T is in seconds and L is the length of the pendulum in centimeters. Find the period of the pendulum of the given lengths. Give your answer to two decimal places using 3.14 for π. Show and explain your work below. a. L = 23 cm b. L = 192 cm

Answers

Answer 1

The period of the pendulum in each case is given as follows:

a. L = 23 cm: 0.96 s.

b. L = 192 cm: 2.78 s.

Period of pendulum

The period of a pendulum is defined according to the following equation:

P = 2π sqrt(L/g)

In which the parameters are as follows:

L is the length of the pendulum which we want to find the period.g = 9.8 m/s² is the acceleration of the pendulum due to the gravity.

For a length of 23 cm = 0.23m, in item a, considering 3.14 for π, the period is calculated as follows:

P = 6.28 x sqrt(0.23/9.8) = 0.96 s.

In item b, the length is of 192 cm = 1.92 m, as each cm has 100 m, hence the period is given by:

P = 6.28 x sqrt(1.92/9.8) = 2.78 s.

More can be learned about the period of a pendulum at https://brainly.com/question/26449711

#SPJ1


Related Questions

Find the area and the perimeter of the following rhombus. round to the nearest whole number if needed.

Answers

ANSWER

[tex]\begin{gathered} A=572 \\ P=96 \end{gathered}[/tex]

EXPLANATION

To find the area of the rhombus, we have to first find the length of the other diagonal.

We are given half one diagonal and the side length.

They form a right angle triangle with half the other diagonal. That is:

We can find x using Pythagoras theorem:

[tex]\begin{gathered} 24^2=x^2+16^2 \\ x^2=24^2-16^2=576-256 \\ x^2=320 \\ x=\sqrt[]{320} \\ x=17.89 \end{gathered}[/tex]

This means that the length of the two diagonals is:

[tex]\begin{gathered} \Rightarrow2\cdot16=32 \\ \Rightarrow2\cdot17.89=35.78 \end{gathered}[/tex]

The area of a rhombus is given as:

[tex]A=\frac{p\cdot q}{2}[/tex]

where p and q are the lengths of the diagonal.

Therefore, the area of the rhombus is:

[tex]\begin{gathered} A=\frac{32\cdot35.78}{2} \\ A=572.48\approx572 \end{gathered}[/tex]

The perimeter of a rhombus is given as:

[tex]P=4L[/tex]

where L = length of side of the rhombus

Therefore, the perimeter of the rhombus is:

[tex]\begin{gathered} P=4\cdot24 \\ P=96 \end{gathered}[/tex]

A projectile is fired vertically upwards and can be modeled by the function h(t)= -16t to the second power+600t +225 during what time interval will the project I’ll be more than 4000 feet above the ground round your answer to the nearest hundredth

Answers

Given:

[tex]h(t)=-16t^2+600t+225[/tex]

To find the time interval when the height is about more than 4000 feet:

Let us substitute,

[tex]\begin{gathered} h(t)\ge4000 \\ -16t^2+600t+225\ge4000 \\ -16t^2+600t+225-4000\ge0 \\ -16t^2+600t-3775\ge0 \end{gathered}[/tex]

Using the quadratic formula,

Here, a= -16, b=600, and c= -3775

[tex]\begin{gathered} t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ =\frac{-600\pm\sqrt[]{600^2-4(-16)(-3775)}}{2(-16)} \\ =\frac{-600\pm\sqrt[]{360000^{}-241600}}{-32} \\ =\frac{-600\pm\sqrt[]{118400}}{-32} \\ =\frac{-600\pm40\sqrt[]{74}}{-32} \\ =\frac{-75\pm5\sqrt[]{74}}{-4} \\ t=\frac{-75+5\sqrt[]{74}}{-4},x=\frac{-75-5\sqrt[]{74}}{-4} \\ t=7.99709,t=29.5029 \end{gathered}[/tex]

So, the interval is,

[tex]8.00\le\: t\le\: 29.50[/tex]

1. The equations y = x2 + 6x + 8 and y = (x + 2)(x+4) both define thesame quadratic function.Without graphing, identify the x-intercepts and y-intercept of the graph.Explain how you know

Answers

Given the quadratic equation

[tex]y=x^2\text{ +6x + 8}[/tex]

(1) x-intercepts are -2 and -4 is the points that pass through the x-axis

when y = 0

[tex]\begin{gathered} y\text{ = 0 } \\ x^2\text{ + 6x + 8 = 0} \\ x^2+2x\text{ +4x +8 = 0} \\ (x\text{ + 2)(x +4)=0} \\ x\text{ +2 = 0 or x +4 =0} \\ x\text{ = -2 or x = -4} \end{gathered}[/tex]

(11) y-intercepts = 8 is the points that pass through the y axis when x = 0

[tex]\begin{gathered} y=x^2\text{ +6x +8} \\ \text{when x = 0} \\ y=0^2\text{ +6(0) +8} \\ \text{y = 8} \end{gathered}[/tex]

HELP PLEASE!

