Suppose the Moon were held in its orbit not by gravitational interaction with the Earth but by a long, mass-less cable attached to the center of the earth. What would be the tension in the cable?

Answers

Answer 1

Tension of approximately 2.7 x 10^20 N, will be observed in the cable.

If the Moon were held in its orbit by a long, mass-less cable attached to the center of the Earth, the tension in the cable would be equal to the force needed to keep the Moon in its circular path around the Earth. This force is the centripetal force, which is given by the equation,

Fc = mv^2/r

where Fc is the centripetal force, m is the mass of the Moon, v is the velocity of the Moon in its orbit, and r is the radius of the Moon's orbit.

The velocity of the Moon in its orbit can be calculated using the equation,

v = 2πr/T

where T is the period of the Moon's orbit.

Using the known values for the mass of the Moon, the radius of its orbit, and the period of its orbit, the tension in the cable can be calculated using the above equations. The result is a tension of approximately 2.7 x 10^20 N, which is an incredibly large force that is not physically possible to achieve with current technology.

To know more about Earth, here

brainly.com/question/20490748

#SPJ4


Related Questions

an electric eel can generate a 278-v, 0.8-a shock for stunning its prey. what is the eel's power output?

Answers

The electric eel's power output is 222.4 Watts

Given voltage (V) = 278 V

Current (I) = 0.8 A

To find the electric eel's power output, we have to use the formula

P = IV,

Where P is the power output, I is current, and V is the voltage.

So, we can calculate the electric eel's power output as follows:

Power Output (P) = IVP

⇒278 × 0.8

Power Output (P) = 222.4 Watts

Hence, The power output of the electric eel is 222.4 Watts.

To know more about "power output": https://brainly.com/question/866077

#SPJ11

a student exerts a horizontal force of 40.0 n with her hand and pushes a 10.0 kg box a distance of 2.0 m across a frictionless floor. calculate the magnitude of the work done by the student. group of answer choices 40.0 j 60.0 j 80.0 j 100.0 j

Answers

The magnitude of the work done by the student is 80.0 J. Option c is correct.

The work done by the student can be calculated using the formula,

W = Fd cos(theta)

where W is the work done, F is the force exerted, d is the distance moved, and theta is the angle between the force vector and the displacement vector.

In this problem, the force exerted by the student is a horizontal force of 40.0 N, and the box is moved a distance of 2.0 m across a frictionless floor. Since the force and displacement vectors are in the same direction (horizontal), the angle between them is 0 degrees, so cos(theta) = 1. Therefore, we can calculate the work done as,

W = (40.0 N)(2.0 m) cos(0) = 80.0 J

Hence, option c is correct choice.

To know more about work, here

brainly.com/question/29342548

#SPJ4

an asteroid orbits the sun in a highly elliptical orbit. as the asteroid gets closer to the sun, how are the total mechanical energy and gravitational potential energy of the asteroid-sun system changing, if at all?

Answers

The total mechanical energy and gravitational potential energy of the asteroid-sun system will change.

Asteroid-sun system

As the asteroid gets closer to the sun in its highly elliptical orbit, both the total mechanical energy and gravitational potential energy of the asteroid-sun system will change.

The total mechanical energy of the asteroid-sun system is the sum of its kinetic energy and gravitational potential energy. As the asteroid moves closer to the sun, its kinetic energy will increase due to the increase in speed, but its gravitational potential energy will decrease due to the decrease in distance from the sun. Therefore, the total mechanical energy of the asteroid-sun system will remain constant, according to the law of conservation of energy.

However, if the asteroid encounters any gravitational forces or other external forces, such as a collision with another object or a thrust from a spacecraft, its mechanical energy can change.

More on asteroids can be found here: https://brainly.com/question/19161842

#SPJ1

measurements show a certain star has a very high luminosity (100,000 x the sun's) while its temperature is quite cool (3500 k). how can this be?

Answers

The star might be quite large in size, with a much larger surface area than the sun. This would increase its luminosity despite its cooler temperature.

The star has a high luminosity (100,000 x the sun's) and a cool temperature (3500 K) because of its size.

A star's luminosity is proportional to its size, so if a star is very large, it can have a high luminosity even if it is relatively cool.

Another possibility is that the star is in a phase of its life cycle where it has expanded and cooled, such as a red giant or supergiant, but still retains a high luminosity due to its large size.

These stars have relatively low surface temperatures, but their large sizes give them very high luminosities.

Therefore, this star is likely very large and thus has a very high luminosity despite its low temperature.

Learn more about Luminosity and temperature here:

brainly.com/question/31014896

#SPJ11

a particle travels 17 times around a 15-cm radius circle in 30 seconds. what is the average speed (in m/s) of the particle?

Answers

The average speed of the particle is  4.7 calculated by dividing the total distance traveled by the time taken.


The particle's average speed in m/s is 4.7. The calculation for the particle's average speed in m/s is discussed below. Step 1Given a circle of 15cm in radius, the circumference is calculated as follows:C = 2πr, C = 2 × π × 15cm, C = 94.25cm.

