The times longer would it be on Phobos than on Earth for the jumper to return to the ground is 16 times.
How to calculate the value?From the information, it was given that the person who jumps on Earth returns to the ground in 0.4 second and that on Phobos, the same jumper will take 6.4 minutes to return to the ground.
The number of times longer will be calculated by dividing the values that are given. This will be:.= Time on Phobos / Time on Earth
= 6.4 minutes / 0.4 minutes
= 16
This shows the concept of division of numbers.
Learn more about numbers on:
brainly.com/question/25710806
#SPJ1
I need help with this practice Having trouble solving it The subject is trigonometry
To solve the problem, we will make use of the identity:
[tex]\cos (\alpha-\beta)=\cos (\alpha)\cos (\beta)+\sin (\alpha)\sin (\beta)_{}[/tex]ANGLE α
The angle lies in the second quadrant. The only positive ratio is the sine.
If we have that:
[tex]\tan \alpha=-\frac{12}{5}[/tex]Displaying this on a triangle for ease of working, we have:
Therefore, the length of the hypotenuse will be:
[tex]\begin{gathered} x=\sqrt[]{12^2+5^2}=\sqrt[]{144+25}=\sqrt[]{169} \\ x=13 \end{gathered}[/tex]Therefore, we have that:
[tex]\begin{gathered} \sin \alpha=\frac{12}{13} \\ \cos \alpha=-\frac{5}{13} \end{gathered}[/tex]ANGLE β
This angle lies in the fourth quadrant. Only the cosine ratio is positive in this quadrant.
We are given in the question:
[tex]\cos \beta=\frac{3}{5}[/tex]Displaying this on a triangle for ease of working, we have:
Therefore, using the Pythagorean Triplets, we have that:
[tex]y=4[/tex]Therefore, we have that:
[tex]\sin \beta=-\frac{4}{5}[/tex]SOLVING THE IDENTITY
Applying the identity quoted earlier, we have:
[tex]\begin{gathered} \cos (\alpha-\beta)=\cos (\alpha)\cos (\beta)+\sin (\alpha)\sin (\beta)_{} \\ \cos (\alpha-\beta)=(-\frac{5}{13})(\frac{3}{5})+(\frac{12}{13})(-\frac{4}{5}) \\ \cos (\alpha-\beta)=-\frac{63}{65} \end{gathered}[/tex]11 gallons Blue Car 2 of gas 35.4 miles A gallons 27 miles Silver Car 5 14. You are running a fuel economy study. You want to find out which car can travel a greater distance on 1'gallon of gas. a. What is the gas mileage, in miles per gallon, for the blue car? b. What is the gas mileage, in miles per gallon, for the silver car? c. Which car could travel the greater distance on 1 gallon of gas?
Answer:
a) 23.67 miles per gallon
b) 34 miles per gallon
c) The silver car could travel a greater distance.
Step-by-step explanation:
a)
Conversion of the mixed numbers to fractions:
[tex]1\frac{1}{2}=\frac{1\ast2+1}{2}=\frac{2+1}{2}=\frac{3}{2}[/tex][tex]35\frac{1}{2}=\frac{35\ast2+1}{2}=\frac{70+1}{2}=\frac{71}{2}[/tex]Gas mileage:
3/2 gallons - 71/2 miles
1 gallons - x miles
Simplifying the top line by 2.
3 gallons - 71 miles
1 gallon - x miles
3x = 71
x = 71/3
x = 23.67 miles per gallon
b)
Conversion of the mixed number to fraction:
[tex]27\frac{1}{5}=\frac{27\ast5+1}{5}=\frac{135+1}{5}=\frac{136}{5}[/tex]Mileage:
4/5 gallons - 136/5 miles
1 gallon - x miles
Simplifying the top line by 5
4 gallons - 136 miles
1 gallon - x miles
4x = 136
x = 136/4
x = 34 miles per gallon
c)
Blue car: 23.67 miles per gallon
Silver car: 34 miles per gallon
Silver car could travel a greater distance.
The probability that John recieves junk mail is 11 percent. If he receives 94 pieces of mail in a week, about how many of them can he expect to be junk mail.a. 5 b. 15 c. 10 d.20
10 (option C)
Explanation:The probability of getting a junk mail = 11%
Number of mails received = 94
Amount that will be junk mail = The probability of getting a junk mail × Number of mails received
Amount that will be junk mail = 11% × 94
= 0.11 × 94 = 10.34
Since we can't have decimal number of mails, we would approximate to the nearest whole number
10.34 to the nearest whole number is 10
Hence, 10 junk mails are expected
Please help. Find value of p
The value of p from the given diagram using the similarity theorem is -13.
