is that a fairly strong negative linear relationship exists between the x and y variables.
How to find the relationship between the x and y variables of correlation coefficient?The correlation coefficient is a measure of the strength and direction of the linear relationship between two variables. It ranges from -1 to 1, where a value of -1 indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.
In this case, the correlation coefficient is -0.88, which indicates a strong negative linear relationship between the x and y variables. This means that as the value of x increases, the value of y decreases in a predictable manner.
The negative sign of the correlation coefficient indicates that the relationship is negative, meaning that as one variable increases, the other variable tends to decrease. The absolute value of the correlation coefficient, 0.88, indicates a strong relationship, meaning that the values of the two variables are closely related and can be used to predict each other's values.
Therefore, the correct statement is that a fairly strong negative linear relationship exists between the x and y variables.
Learn more about correlation coefficient
brainly.com/question/15577278
#SPJ11
Write the functions in standard form:
h(x)=2(x-3)²-9
h(x)=
p(x) = -5(x + 2)² + 15
p(x)=
Answer:
[tex]h(x)=2x^2-12x+9[/tex], [tex]p(x)=-5x^2-20x-5[/tex]
Step-by-step explanation:
To get to the standard form of a quadratic equation, we need to expand and simplify. Recall that standard form is written like so:
[tex]ax^2+bx+c[/tex]
Where a, b, and c are constants.
Let's expand and simplify h(x).
[tex]2(x-3)^2-9=\\2(x^2+9-6x)-9=\\2x^2+18-12x-9=\\2x^2+9-12x=\\2x^2-12x+9[/tex]
Thus, [tex]h(x)=2x^2-12x+9[/tex]
Let's do the same for p(x).
[tex]-5(x+2)^2+15=\\-5(x^2+4+4x)+15=\\-5x^2-20-20x+15=\\-5x^2-5-20x=\\-5x^2-20x-5[/tex]
Thus, [tex]p(x)=-5x^2-20x-5[/tex]
what is 72% written in a deciamal