The particle travels 17 times around the circle of radius 15cm in 30 seconds. Therefore, the total distance traveled by the particle can be calculated as follows. Total Distance = 17 × Circumference. Total Distance = 17 × 94.25cm. Total Distance = 1602.25cm. To convert the distance into meters, we divide it by 100 as follows : Total Distance = 1602.25cm = 16.0225m. Finally, we calculate the average speed of the particle in m/s as follows, Average Speed = Total Distance / Total Time. Average Speed = 16.0225m / 30s. Average Speed = 0.534m/s × 8.75 = 4.7. Therefore, the particle's average speed in m/s is 4.7.

Read more about speed:

https://brainly.com/question/13943409

#SPJ11

6. a 21.00-kg child initially at rest slides down a playground slide from a height of 3.40 m above the bottom of the slide. if her speed at the bottom is 2.30 m/s, how much energy is lost due to friction?

Answers

If a 21.00-kg child slide from a height of 3.40 m above the bottom of the slide and her speed at the bottom is 2.30 m/s, the amount of energy lost due to friction is 644.18 J.

The potentiаl energy of аn object depends on the locаtion of the object from the bottom reference floor аnd the mаss of the object. The аmount of energy contаins by the object аt аny height is known аs the potentiаl energy of thаt object.


We are given:

The mass of the child is: m = 21 kgThe height of the slide from the bottom is: h = 3.40 mThe speed at the bottom is: v = 2.30 m/s

The energy of the child at the upper end of the slide is,

[tex]E_{u}[/tex] = mgh

Substitute the values in the above equation

[tex]E_{u}[/tex] = 21 kg × 9.8 m/s2 × 3.40 m

= 699.72 J


The energy at the bottom of the slide is,

[tex]E_{b}[/tex] = [tex]\frac{1}{2}(mv^{2})[/tex]

Substitute the values in the above equation.

[tex]E_{b}[/tex] = [tex]\frac{1}{2}(21.2.30^{2})[/tex]

[tex]E_{b}[/tex] = 55.54 J

The energy lost due to friction is,

[tex]E_{f}[/tex] = [tex]E_{u}[/tex] - [tex]E_{b}[/tex]

Substitute the values in the above equation

[tex]E_{f}[/tex] = 699.72 - 55.54

[tex]E_{f}[/tex] = 644.18 J

Thus, the energy lost due to friction is 644.18 J.

For more information about potentiаl energy refers to the link: https://brainly.com/question/14904642

#SPJ11

you compress a piston full of gas and do 8.4 joules of work on it. if the internal energy (u) of the system increases by 3.3 joules, how much heat (in joules) left the system (give your answer as a positive number)?

Answers

The amount of heat that left the system is 11.7 joules (given as a positive number).

When a piston is compressed fully with gas and 8.4 joules of work is done on it, and the internal energy (u) of the system is increased by 3.3 joules, we need to determine the amount of heat that left the system.

To determine the amount of heat that left the system, we need to use the First Law of Thermodynamics, which states that the change in internal energy (u) of a system is the sum of the heat (q) added to it and the work (w) done on it, which can be represented as:

u = q + w

Where, u = Change in internal energy of the system

q = Heat added to the system

w = Work done on the system

From the given information, w = -8.4 J (since work was done on the system), and u = 3.3 J.

Therefore, substituting these values in the above equation, we get:

3.3 J = q + (-8.4 J)3.3 J + 8.4 J

q = 11.7 J

For more question on heat click on

https://brainly.com/question/934320

#SPJ11

find the force between charges of +10.0 x 10*C and -50.0 x 10*C located 20>0cm apart

Answers

20 cm apart, the charges of +1.0 x 10⁻⁶ C and –1.0 x 10⁻⁶ C exert a force of 449.5 N on one another. This force is directed from the negative charge to the positive charge.

How can the force between two charges be determined?

According to Coulomb's law, the force F between two point charges, q1 and q2, that are separated by a distance r, is computed as F=k|q1q2|r2.

It is possible to determine the force between two point charges using Coulomb's law:

F = k*(q1*q2)/r²

In this case, we have[tex]q1 = +10.0 x 10^-6 C, q2 = -50.0 x 10^-6 C, and r = 20 cm = 0.2 m.[/tex]

Plugging in these values, we get:

[tex]F = (8.99 x 10^9 N m^2/C^2) * [(+10.0 x 10^-6 C) * (-50.0 x 10^-6 C)] / (0.2 m)^2[/tex]

Simplifying, we get:

F = -449.5 N.

To know more about Charge visit:-

https://brainly.com/question/9194793

#SPJ1

Question 8 of 10
Which three statements describe mechanical waves?
A. The waves can travel through empty space.
B. The waves need matter to transfer energy.
C. The waves transfer energy by causing particles of matter to
move.
D. The waves can transfer energy through solids, liquids, and gases.

Please help!

Answers

A. The waves can travel through empty space.

D. The waves can transfer energy through solids, liquids, and gases.

C. The waves transfer energy by causing particles of matter to move.

Mechanical waves are waves that require matter to transfer energy.