Similarity theorem of triangleYou can use three triangle-specific theorems to quickly distinguish similar triangles. These three theorems, known as Angle - Angle (AA), Side - Angle - Side (SAS), and Side - Side - Side (SSS), are proof methods for determining similarity in triangles.
In order to determine the value of p from the given expression, we will use the expression below;
2p-5+3p/14+26 = 3p/26
5p+5/40 = 3p/26
Cross multiply
40 * 3p = 26(5p +5)
120p = 130p + 130
120-130p = 130
-10p = 130
Divide both sides by -10 to have:
-10p/-10 = 130/-10
p = -13
This gives the required value of p from the figure.
Learn more on similarity theorem here: https://brainly.com/question/21247688
#SPJ1
Using this formula and other formulas, find Q1,Q2, Q3 the midquartile, and the interquartile range for the data set.51, 62, 73, 92, 97, 100, 104
Given:
The given set of data is 51, 62, 73, 92, 97, 100, 104.
The objective is to find Q1,Q2, Q3 the midquartile, and the interquartile range.
Explanation:
The given set of data is already arranged in increasing oder.
To find Q2:
The quartile Q2 represents the middle term of the set of data arranged in increasing order.
The number of terms in the set of data is N = 7.
Then, the middle term of the set of data is 92, which is Q2.
To find Q1:
The quartile 1 represents the middle term of the left side of the Q2.
The left side of Q2 contains 51, 62, 73.
Thus, the middle term of the left side of Q2 is 62, which is Q1.
To find Q3:
The quartile 3 represents the middle temr of the right side of the Q2.
The right side of Q2 contains 97, 100, 104.
Thus, the middle term of the right side of Q2 is 100, which is Q3.
To find midquartile:
The midquartile is termed as the average of highest and lowest value of the set of data.
The highest value in the given set of data is 104 and the lowest value in the given set of data is 51.
Then, the midquartile can be calculated as,
[tex]\begin{gathered} \text{Midquartile}=\frac{104+51}{2} \\ =77.5 \end{gathered}[/tex]To find interquartile:
The
find the intercepts and graph the equation by plotting points. 13^2 + 4y = 52
ANSWER
[tex]y-intercept:(0,-\frac{117}{4})[/tex]Graph:
EXPLANATION
Given:
[tex]13^2+4y=52[/tex]Desired Results:
Intercepts and graph the equation
Solve for y
[tex][/tex]If I am in San Juan, then
I am in Puerto Rico.
State whether the following
statement is inverse, converse,
contrapositive.
If I am not in San Juan,
then I am not in Puerto
Rico.
The statement "If I am not in San Juan, then I am not in Puerto Rico." is the inverse and contrapositive statement because it is inverse of "If I am in San Juan, then I am in Puerto Rico."
What is inverse?The inverse function of a function f in mathematics is a function that reverses the operation of f. If and only if f is bijective, then the inverse of f is true. A function that "undoes" another function is called an inverse. In other words, if f(x) produces y, then y entered into the inverse of f produces x. An invertible function is one that has an inverse, and the inverse is represented by the symbol f⁻¹.
What is contrapositive?When you reverse the hypothesis and the conclusion in a statement and reject both of them, you have a contrapositive statement. When the hypothesis and the conclusion are switched in this example and both are negated, the outcome is: If it is not a triangle, then it is not a polygon.
Here,
The statement is "If I am in San Juan, then I am in Puerto Rico."
So the contrapositive and inverse will be:
"If I am not in San Juan, then I am not in Puerto Rico."
Because it is the opposite of "If I am in San Juan, then I am in Puerto Rico," the statement "If I am not in San Juan, then I am not in Puerto Rico" is the inverse and contrapositive statement.