Dave has a piggy bank which consists of dimes, nickels, and pennies. Dave has seven
more dimes than nickels and ten more pennies than nickels. If Dave has $3.52 in his piggy bank, how many of each coin does he have?

Answers

Dave has 17 nickels, 24 dimes and 27 pennies in his piggy bank.

According to the question,

We have the following information:

Dave has 7 more dimes than nickels and 10 more pennies than nickels.

Now, let's take the number of nickels to be x.

So,

Dimes = (x+7)

Pennies = (x+10)

Now, Dave has $3.52 in his piggy bank.

We will convert nickels, dimes and pennies into dollars.

We know that 1 nickel = 0.05 dollars, 1 dime = 0.1 dollars and 1 pennies = 0.01 dollars.

Now, we will convert the given numbers of nickel, dime and pennies into dollars.

x Nickels in dollars = $0.05x

(x+7) dimes in dollars = $0.1(x+7)

(x+10) pennies in dollars = $0.01(x+10)

Now, we will them.

0.05x + 0.1(x+7) + 0.01(x+10) = 3.52

0.05x + 0.1x + 0.7 + 0.01x + 0.1 = 3.52

0.16x + 0.8 = 3.52

0.16x = 3.52-0.8

0.16x = 2.72

x = 2.72/0.16

x = 17

Now, we have:

Number of nickels = 17

Number of dimes = (17+7)

Number of dimes = 24

Number of pennies = (17+10)

Number of pennies = 27

Hence, the number of nickels, dimes and pennies are 17, 24 and 27 respectively.

To know more about nickels here

https://brainly.com/question/3542561

#SPJ1

Alexa claims that the product of 2.3 and 10^2 is 0.23. Do you agree or disagree? Explain why or why not?

Answers

Answer:

disagree

Step-by-step explanation:

product = 2.3 * 10²

             = 2.3 * 100

             = 230

thus, the answer is different from the one acclaimed by Alexa.

A rocket is shot off from a launcher. The accompanying table represents the height of the rocket at given times, where x is time, in seconds, and y is height, in feet. Write a quadratic regression equation for this set of data, rounding all coefficients to the nearest tenth. Using this equation, find the height, to the nearest foot, at a time of 3.8 seconds.

Answers

Given

The data can be modeled using a quadratic regression equation.

Using the general form of a quadratic equation:

[tex]y=ax^2\text{ + bx + c}[/tex]

We should use a regression calculator to obtain the required coefficients. The graph of the equation is shown below:

The coefficients of the equation is:

[tex]\begin{gathered} a\text{ = -17.5 (nearest tenth)} \\ b\text{ = }249.0\text{ (nearest tenth)} \\ c\text{ = }-0.5 \end{gathered}[/tex]

Hence, the regression equation is:

[tex]y=-17.5x^2\text{ + 249.0x -0.5}[/tex]

We can find the height (y) at a time of 3.8 seconds by substitution:

[tex]\begin{gathered} y=-17.5(3.8)^2\text{ + 249}(3.8)\text{ - 0.5} \\ =\text{ }693 \end{gathered}[/tex]

Hence, the height at time 3.8 seconds is 693 ft

rounded 425.652 to the hundredths place

Answers

Since the given number is 425.652

The hundredth digit is the 2nd number right at the decimal point

It is 5

To round to the nearest hundredth, we will look at the digit right to it

1. If it is 0, 1, 2, 3, or 4 we will ignore it and write the number without change except by canceling that digit

2. If it is 5, 6, 7, 8, or 9 we will cancel it and add the digit left to it 1

Since the right digit to the digit 5 is 2, then we will remove it and do not change the digit 5 (case 1), then

The number after rounding should be 425.65

The answer is 425.65

I need help with a math problem. I linked it below

Answers

According to the distributive property of multiplication:

[tex]a\cdot(b+c)=a\cdot b+a\cdot c[/tex]

Then,

[tex]\begin{gathered} -6(x+5)=12 \\ -6x-6\cdot5=12 \\ -6x-30=12 \end{gathered}[/tex]

To find x, add 30 to both sides:

[tex]\begin{gathered} -6x-30+30=12+30 \\ -6x=42 \end{gathered}[/tex]

And divide both sides by -6:

[tex]\begin{gathered} \frac{-6}{-6}x=\frac{42}{-6} \\ x=-7 \end{gathered}[/tex]

Answer:

- 6x - 30 = 12

x = -7

Write equation for graph ?