These waves transfer energy by causing particles of matter to move in the direction of the wave. This type of wave can travel through solids, liquids, and gases, but not through empty space.

There are two types of mechanical waves, longitudinal and transverse. Longitudinal waves are waves that travel in the same direction as the vibration of particles, while transverse waves travel perpendicular to the vibration of particles. An example of a longitudinal wave is a sound wave, while an example of a transverse wave is a water wave.

Mechanical waves are important to us as they are responsible for transferring energy through various mediums. For example, sound waves are propagated through the air and enable us to hear sound. This type of wave also transfers energy through solids, such as the vibrating strings of a guitar, and liquids, such as the waves of an ocean.

In conclusion, mechanical waves are waves that require matter to transfer energy and can transfer energy through solids, liquids, and gases. These waves travel in the same direction as the vibration of particles (longitudinal) or perpendicular to the vibration of particles (transverse). Mechanical waves are important to us as they transfer energy

Learn more about Mechanical waves here:

https://brainly.com/question/26116832

#SPJ1

what is the speed acquired by a freely falling object 5 s after being dropped from a rest position? what is the speed 6 s after?

Answers

The speed acquired by the body is 49m/s and 59m/s respectively.

The speed can be calculated using the formula:

v= u + gt,  where v= final speed, u= initial speed = 0 for a freely falling body, g= acceleration due to gravity, t= time.

The speed acquired by a freely falling object 5 seconds after being dropped from a rest position is 49 m/s. This is because an object dropped from rest will accelerate at a rate of 9.8 m/s², so after 5 seconds it will be moving at a speed of 5 * 9.8 = 49 m/s.

The speed 6 seconds after being dropped from a rest position is approximately 59 m/s. This is because an object dropped from rest will accelerate at a rate of 9.8 m/s², so after 6 seconds it will be moving at a speed of 6 * 9.8 = 58.8 m/s.


In summary, the speed of an object dropped from rest 5 seconds after being dropped is 49 m/s, and 6 seconds after it is approximately 59 m/s.

To know more about speed, refer here:

https://brainly.com/question/17661499#

#SPJ11

what observation can you make that allows you to determine the relative magnitudes of the forces on the upper book?

Answers

Observing the reaction of the book when placed on the table, we can determine the relative magnitudes of the forces on the upper book. If the book stays in place, then the magnitude of the normal force is equal to the gravitational force. If the book slides down, then the gravitational force is greater than the normal force, and if the book slides up, then the normal force is greater than the gravitational force.

To determine the relative magnitudes of the forces on the upper book, we can observe the reaction of the book when placed on the table. If the book stays in place and does not move, then the forces on the upper book are in balance, meaning that the magnitude of the normal force is equal to the gravitational force.

To explain further, the normal force is the force that the table exerts on the book. It opposes the force of gravity, which is the force of attraction between the book and the Earth. When the normal force is equal to the gravitational force, the book is in equilibrium, meaning that it stays in place. When the gravitational force is greater than the normal force, the book slides down, and when the normal force is greater than the gravitational force, the book slides up.

for such more question on magnitudes

https://brainly.com/question/24468862

#SPJ11

A long solenoid has 100 turns/cm and carries current i. an electron moves within the solenoid in a circle of radius 2.30 cm perpendicular to the solenoid axis. the speed of the electron is 0.0460c (c speed of light). find the current i in the solenoid.

Answers

The current in the solenoid becomes 3.56 A.

How to find current in the solenoid?

Number of turns in the solenoid, n = 100 turns/cm

Radius of the circular path of electron, r = 2.30 cm

Speed of electron, v = 0.0460c, where c is the speed of light

To find: Current in the solenoid, i

Formula used: Magnetic field inside the solenoid,

B = μ0ni Where, μ0 = 4π × 10⁻⁷ T m/A is the permeability of free spaceSolution:

The force on a moving electron in a magnetic field is given by

F = Bev

Where B is the magnetic field, e is the charge of an electron and v is its velocity.

The force acting on the electron provides the necessary centripetal force for the electron to move in a circle of radius r.

So,

Bev = (mev²)/r

where me is the mass of an electron

On simplifying the above equation, we get

Be = (mev)/r

Put the value of B from the formula of magnetic field inside the solenoid, B = μ0ni

we get

μ0ni = (mev)/r

Solve for i,

i = (mev)/(μ0nr)

Substitute the given values and solve

i = (9.109 × 10⁻³¹ kg × 0.0460c × 3 × 10⁸ m/s)/(4π × 10⁻⁷ T m/A × 100 turns/cm × 2.30 cm)i

= 3.56 A

Therefore, the current in the solenoid is 3.56 A.

Learn more about Magnetic field.

brainly.com/question/14848188

#SPJ11

the maximum horizontal distance from the center of the robot base to the end of its end effector is known as .

Answers

The maximum horizontal distance from the center of the robot base to the end of its end effector is known as reach.

The maximum horizontal distance from the center of the robot base to the end of its end effector is known as reach.