To know more about inverse and contrapositive,
https://brainly.com/question/13715269?referrer=searchResults
#SPJ13
Timothy ran a lemonade stand for 6 days. on the first day he made $5. Each day after that he made $2 more than the previous day. How much money did Marcus make, , after the 6 days?A) $60B) $15C) $12D) $30
Step `1;
Total number of days = 6
Step 2:
First day = $5
Second day = $5 + $2 = $7
Third day = $7 + $2 = $9
Fourth day + $9 + $2 = $11
Fifth day = $11 + $2 = $13
Sixth day = $13 + $2 = $15
Step 3:
Marcus made = $5 + $7 + $9 + $11 + $13 + $15
= $60
Second method
Use the sum of nth terms of arithmetic progression.
first term a = $5
Common difference = 2
n = 6
[tex]\begin{gathered} S\text{um of the 6 terms = }\frac{n}{2}(\text{ 2a + (n-1)d)} \\ =\text{ }\frac{6}{2}\text{ ( 2}\times5\text{ + (6 -1) }\times\text{ 2)} \\ =\text{ 3( 10 + 5}\times2\text{ )} \\ =\text{ 3( 10 + 10 )} \\ =\text{ 3 }\times\text{ 20} \\ =\text{ \$60} \end{gathered}[/tex]Final answer
Marcus made = $60 Option A
Identify the range of the function shown in the graph. 10 8 4 -10-8-4-2 8 10 O A. -2< y < 2 O B. {-2, 2) O C. y is all real numbers OD. Y > 0
Answer
Option B is correct.
Range: y is all real numbers.
Explanation
The range of a function refers to the region of values where the function can exist. It refers to the values that the dependent variable [y or f(x)] can take on. It is the region around the y-axis that the graph of the function spans.
For this question, we can see that the graph spans over the entire y-axis.
Hence, the range of this function shown in the graph is all real number.
Hope this Helps!!!
All changes saved16. Suppose you invest $7500 at an annual Interest rate of 4.2% compounded continuously. How much will you have in the account after 2 years? Round the solution to the nearest dollar.$8158$17,372$17,373$8157
We have to use the continuous compound interest formula
[tex]A=P\cdot e^{rt}[/tex]Where P = 7500, r = 0.042, t = 2. Let's replace and solve
[tex]\begin{gathered} A=7500\cdot e^{0.042\cdot2} \\ A\approx8,157 \end{gathered}[/tex]Hence, the answer is $8,157.The table gives a set of outcomes and their probabilities. Let A be the event the outcome is divisible by 3". Find P(A). 12 Outcome Probability Tim elaps 1 0.14 PAUS 2 0.02 3 0.19 Smart out of 4 0.01 5 0.04 7 6 0.17 7 0.15 8 0.28
Here, we want to get the probability that a selected outcome is divisible by 3
What we have to do here is ti select numbers that are multiples of 3 and add their probabilities
From the given table, the outcomes that are multiples of 3 are;
3 and 6 only
So, we proceed to add the probabilities of these outcomes
Mathematically, we have this as;
[tex]P(A)\text{ = 0.19 + 0.17 = 0.36}[/tex]The graph of f(a) = > has been transformed to create the graph of g(s) =
EXPLANATION
The graph of the parent function: f(x) = 1/x has the following form:
Translating the function two units to the left, give us the Image function:
This function is obtained by adding two units to the denominator.
In conclusion, the solution is -2
A function can have miltiple x intercepts A function can have multiple y intercepts To find the y intercept you must find the zeros The notation of the Zeros of the function is f(0)
The statements which are true regarding a function among the given answer choices are;
A function can have multiple x-intercepts.The notation of the zeroes of the function is; f(0).Which statements among the answer choices are true for functions?It follows from the complete task content that the statements which are true be identified from the given answer choices.
From the definition of a function; A function is a relation which assigns to every input value one single output value. Hence, it follows that no single input value has more than one output value assigned to it.
It therefore follows from the definition above that; a function can have multiple x-intercepts, but can only have one y-intercept.
Also, the zeroes of the function are represented by the function instance; f(0) at which point the input, x = 0.
Remarks;
The complete task content is such that; The statements which are correct about functions are to.be identified.
Read more on functions;
https://brainly.com/question/22340031
#SPJ1
Which choice is equivalent to the quotient shown here for acceptablevalues of x?25(x - 1) = 5(x - 1)?A.5(x - 1)B. 125(x - 1)C. V25(x - 1) -5(x - 1)?D. V5(x - 1)SUBMIT
Given the expression:
[tex]\sqrt[]{28(x-1)}\div\sqrt[]{8x^2}[/tex][tex]\frac{\sqrt[]{28(x-1)}}{\sqrt[]{8x^2}}[/tex]Let's determine the inequality that represents all the values of x.