Answers

The equation for parabolic graphed function is y = [tex]-3x^{2} -24x-45[/tex].

What is parabola graph?

Parabola graph depicts a U-shaped curve drawn for a quadratic function.  In Mathematics, a parabola is one of the conic sections, which is formed by the intersection of a right circular cone by a plane surface. It is a symmetrical plane U-shaped curve. A parabola graph whose equation is in the form of f(x) = ax2+bx+c is the standard form of a parabola.

The given graph has 2 intercept at x axis x = -3, x = -5

y = a (x+3) (x+5)

using the intercept (-4, 3)

3 = a (-4 +3)(-4+5)

3 = a (-1)(1)

a =-3

y = -3(x+3)(x+5)

y = -3 [x(x+5) +3(x+5)]

y = [tex]-3x^{2}-24x-45[/tex]

To know more about parabola graph, visit:

https://brainly.com/question/27145006

#SPJ13

Match the number with the correct description.
PLEASE HELP

Answers

Answer:

Answers on attached image

Step-by-step explanation:

what is the slope for the following points?(-1,1) and(3,3)

Answers

To find the slope for a line that connects the given points, use the following formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

where (x1,y1) and (x2,y2) are the given points.

Use:

(x1,y1) = (-1,1)

(x2,y2) = (3,3)

replace the values of the previous parameters in the formula for m:

[tex]m\text{ = }\frac{3-1}{3-(-1)}=\frac{2}{3+1}=\frac{2}{4}=\frac{1}{2}[/tex]

Hence, the slope is 1/2

Drew has a video game with five differentchallenges. He sets the timer to play his gamefor 10.75 minutes. He spends the same amountof time playing each challenge. How long doesDrew nlay the fifth challenge?

Answers

For each game, Drew spends 10.75 minutes, this means in total Drew spends

[tex]5\cdot10.75\text{ minutes}[/tex]

this product gives

[tex]5\cdot10.75=53.75\text{ minutes}[/tex]

then, in the fifth challenge Drew spends 53.75 minutes

Which values are solutions to the inequality below? Check all that applySqrt x>=9Choices are:-2, 82, 32, 180, 99, 63

Answers

We notice the following:

[tex]\begin{gathered} \sqrt[]{x}\ge9\ge0 \\ \Rightarrow \\ x\ge81 \end{gathered}[/tex]

Then, possible solutions of the inequality are all real numbers greater or equal than 81. From the given set of solution, those numbers that fullfill that requirement are:

[tex]82,\text{ 180 and 99}[/tex]

0.27x4.42erterttwerutiyrteyruiti

Answers

Answer:

if need to solve

Step-by-step explanation:

1.1934

if it help let me know this

Cost of a pen is two and half times the cost of a pencil. Express this situation as a
linear equation in two variables.

Answers

The equation to illustrate the cost of a pen is two and half times the cost of a pencil is C = 2.5p.

What is an equation?

A mathematical equation is the statement that illustrates that the variables given. In this case, two or more components are taken into consideration to describe the scenario.

In this case, the cost of a pen is two and half times the cost of a pencil.

Let the pencil be represented as p.

Let the cost be represented as c.

The cost will be:

C = 2.5 × p

C = 2.5p

This illustrates the equation.

Learn more about equations on:

brainly.com/question/2972832

#SPJ1

Evaluate the expression shown: 30-3²-2+7

Answers

Answer:

=26

Step-by-step explanation:

30−32−2+7

=30−9−2+7

=21−2+7

=19+7

=26

3 * 10 ^ - 6 = 4.86 * 10 ^ - 4 in scientific way

Answers

Answer:

3*10=30

10^-6=1^-6. (10 raised to the power of-6)

therefore 3*1^-6=3

is equal to

4.86*10=48.6

10^-4=1^-4

therefore 48.6*1^-4=48.6

Find x.special 10A. 3B. 23√3- this is in fractionC. 6√3D. 3√3

Answers

First, we need to remember the cosine formula which is: cosine(theta)= adjacent/hypotenuse, now let's apply the formula to the triangle we have:

By using the formula we find that x=3√3 .