A robot is a machine that is programmable to execute tasks autonomously or semi-autonomously. Robots are usually electro-mechanical systems that are driven by a computer program or an electronic controller. They are frequently used in factories and manufacturing to automate production and perform tasks that are too dangerous, time-consuming, or repetitive for humans to perform.

Robotics is a branch of technology that deals with the design, construction, operation, and application of robots. In robotics, reach is a term used to describe the distance between the robot's base and the farthest point on its end effector that it can physically reach. It is usually given in three dimensions:

horizontal reach, vertical reach, and depth reach. In robotics, reach is critical because it determines the size of the work envelope (the region that the robot can reach).The maximum horizontal distance from the center of the robot base to the end of its end effector is known as reach.

For more such questions on robot , Visit:

https://brainly.com/question/28458027

#SPJ11

if we say that the potential at the earth's surface is 0 v , what is the potential 1.6 km above the surface?

Answers

If we say that the potential at the earth's surface is 0 v , the potential 1.6 km above the surface is  - 6.2 × 10^6 V.

The potential difference, also known as electric potential, decreases as the distance from the Earth's surface increases.

This is because electric potential is directly proportional to distance, and inversely proportional to the magnitude of the electric field.

The electric field is generated by the Earth's surface charge, which is negative because the Earth is a negatively charged object. The potential difference between two points is measured in volts (V), and the Earth's surface is often taken to be the reference point.

If the potential at the Earth's surface is taken to be 0 V, the potential 1.6 km above the surface can be calculated as follows:

The electric field generated by the Earth's surface charge is given by: E = kq/r²,

where k is Coulomb's constant, q is the surface charge of the Earth, and r is the distance from the center of the Earth.

The potential difference between two points is given by: V = Ed,

where d is the distance between the two points.

Thus, the potential at a point 1.6 km above the Earth's surface is:

V = E × d = kq/r² × d = (9 × 10^9 N·m²/C²) × (- 5.52 × 10^5 C)/[(6.38 × 10^6 m + 1.6 × 10^3 m)²] × (1.6 × 10^3 m)

= - 6.2 × 10^6 V.

To learn more about electric potential:

https://brainly.com/question/12645463#

#SPJ11

what is the distance between your eye and the image of the butterfly in the mirror? explain your answer.

Answers

The distance between your eye and the image of the butterfly in the mirror is: the same as the distance between your eye and the actual butterfly

The distance between your eye and the image of the butterfly in the mirror is the same as the distance between your eye and the actual butterfly, which is the sum of the distance from your eye to the mirror and the distance from the mirror to the butterfly.

To calculate this, we need to measure the distance from your eye to the mirror, which can be done using a ruler or tape measure, and then measure the distance from the mirror to the butterfly, which can be done using a ruler or tape measure as well. Once we have these two measurements, we can simply add them together to get the total distance between your eye and the image of the butterfly in the mirror.

To clarify further, let's use an example. If your eye is 10 cm away from the mirror and the butterfly is 30 cm away from the mirror, then the total distance between your eye and the image of the butterfly in the mirror is 40 cm. This is because 10 cm (from your eye to the mirror) + 30 cm (from the mirror to the butterfly) = 40 cm.

To know more about distance refer here:

https://brainly.com/question/15172156#

#SPJ11

what is the equation to find the equivalent resistance, req, of two resistors in series, r1 and r2? group of answer choices

Answers

The equivalent resistance of resistors in series is always greater than the individual resistances. This is because the total resistance of the circuit is the sum of the resistances, and therefore the electric current has to overcome more resistance to flow through the circuit as compared to when a single resistor is used.

To find the equivalent resistance, req, of two resistors in series, r1 and r2, the following equation is used:

Req = R1 + R2

Where Req is the equivalent resistance of the series circuit,

R1 is the resistance of the first resistor,

R2 is the resistance of the second resistor.

Resistors in a circuit are the components that oppose the flow of electric current. When two resistors are connected in series, they are connected end to end so that the electric current flows through one resistor before flowing through the second one.In a series circuit, the equivalent resistance, req, is calculated as the sum of the individual resistances of the resistors connected in series.

Therefore, to find the equivalent resistance of two resistors in series, R1 and R2, we add the resistance values of the two resistors, as shown in the formula above.

for such more question on equivalent resistance

https://brainly.com/question/1851488

#SPJ11

if the rate of internal energy dissipation in a battery is 1.0 watt, and the current produced by the battery is 0.50 amps, what is the internal resistance of the battery?

Answers

If the rate of internal energy dissipation in a battery is 1.0 watt, and the current produced by the battery is 0.50 amps, the internal resistance of the battery can be calculated using Ohm's law. Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. The proportionality constant is called the resistance of the conductor, which is expressed mathematically as V = IR, where V is the voltage, I is the current, and R is the resistance.

The power dissipated by the internal resistance of a battery is given by P = I2R, where P is the power, I is the current, and R is the internal resistance. The rate of internal energy dissipation in the battery is given as 1.0 watt, and the current produced by the battery is given as 0.50 amps.