Here, we are to find the domain.
Let's solve for x.
Set the radicand in the numerator and denominator to be greater or equal to zero.
We have:
[tex]\frac{28(x-1)\ge0}{8x^2\ge0}[/tex]For the numerator, we have:
[tex]\begin{gathered} 28(x-1)\ge0 \\ \text{Divide both sides by 28:} \\ \frac{28(x-1)}{28}\ge\frac{0}{28} \\ \\ x-1\ge0 \\ \text{Add 1 to both sides:} \\ x-1+1\ge0+1 \\ x\ge1 \end{gathered}[/tex]For the denominator, we have:
[tex]\begin{gathered} 8x\ge0 \\ x\ge\frac{0}{8} \\ x\ge0 \end{gathered}[/tex]Therefore, the possible x-values for which the quotient is defined is all positive integers greater or equal to 1.
Thus, we have:
[tex]x\ge1[/tex]ANSWER:
[tex]C.x\ge1[/tex]A cake is cut into 12 equal slices. After 3 days Jake has eaten 5 slices. What is his weekly rate of eating the cake?
5
36
35
36
cakes/week
cakes/week
1 cakes/week
35
01 cakes/week
The cake is divided into 12 equal slices. Jake had eaten 5 slices after 3 days. The weekly cake consumption rate is 11.6
What is algebraic expression?An algebraic expression is one that is composed of integer constants, variables, and algebraic operations. 3x2 2xy + c, for example, is an algebraic expression. Algebraic expressions have at least one variable and one operation (addition, subtraction, multiplication, division). 2(x + 8y) is an algebraic expression, for example. An algebraic expression is one that contains constants, variables, and algebraic operations. 3x2 2xy + d, for example, is an algebraic expression. Thus, an algebraic expression is composed of three types of fundamental elements: Coefficient (i.e. numbers) (i.e. numbers)Therefore,
The weekly cake consumption rate is 11.6
we have 7 days.
7days-3days =4
in 3 days he has eaten 5 slices
again 4-3 days=1
so in 6 days, he has eaten 10 slices
we have 1 day left.so if he eats 5 slices in 3 days, how many does he eat slices in 1 day?
5/3=1.6
10+1.6= 11.6
To learn more about algebraic expression, refer to:
https://brainly.com/question/4344214
#SPJ13
Help me due is tomorrow
Step-by-step explanation:
5.3g+9=2.3g+15
5.3g-2.3g=15-9
3g=6
3g/3=6/3
g=2
B,5.3(2)+9=2.3(2)+15
10.6+9=4.6+15
19.6=19.6
g = 2
Step-by-step explanation:5.3g + 9 = 2.3g + 15
Subtract 9 from both sides.
5.3g + 9 - 9 = 2.3g + 15 - 9
5.3g = 2.3g + 6
Subtract 2.3g from both sides
5.3g - 2.3g = 2.3g - 2.3g + 6
3g = 6
Divide both sides by 3
g = 2
To check if the value of g is correct, substitute the value of g in the equation above and remember that the both sides should be equal because of the equal sign (=) in the equation.
5.3g + 9 = 2.3g + 15
5.3(2) + 9 = 2.3(2) + 15
10.6 + 9 = 4.6 + 15
19.6 = 19.6
If sin A = 3/5 and cos B = 20/29 and angles A and B are in Quadrant 1, find the valueof tan(A + B).
Our approach is to use SOHCAHTOA to derive values for sine and cosines of both A and B.
[tex]\begin{gathered} \sin A=\frac{3}{5},\text{ cosA=}\frac{\sqrt[]{5^2-3^2}}{5}=\frac{4}{5} \\ \cos B=\frac{20}{29},\text{ sinB=}\frac{\sqrt[]{29^2-20^2}}{29}=\frac{21}{29} \end{gathered}[/tex][tex]\begin{gathered} \tan (A+B)=\frac{\tan A+\tan B}{1-\text{tanAtanB}}\text{ WHERE} \\ \tan A=\frac{\sin A}{\cos A},\tan B=\frac{\sin B}{\cos B} \end{gathered}[/tex][tex]\begin{gathered} \tan (A+B)=\frac{\frac{\frac{3}{5}}{\frac{4}{5}}+\frac{\frac{21}{29}}{\frac{20}{29}}}{1-\frac{\frac{3}{5}}{\frac{4}{5}}\times\frac{\frac{21}{29}}{\frac{20}{29}}}=\frac{\frac{3}{4}+\frac{21}{20}}{1-\frac{3}{4}\times\frac{21}{20}}=\frac{\frac{9}{5}}{1-\frac{63}{80}}=\frac{\frac{9}{5}}{\frac{17}{80}} \\ \tan (A+B)=8.47 \end{gathered}[/tex]tan (A+B) = 8.47
Fine all the missing side lengths and angle measured of each triangle.
Answer:
[tex]\begin{gathered} AT=8\sqrt[]{3} \\ AC=8 \\ mStep-by-step explanation:To find the missing lengths of the triangle, use trigonometric ratios for right triangles, which are represented by the following equations:
[tex]\begin{gathered} \sin (\text{angle)=}\frac{\text{ opposite}}{\text{ hypotenuse}}_{} \\ \cos (\text{angle)}=\frac{\text{adjacent}}{\text{hypotenuse}} \\ \tan (\text{angle)}=\frac{\text{ opposite}}{\text{ adjacent}} \end{gathered}[/tex]Then, find the opposite and adjacent side given the 60 degrees angle:
[tex]\begin{gathered} \sin (60)=\frac{AT}{16} \\ AT=16\cdot\sin (60) \\ AT=8\sqrt[]{3} \\ \\ \cos (60)=\frac{AC}{16} \\ AC=16\cdot\cos (60) \\ AC=8 \end{gathered}[/tex]Now, since the intern angles of a triangle must add up to 180 degrees, given two of the angles find the missing angle:
[tex]\begin{gathered} mDetermine a third pair of congruent parts to establish congruence between the triangles. Give the congruence postulate involved
In this problem, we have that
mYO ≅ XO
The third pair of congruent parts is
m by vertical angles
therefore
triangle YOT ≅ triangle XOB ----> by ASA congruence postulate
Find the interval in the line below. Use correct symbols to indicate in interval notation. If number is no an integer then round to the nearest hundredth.
we can see the interval is between -2 and 1. but the -2 isn't included (you can notice by the white circle) and the 1 is included, so in interval notation you get:
(-2,1]
Through (1,-2) parallel to y=-2x+5
Answer:
Step-by-step explanation:The line parallel to y = -2x + 5 that passes through the point(1,1)
Has the same slope, m but a different y intercept (0,b)
So lets start by using the given point (1, 1) and the slope intercept form of the line to calculate b
y = mx + b
m = -2
1 = -2(1) + b
1 = -2 + b
Add 2 to both sides of the equation to solve for b
1 + 2 = b
3 = b
The line is
y = -2x + 3
See photo for problem
a. the amount of liquid in the tank: 5580 liters
b. The amount of liquid should be added to fill the tank 100% capacity : 450 liters
We have been given a right circular conical tank.
h = 4 m and r = 1.20 m
We know that the formula for the volume of cone is,
V = πr²h/3
The volume of the tank would be,
V = (π × r² × h)/3
V = (π × 1.20² × 4)/3
V = 18.09/3
V = 6.03 m³
Let h1 be the height of liquid level in the tank and V1 be the volume of the liquid in the tank.
h1 = 3.70 m
V1 = (π × r² × h1)/3
V1 = (π × 1.20² × 3.70)/3
V1 = 16.74 / 3
V1 = 5.58 m³
V1 = 5580 liters
The amount of liquid need to added to fill the tank 100% of capacity.
V2 = V - V1
V2 = 6.03 m³ - 5.58 m³
V2 = 0.45 m³
V2 = 450 liters
Therefore, a. the amount of liquid in the tank: 5580 liters
b. The amount of liquid should be added to fill the tank 100% capacity : 450 liters
Learn more about the volume of cone here:
https://brainly.com/question/1984638
#SPJ1
What is the driving distance from the police station to an animal shelter
The coordinates of the Police station is (0, -4)
The coordinates of Animal shelter is (6,- 2)
The distance between the Police station and the Animal shelter is given by the formoula;
[tex]\begin{gathered} \text{Distance}=\sqrt[]{(x_2-x_1)^2+(y}_2_{}-y_1)^2_{} \\ \text{Distance}=\sqrt[]{(6-0)^2+(-2--4)^2}=\text{ }\sqrt[]{6^2+2^2} \end{gathered}[/tex][tex]\text{Distance}=\sqrt[]{36+4}\text{ = }\sqrt[]{40}=\text{ 6.325}\approx6.33[/tex]please help me ASAP!!!
substitute x = 5 in the above function
[tex]f(5)=\sqrt[]{2(5)^2-3(5)+1}[/tex][tex]=\sqrt[]{2(25)-15+1}[/tex][tex]=\sqrt[]{50-15+1}[/tex][tex]=\sqrt[]{36}=\text{ 6}[/tex]f(5) = 6
Find the 1st term, last term and the sum for the finite arithmetic series.