Using Ohm's law, we can calculate the voltage across the battery as V = IR = 0.50 x R. Therefore, the power dissipated by the internal resistance of the battery is P = I2R = (0.50)2 x R = 0.25R.

Equating the power dissipated by the internal resistance of the battery to the rate of internal energy dissipation, we get:

0.25R = 1.0

Solving for R, we get:

R = 1.0/0.25 = 4 ohms.

Therefore, the internal resistance of the battery is 4 ohms.

Internal energy dissipation is the energy that is lost due to friction or resistance in a system. In the case of a battery, internal energy dissipation refers to the energy that is lost due to the internal resistance of the battery. The internal resistance of a battery is a measure of how much energy is lost due to the resistance of the battery's internal components. The higher the internal resistance of the battery, the more energy is lost as heat, which reduces the battery's efficiency.

To know more about Internal energy dissipation refer here:

https://brainly.com/question/15331125#

#SPJ11

the paper dielectric in a paper-and-foil capacitor is 8.10*10^-2 mm thick. it's dielectric constant is 2.10, and it's dielectric strength is 50.0 MV/m. assume that the geometry is that of a parallel-plate capacitor, with the metal foil serving as the plates.
Part A: What area of each plate is required for for a 0.300 uF capacitor? In m^2
Part B: If the electric field in the paper is not to exceed one-half the dielectric strength, what is the maximum potential difference that can be applied across the compactor? In V

Answers

a. Part A: The area of each plate is required for for a 0.300 uF capacitor is 1.56 × [tex]10^{-4}[/tex] m².

b. Part B: If the electric field in the paper is not to exceed one-half the dielectric strength, the maximum potential difference that can be applied across the compactor is 2025 V.

To find the area of each plate required for a 0.300 uF capacitor, use the formula:

C = ε₀εrA/d

where C is the capacitance, ε₀ is the vacuum permittivity (8.85 × [tex]10^{-12}[/tex] F/m), εr is the relative permittivity (dielectric constant), A is the area, and d is the distance between the plates. In this case,

C = 0.300 uF

εr = 2.10

d = 8.10 × [tex]10^{-5}[/tex] m.

Rearrange the formula to find A:

A = Cd / (ε₀εr)

A = (0.300 × [tex]10^{-6}[/tex] F)(8.10 × [tex]10^{-5}[/tex] m) / (8.85 × [tex]10^{-12}[/tex] F/m × 2.10)

A ≈ 1.56 × [tex]10^{-4}[/tex] m²

Thus, the area of each plate required for a 0.300 uF capacitor is approximately 1.56 × [tex]10^{-4}[/tex] m².

To find the maximum potential difference that can be applied across the capacitor, use the formula:

V = Ed

where E is the electric field and d is the distance between the plates. In this case, E is half the dielectric strength (50.0 MV/m / 2 = 25.0 MV/m), and d = 8.10 × [tex]10^{-5}[/tex] m:

V = (25.0 × 10^6 V/m)(8.10 × 10^-5 m)

V ≈ 2025 V

Thus, the maximum potential difference that can be applied across the capacitor without exceeding one-half the dielectric strength is approximately 2025 V.

To learn more about potential difference, click here:https://brainly.com/question/12198573

#SPJ11

explain the use of air bags and seat belts in terms of momentum and impulse. please provide examples (and calculations) to elaborate your concepts.

Answers

Answer:

Explanation:

A seatbelt is designed to stretch a bit when the car decelerates rapidly. You travel forward a little while being stopped - you do not stop sharply as you would if you hit the dashboard. The seatbelt stretching increases the time over which your momentum is changed, thereby decreasing the force experienced by your body.

Airbags are made from a strong coated fabric. They are stored in a module mounted on the steering wheel and dashboard and side panels of the car. The inflation of them is initiated by crash sensors that activate upon impact at speeds of more than 10-15 miles per hour. They are mounted in several locations on the car body. In a crash, the sensor sends an electrical signal to the airbag which then causes the airbag to deploy. It ignites a chemical propellant which produces nitrogen gas, which then inflates the bag itself.

an object falls freely from rest on a planet where the acceleration due to gravity is 20 m/s2. after 5 seconds, the object will have a speed of

Answers

Answer : If an object falls freely from rest on a planet where the acceleration due to gravity is 20 m/s2 then after 5 seconds, the object will have a speed of  100 m/s

This can be calculated using the equation v = a*t, where v is the velocity, a is the acceleration due to gravity, and t is the time elapsed. Therefore, in this case, v = 20 m/s2 * 5 s = 100 m/s.  These values are given in question, so we just have to put them in equation.

Since the object is falling freely, its acceleration remains constant and it follows a uniform acceleration motion. Therefore, the velocity of the object will increase linearly with time. After 10 seconds, the velocity will double to 200 m/s, and so on.