Answer:
Given that,
[tex]\sum ^{30}_{n\mathop=2}(3n-1)[/tex]Simplifying we get,
[tex]\sum ^{30}_{n\mathop{=}2}(3n-1)=\sum ^{30}_{n\mathop{=}2}3n+\sum ^{30}_{n\mathop{=}2}1[/tex][tex]=3\sum ^{30}_{n\mathop{=}2}n+\sum ^{30}_{n\mathop{=}2}1[/tex]we have that,
[tex]\sum ^n_{n\mathop=1}1=n[/tex]If n is from 2 to n we get,
[tex]\sum ^n_{n\mathop{=}2}1=n-1[/tex]Also,
[tex]\sum ^k_{n\mathop=1}n=\frac{k(k+1)}{2}[/tex]If n is from 2 to n we get,
[tex]\sum ^k_{n\mathop=2}n=\frac{k(k+1)}{2}-1[/tex]Using this and substituting in the required expression we get,
[tex]=3\lbrack\frac{30\times31}{2}-1\rbrack+30-1[/tex][tex]=3(464)+29[/tex][tex]=1421[/tex]Answer is: 1421
In gym class, a student can do 40 sit-ups in 60 seconds and 100 sit-ups in 150 seconds.
Graph the proportional relationship.
graph with x axis labeled time seconds and y axis labeled sit ups, with a line from 0 comma 0 going through 90 comma 60
graph with x axis labeled time seconds and y axis labeled sit ups, with a line from 0 comma 0 going through 60 comma 30
graph with x axis labeled time seconds and y axis labeled sit ups, with a line from 0 comma 0 going through 60 comma 50
graph with x axis labeled time seconds and y axis labeled sit ups, with a line from 0 comma 0 going through 90 comma 30
Question 6 (Essay Worth 4 points)
By using the linear equation y=3x we draw the graph for proportional relationship.
What is Graph?Graph is a mathematical representation of a network and it describes the relationship between lines and points.
A proportional relationship graph between two variables is a relationship where the ratio between the two variables is always the same
the graph of any proportional relationship is characterized by a straight line with data points passing through the origin (0, 0).
By the definition of proportional relationship of graph, we can reduce relationship between the values on the x-coordinate and y-coordinate of the given graph
As they are proportional and represented by euation
y = 3x
Where, x represent the time and y represent the number of sit-ups.
Hence by using the linear equation y=3x we draw the graph for proportional relationship.
To learn more on Graphs click:
https://brainly.com/question/17267403
#SPJ1
What is the equation of the line that passes through the origin and is perpendicular to the line 4x+3y=6
The Equation of a Line
The slope-intercept form of a line can be written as:
y = mx + b
Where m is the slope of the graph of the line and b is the y-intercept.
In the specific case where the line passes through the origin (0,0), we can find the value of b by substituting x=0 and y=0:
0 = m(0) + b
Solving for b:
b = 0.
Thus, the equation of the line reduces to:
y = mx
We only need to find the value of the slope.
That is where we need the second data. Our line is perpendicular to the line of equation 4x + 3y = 6.
Solving for y:
[tex]y=-\frac{4}{3}x+2[/tex]The slope of the second line is -4/3.
We must recall that if two lines of slopes m1 and m2 are perpendicular, then:
[tex]m_1\cdot m_2=-1[/tex]Substituting the value of m1 and solving for m2:
[tex]\begin{gathered} -\frac{4}{3}\cdot m_2=-1 \\ m_2=\frac{3}{4} \end{gathered}[/tex]The slope of our line is 3/4 and the required equation is:
[tex]y=\frac{3}{4}x[/tex]From this last equation, we need to find the general form of the line.