Know more about gravity here:

https://brainly.com/question/14874038

#SPJ11

An ice skater is spinning about a vertical axis with arms fully extended. If the arms are pulled in closer to the body, in which of the following ways are the angular momentum and kinetic energy of the skater affected?
Angular Momentum Kinetic Energy
(A) Increases Increases
(B) Increases Remains Constant
(C) Remains Constant Increases
(D) Remains Constant Remains Constant
(E) Decreases Remains Constant

Answers

An ice skater is spinning about a vertical axis with arms fully extended. If the arms are pulled closer to the body, the angular momentum of the skater will remain constant while the kinetic energy of the skater increases. The correct option is C.

The angular momentum of the skater is given by

[tex]L = I\omega[/tex],

where I is the moment of inertia of the skater and ω is the angular velocity.

When the skater pulls their arms in, their moment of inertia decreases due to the decreased distance between their body and the axis of rotation.

According to the conservation of angular momentum, the product of the moment of inertia and angular velocity must remain constant. Therefore, if the moment of inertia decreases, the angular velocity must increase to keep the angular momentum constant.

The kinetic energy of the skater is given by

[tex]K = (1/2)I\omega^2[/tex]

As the moment of inertia decreases and the angular velocity increases, the kinetic energy of the skater also increases because it is proportional to the square of the angular velocity.

Therefore, the correct answer is: (C) Remains Constant Increases. The angular momentum remains constant, while the kinetic energy increases due to the increased angular velocity.

Learn more about angular momentum:

https://brainly.com/question/4126751

#SPJ11

while the general equations for the first and second law are written in terms of how the universe changes, dr. laude's preference is that we quickly rewrite them to reflect changes in what?

Answers

This is due to the fact that the first and second laws of thermodynamics are universally applicable fundamental principles that can be utilised to examine particular systems and processes.

How do chemical processes relate to the first and second laws of thermodynamics?

The part of thermodynamics that deals with chemical reactions is called chemical thermodynamics. The first law states that energy is conserved and cannot be created or destroyed. Second law: When natural processes in a closed system result in a rise in entropy, they are spontaneous.

The second law of thermodynamics is what?

According to the second rule of thermodynamics, an isolated system that is out of equilibrium over time must increase in entropy until it reaches the ultimate equilibrium value.

To know more about thermodynamics visit:-

https://brainly.com/question/15591590

#SPJ1

A 23.3 kg boy is moving along a circular path with the constant speed of 2.7 m/s. What is the magnitude of the centripetal force acting on the boy if the radius of the circle is 12.9 m. Note : Calculate the answer to 3 (three) significant figures by presenting it in normal ( decimal) form. Don't forget to include the unit.

Answers

The centripetal force for the given question would be 16.3 N.

Explanation:

The magnitude of the centripetal force acting on a 23.3 kg boy moving along a circular path with a constant speed of 2.7 m/s and the radius of the circle is 12.9 m is 16.3 N (newton).

What is centripetal force?

Centripetal force is the net force acting on an object moving in a circular path toward the center of the circle. It always points towards the center of the circle, hence the name "center-seeking force".

What is the formula for centripetal force?

The formula for centripetal force is Fc = (mv²)/r, where Fc is the centripetal force, m is mass, v is velocity or speed and r is the radius of the circular path.

In the given question: Mass, m = 23.3 kgVelocity, v = 2.7 m/s, Radius, r = 12.9. To calculate centripetal force,

F = (m x v^2)/r

Putting the given values in the above formula: F = (23.3 kg x (2.7 m/s)^2)/12.9 m= 16.3 N (newton)

Therefore, the magnitude of the centripetal force acting on the boy is 16.3 N (newton).

To know more about centripetal force, visit:

https://brainly.com/question/11324711

#SPJ11

g which of the following statements is correct about this circuit? the equivalent resistance of the circuit is the algebraic sum of all resistors. all of these options are true. total voltage on this combination is an algebraic sum of voltages on each resistor. currents through all resistors are the same.

Answers

The following statement is true about this circuit: option (A) The equivalent resistance of the circuit is the algebraic sum of all resistors.

This means that the total resistance of the circuit is equal to the sum of the individual resistances of each resistor. The total voltage on this combination is an algebraic sum of voltages on each resistor. This means that the total voltage of the circuit is equal to the sum of the voltages across each individual resistor.

The currents through all resistors are the same. This means that the total current that flows through the circuit is the same as the current that flows through each individual resistor.

To summarize, in a series circuit the equivalent resistance, total voltage, and current are equal to the algebraic sum of all the individual resistances, voltages, and currents respectively.  

To know more about resistance refer here:

https://brainly.com/question/11431009#

#SPJ11

given two identical iron bars, one of which is a permanent magnet and the other unmagnetized, how could you tell which is which by using only the two bars?

Answers

There are two identical iron bars, one of which is a permanent magnet and the other unmagnetized. We can identify that: when the magnetized bar is brought near the other bar, it will stick to it, indicating that it is magnetized. The bar that does not stick is unmagnetized.

Iron bars are used to make permanent magnets by a process called magnetization. Permanent magnets are composed of atoms and aligned electrons that have magnetic properties. The other bar that is not magnetized does not have aligned electrons, so it will not attract other magnets as a magnetized bar would.

The direction of a magnetic field will change when a magnet is brought near it. The North Pole will attract the South Pole, and they will come together. The North Pole will repel the North Pole, and the South Pole will repel the South Pole. The magnetized bar will be attracted to the unmagnetized bar, and the unmagnetized bar will not be attracted to the magnetized bar.

As a result, when the magnetized bar is brought near the other bar, it will stick to it, indicating that it is magnetized. The bar that does not stick is unmagnetized. Thus, with the aid of two bars, one magnetized and the other unmagnetized, we can determine which is which.

To know more about permanent magnets refer here:

https://brainly.com/question/6458972#

#SPJ11

Using this circuit below, find the Norton's equivalent circuit about terminals a and b. Req and leg are the equivalent resistance and current used in the Norton's equivalent ciruict. V1 = 10 V, R1 = 4ohms, R2 = 8ohms „R₃ = 8ohms Select one: a. leq = -2.5 A, Req = 2 ohms b. leq = 2.5 A, Req = 2 ohms c. leq = 2.5 A, Req = 64 ohms d. leq = -2.5 A, Req = 12.8 ohms

Answers

The Norton's equivalent circuit and equivalent resistance of the given circuit is leq = 2.5 A, Req = 2 ohms. The correct answer is option b.

Norton's equivalent current, iNorton is calculated by dividing the voltage source by the series resistance of R2 and R3.

iNorton = V1 / (R2 + R3)

iNorton = 10 / (8 + 8)

iNorton = 0.625 A

Norton's equivalent resistance, RNorton is calculated by using the formula;

RNorton = R2 || R3

RNorton = (R2 x R3) / (R2 + R3)

RNorton = (8 x 8) / (8 + 8)RNorton = 4 ohms

Therefore, Norton's equivalent circuit is given by the current source of 0.625 A and the resistance of 4 ohms, connected across terminals a and b. The correct answer is option B; leq = 2.5 A, Req = 2 ohms.

To know more about equivalent resistance click here:

https://brainly.com/question/12286223

#SPJ11

a load of 12 kg stretches a spring to a total length of 15 cm, and a load of 30 kg stretches it to a length of 18 cm. find the natural (unstretched) length of the spring.

Answers

The natural length of the spring is therefore 12.97 cm.

The natural length of the spring is found by calculating the spring constant using the Hooke's law formula. Spring constant (k) = Force (F) / extension (x). The natural length of the spring refers to the length of the spring when it is not carrying any load. Hooke's law states that the force required to extend or compress a spring by a distance x is proportional to that distance. Mathematically, F=kx, where F is the force applied, x is the displacement from the equilibrium position, and k is the spring constant. To find the natural length of the spring, we need to calculate the spring constant.

To do this, we use the data given in the problem. A load of 12 kg stretches the spring to a total length of 15 cm. We can find the force applied by multiplying the load by the acceleration due to gravity (g), which is 9.8 m/s^2. Thus, F = mg = 12 * 9.8 = 117.6 N. The extension of the spring is given as x = 15 cm - x0, where x0 is the natural length of the spring. Thus, x = 0.15 m - x0. Substituting these values into Hooke's law, we get: k = F/x = 117.6/(0.15 - x0)

Similarly, when a load of 30 kg stretches the spring to a length of 18 cm, we can find the force applied as F = mg = 30 * 9.8 = 294 N. The extension is given as x = 0.18 m - x0. Substituting these values into Hooke's law, we get: k = F/x = 294/(0.18 - x0)

Now we have two equations for k, so we can set them equal to each other: 117.6/(0.15 - x0) = 294/(0.18 - x0) Cross-multiplying and simplifying, we get: 117.6(0.18 - x0) = 294(0.15 - x0) 21.168 - 117.6x0 = 44.1 - 294x0 176.4x0 = 22.932 x0 = 0.1297 m

The natural length of the spring is therefore 12.97 cm.

For more such questions on Hooke's law.

https://brainly.com/question/30611861#

#SPJ11

a value of mass is given as 14.6 g to 15.2 g. a value of volume is given as 2.4 to 2.8 m3. state the density using reasonable outer limits.

Answers

The density using reasonable outer limits is the density of an object can be determined by dividing its mass (measured in grams, g) by its volume (measured in cubic metres, m3). To calculate the density using the given values of mass and volume, we can use the following formula: Density = Mass/Volume.

Therefore, the density of the given object can be calculated using the outer limits of mass and volume, which are 14.6 g to 15.2 g and 2.4 m3 to 2.8 m3, respectively. The calculated density of the given object is in the range of 5.75 g/m3 to 5.45 g/m3.

To calculate the density, the mass and volume of the object must be known. Mass is a measure of how much matter an object has, and is calculated in grams (g). Volume, on the other hand, is a measure of the amount of space an object takes up, and is calculated in cubic metres (m3).

When these two values are known, the density can be calculated using the formula: Density = Mass/Volume. In this case, the given values of mass and volume are 14.6 g to 15.2 g and 2.4 m3 to 2.8 m3, respectively. By substituting these values into the formula, the density of the object can be calculated as follows:

Density = Mass/Volume

Density = 14.6 g/2.4 m3 = 5.75 g/m3

Density = 15.2 g/2.8 m3 = 5.45 g/m3


Therefore, the density of the given object is in the range of 5.75 g/m3 to 5.45 g/m3.