Multiply both sides of the equation by 4:
4y = 3x
Subtract 3x on both sides:
4y - 3x = 0
Reorder:
-3x + 4y = 0
D is the midpoint of AC, BA ≅BC and ∠EDA ≅ ∠FDC. Prove ΔAED ≅ ΔCFD
We are asked to prove that triangles AED and CFD are congruent. To do that we will prove that we can use the ASA (Angle Side Angle) rule of congruency.
First, we are given that D is a midpoint of segment AC, therefore:
[tex]\bar{AD}=\bar{AC}[/tex]Also, we are given that:
[tex]\bar{BA}=\bar{BC}[/tex]This means that triangle ABC is an isosceles triangle and therefore, its base angles are equal. This means that:
[tex]\angle BAC=\angle BCA[/tex]And, since we are given that angles EDA and FDC are equal, then by ASA we can conclude that:
[tex]\Delta AED\cong\Delta CFD[/tex]l show how the distributive property can make the arithmetic simpler in the following problems5(108)
Firstly Example of Distributive property can be shown below.
GIiven: 6(9 - 4)
6 x 9 - 6 x 4
54 - 24 = 30
a) 3(50.15)
3(50 + 0.15)
3x50 + 3 x0.15
150 + 0.45 = 150.45
(b) 5(108)
5(100 + 8)
5x100 + 5x8
500 + 40 = 540
9. A researcher gathered data on hours of video games played by school-aged children and young adults. She collected the following data:601241215171711409914110131015163915121698131016651717129(a) Complete the frequency distribution for the data.HoursFrequencyRelative Frequency0-23-56-89-1112-1415-17(b) Which of the following is the correct histogram for this data?246810Hours0369121518Frequency[Graphs generated by this script: setBorder(54,40,20,15); initPicture(0,18,0,10);axes(34,2,1,null,2); fill="blue"; textabs([165,0],"Hours","above");line([0,-0.2],[0,0.2]); text([0,0],"0","below");line([3,-0.2],[3,0.2]); text([3,0],"3","below");line([6,-0.2],[6,0.2]); text([6,0],"6","below");line([9,-0.2],[9,0.2]); text([9,0],"9","below");line([12,-0.2],[12,0.2]); text([12,0],"12","below");line([15,-0.2],[15,0.2]); text([15,0],"15","below");line([18,-0.2],[18,0.2]); text([18,0],"18","below");textabs([0,115],"Frequency","right",90);rect([0,0],[3,6]);rect([3,0],[6,4]);rect([6,0],[9,5]);rect([9,0],[12,7]);rect([12,0],[15,6]);rect([15,0],[18,10]);]246810121416Hours061218Frequency[Graphs generated by this script: setBorder(54,40,20,15); initPicture(0,18,0,16);axes(34,2,1,null,2); fill="blue"; textabs([165,0],"Hours","above");line([0,-0.32],[0,0.32]); text([0,0],"0","below");line([6,-0.32],[6,0.32]); text([6,0],"6","below");line([12,-0.32],[12,0.32]); text([12,0],"12","below");line([18,-0.32],[18,0.32]); text([18,0],"18","below");textabs([0,115],"Frequency","right",90);rect([0,0],[6,10]);rect([6,0],[12,12]);rect([12,0],[18,16]);]2468101214Hours061218Frequency[Graphs generated by this script: setBorder(54,40,20,15); initPicture(0,18,0,14);axes(34,2,1,null,2); fill="blue"; textabs([165,0],"Hours","above");line([0,-0.28],[0,0.28]); text([0,0],"0","below");line([6,-0.28],[6,0.28]); text([6,0],"6","below");line([12,-0.28],[12,0.28]); text([12,0],"12","below");line([18,-0.28],[18,0.28]); text([18,0],"18","below");textabs([0,115],"Frequency","right",90);rect([0,0],[6,12]);rect([6,0],[12,14]);rect([12,0],[18,12]);]2468Hours0369121518
Remember that the frequency refers to the number of times a data shows up. In this case, the frequency is the number of data that falls into each interval.la
To find the relative frequency is calculated by dividing each frequency by 38 (the total number of data).
[tex]\begin{gathered} \frac{6}{38}=0.1579 \\ \frac{4}{38}=0.1053 \\ \frac{4}{38}=0.1053 \\ \frac{8}{38}=0.2105 \\ \frac{7}{38}=0.1842 \\ \frac{9}{38}=0.2368 \end{gathered}[/tex]Let's include the relative frequencies in the table.
On the other hand, the correct histogram has to show the frequencies in the same order. The following histogram shows the correct frequency distribution.