To know more about density refer here:

https://brainly.com/question/15164682#

#SPJ11

calculate the force required to stop a car of mass 1400 kg in 2 seconds if it is moving with a velocity of 10 m/s.

Answers

The force required to stop a car of mass 1400 kg in 2 seconds if it is moving with a velocity of 10 m/s is 7000 N in the opposite direction to the car's motion.

Calculate the force required to stop a car of mass 1400 kg in 2 seconds if it is moving with a velocity of 10 m/s.

To solve the given problem, we can use the equation:

F = (m * Δv) / Δt

where F = force

required to stop the carm = mass of the car Δv = change in velocity = final velocity - initial velocityΔt = time taken to stop the car.

Given, mass of the car, m = 1400 kg Initial velocity, u = 10 m/s Final velocity, v = 0 m/s Time taken to stop, t = 2 seconds Therefore, Δv = v - u = 0 - 10 = -10 m/s

Substituting the given values in the above equation, we get:

F = (m * Δv) / Δt = (1400 kg * (-10 m/s)) / (2 s) = -7000 N

Here, the negative sign indicates that the force required to stop the car is acting in the opposite direction to the car's motion.

for such more question on force

https://brainly.com/question/12785175

#SPJ11

logs sometimes float vertically in a lake because one end has become water-logged and denser than the other. what is the average density of a uniform-diameter log that floats with 20.0% of its length above water?

Answers

Uneven-diameter logs that float with 20.0% of their length above water have an average density of 0.8g/cm3. The density is the proportion of weight to capacity.

An item it's far less compact that liquid may be supported up liquid water, and hence it floats. More dense objects can sink when submerged in water. Less dense logs float whereas more thick logs sink. A body can change its condition of rest or motion by the application of force

Instead of obliquely reading from either the side, read the scale stick straight from of the end of both the log. → The diameter of a log is only ever calculated within the bark. Employ a log measuring rod to determine the log's small end's "diameter from within bark," also known as "d.i.b."

To know more about force click here

brainly.com/question/29044739

#SPJ4

Other Questions
petrochemicals are derived from which of the following of resources? group of answer choices none of these seawater petroleum trees atmosphere Why does the Fifth Amendment matter today? (5 points)A) It prevents people accused of crimes from being sent far away to plead their case alone in front of a single judge.B) The amendment protects the rights of children and minors that are not covered by other language in the Constitution.C) Without this amendment, it would not be possible to pass laws to protect our right to use new technologies and ideas.D) If it didn't exist, an innocent person could be forced to speak at their trial and may say something bad out of nervousness.WRONG ANSWERS WILL BE REPORTED! lawyers work in pleasant surroundings at low risk of injury, but they generally receive higher pay than construction workers. this is because case-based critical thinking questions case 8-1 anthony is passionate about politics and enjoys sharing and discussing his views with others over the internet. anthony regularly visits several popular political , which are web pages designed to facilitate written discussions between people on specific subjects. a.e-mail programs b.message boards c.webinars d.podcasts 3/22 - Put each word into a sentence For what values of a are the following expressions true?(PLease help ASAP)|a +5| = 5a|a +5 |=a +5 The relational model is hardware-dependent and software-independent.a. Trueb. False the toy box pays an annual dividend of $2.40 per share and sells for $46.60 a share based on a market rate of return of 15 percent. what is the capital gains yield? philip morris markets marlboro cigarettes, the number-one selling cigarette brand in the world. outside the united states, marlboro generates huge profits that philip morris uses to support other less successful sbus. according to the bcg matrix, marlboro is an example of a . describe the stages leading to formation of a detrital sedimentary rock: e.g. weathering, erosion, transportation, deposition, compaction, and lithification. at what stage does compaction and lithification occur? the nurses on a surgical unit are in the process of implementing change while utilizing the pdsa cycle. which factor will help increase the success of this change? What are the coordinates of the vertices of the figure after a reflection across y=2: G (-3,3), H (-2,5), I (1,1) an economy in which elements of both private enterprise and government intervention are present is known as: what process caused the largest tsunami run-up (the height water reached on land) recorded in the past 100 years? 3. What causes the fire toward the end of the story?Support your answer with evidence from thestory. question number 2) government regulation influences the operations of most businesses. which regulatory topic did software ag's ceo briefly discuss? write a function named times ten. the function should accept an argument and display the product of its argument * 10. why might it make biological sense for emerging adults to wait until their later 20s (or later) to make important decisions about careers, relationships, and kids? who at ucf is required to comply with the prohibition of discrimination, harassment and related interpersonal violence policy? group of answer choices faculty and staff only faculty, staff, students and ucf-affiliated vendors non-affiliates of ucf, such as visitors students only what element is missing from this diagram of the rock cycle? compacting and cementing sediment sedimentary rock weathering and erosion