The answer is D.

George filled up his car with gas before embarking on a road trip across the country. The capacity of George's gas tank is 12 gallons and her car uses 2 gallons of gas for every hour driven. Make a table of values and then write an equation for G, in terms of t, representing the number of gallons of gas remaining in George's gas tank after t hours of driving.

Answers

Given that the capacity of George's gas tank is 12 gallons and her car uses 2 gallons of gas for every hour driven.

[tex]\begin{gathered} G_{\circ}=12 \\ m=-2 \end{gathered}[/tex]

slope m is negative since the gas is reducing every hour.

Writing the equation for G, in terms of t, representing the number of gallons of gas remaining in George's gas tank after t hours of driving.​

[tex]\begin{gathered} G=G_{\circ}+mt \\ G=12+(-2)t \\ G=12-2t \end{gathered}[/tex]

The equation for G is;

[tex]G=12-2t[/tex]

Calculating the number of gallons remaining in the tank after 0,1,2 and 3 hours, we have;

[tex]\begin{gathered} G=12-2t \\ at\text{ t=0}; \\ G_0=12-2(0)=12 \\ at\text{ t=1}; \\ G_1=12-2(1)=10 \\ at\text{ t=2}; \\ G_{2_{}}=12-2(2)=12-4=8 \\ at\text{ t=3;} \\ G_3=12-2(3)=12-6=6 \end{gathered}[/tex]

Completing the table, we have;

Find the future value using the future value formula and a calculator in order to achieve $420,000 in 30 years at 6% interest compounded monthly

Answers

The present value of in order to achieve $420000 in 30 years at 6% interest compounded monthly is $69737.60

The future value = $420000

The time period = 30 years

The interest percentage = 6%

The interest is compounded monthly

A = [tex]P(1+\frac{i}{f})^{fn}[/tex]

Where A is the final value

P is principal amount

i is the interest rate

f frequency where compound interest is added

n is the time period

Substitute the values in the equation

420000 = P × [tex](1+\frac{0.06}{12} )^{(12)(30)[/tex]

420000 = P × 6.02

P = 420000 / 6.02

P = $69737.60

Hence, the present value of in order to achieve $420000 in 30 years at 6% interest compounded monthly is $69737.60

The complete question is:

Find the present value using the future value formula  in order to achieve $420,000 in 30 years at 6% interest compounded monthly

Learn more about compound interest here

brainly.com/question/14295570

#SPJ1

Please help i need the answers for a test and how to work em out for the future

Answers

Given: The angles as shown in the image

[tex]\begin{gathered} m\angle DEY=105^0 \\ m\angle DEF=27x+3 \\ m\angle YEF=6x+3 \end{gathered}[/tex]

To Determine: The measure of angle DEF

Solution

It can be observed that

[tex]\begin{gathered} m\angle DEY+m\angle YEF=m\angle DEF \\ Therefore \end{gathered}[/tex][tex]\begin{gathered} 105^0+6x+3=27x+3 \\ 105=27x-6x+3-3 \\ 105=21x \\ x=\frac{105}{21} \\ x=5 \end{gathered}[/tex][tex]\begin{gathered} m\angle DEF=21x+3 \\ =21(5)+3 \\ =105+3 \\ =108 \end{gathered}[/tex]

Question 12

Given:

[tex]\begin{gathered} m\angle UIJ=x+43 \\ m\angle HIJ=66 \\ m\angle HIU=x+37 \end{gathered}[/tex]

To Determine: The measure of angle HIU

Solution:

It can be observed that

[tex]m\angle UIJ+m\angle HIU=m\angle HIJ[/tex][tex]\begin{gathered} x+43+x+37=66^0 \\ Collect-like-terms \\ x+x+43^0+37^0=66^0 \\ 2x+80^0=66^0 \\ 2x=66^0-80^0 \\ 2x=-14^0 \\ x=-\frac{14^0}{2} \\ x=-7^0 \end{gathered}[/tex]

Therefore, the measure of angle HIU would be

[tex]\begin{gathered} m\angle HIU=x+37^0 \\ m\angle HIU=-7+37^0 \\ m\angle HIU=30^0 \end{gathered}[/tex]

Hence, the measure of angle HIU is 30⁰

What is the measure of the base of the rectangle if the area of the triangle is 32 ft2 ?A) 8 ftB) 16 ft C) 32 ftD) 64 ft

Answers

Answer:

B) 16 ft

Explanation:

The area of a triangle is equal to

[tex]Area\text{ =}\frac{Base\times Height}{2}[/tex]

We know that the area is 32 ft² and the height is 4 ft, so replacing these values, we get

[tex]32=\frac{\text{Base}\times4}{2}[/tex]

Now, we can solve for the base. So multiply both sides by 2

[tex]\begin{gathered} 32\times2=\frac{\text{Base }\times4}{2}\times2 \\ 64=\text{Base }\times4 \end{gathered}[/tex]

Then divide both sides by 4

[tex]\begin{gathered} \frac{64}{4}=\frac{Base\times4}{4} \\ 16=\text{Base} \end{gathered}[/tex]

Therefore, the measure of the base is 16 ft

Given two functions f(x) and g(x):f(x) = 8x - 5,8(x) = 2x2 + 8Step 1 of 2 Form the composition f(g(x)).Answer 2 PointsKeypadKeyboard Shortcutsf(g(x)) =>Next

Answers

we have the functions

[tex]\begin{gathered} f(x)=8x-5 \\ g(x)=2x^2+8 \end{gathered}[/tex]

Find out f(g(x))

Substitute the variable x in the function f(x) by the function g(x)

so

[tex]\begin{gathered} f\mleft(g\mleft(x\mright)\mright)=8(2x^2+8)-5 \\ f(g(x))=16x^2+64-5 \\ f(g(x))=16x^2+59 \end{gathered}[/tex]

Are the graphs of the equations parallel, perpendicular, or neither?x -3y = 6 and x - 3y = 9

Answers

The equation of a line in Slope-Intercept form, is:

[tex]y=mx+b[/tex]

Where "m" is the slope of the line and "b" is the y-intercept.

By definition:

- The slopes of parallel lines are equal and the y-intercepts are different.

- The slopes of perpendicular lines are opposite reciprocals.

For this case you need to rewrite the equations given in the exercise in Slope-Intercept form by solving for "y".

- Line #1:

[tex]\begin{gathered} x-3y=6 \\ -3y=-x+6 \\ y=\frac{-x}{-3}+(\frac{6}{-3}) \\ \\ y=\frac{x}{3}-2 \end{gathered}[/tex]

You can identify that:

[tex]\begin{gathered} m_1=\frac{1}{3} \\ \\ b_1=-2 \end{gathered}[/tex]

- Line #2:

[tex]\begin{gathered} x-3y=9​ \\ -3y=-x+9 \\ y=\frac{-x}{-3}+(\frac{9}{-3}) \\ \\ y=\frac{x}{3}-3 \end{gathered}[/tex]

You can identify that:

[tex]\begin{gathered} m_2=\frac{1}{3} \\ \\ b_2=-3_{}_{} \end{gathered}[/tex]

Therefore, since:

[tex]\begin{gathered} m_1=m_2 \\ b_1\ne b_2 \end{gathered}[/tex]

You can conclude that: The graphs of the equation are parallel.

Transformations that preserve shape and size are called rigid motions. Find a definition of just the word rigid using the internet and write it below.

Answers

Simply put,

Rigid means not moving.

In transformations, rigid motions are transformations that preserve distance.

How do I solve it and what would be the answer

Answers

The quotient is x² + 4x + 3

Yes, (x - 2) is a factor of x³ + 2x² - 5x - 6

Explanation:[tex](x^3+2x^2\text{ - 5x - 6) }\div\text{ (x - 2)}[/tex][tex]\begin{gathered} x\text{ - 2 = 0} \\ x\text{ = 2} \\ \\ \text{coefficient of }x^3+2x^2\text{ - 5x - 6:} \\ 1\text{ 2 -5 -6} \\ \\ We\text{ will divide the coefficients by 2} \end{gathered}[/tex]

Using synthetic division:

[tex]\begin{gathered} (x^3+2x^2\text{ - 5x - 6) }\div\text{ (x - 2) = }\frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}} \\ \frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}}\text{ = quotient + }\frac{remai\text{ nder}}{\text{divisor}} \\ \\ The\text{ coefficient of the quotient = 1 4 3} \\ \text{The last number is zero, so the remainder = 0} \end{gathered}[/tex][tex]\begin{gathered} \frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}}=1x^2\text{ + 4x + 3 + }\frac{0}{x\text{ - 2}} \\ \text{quotient }=\text{ }x^2\text{ + 4x + 3} \end{gathered}[/tex]

For a (x - 2) to be a factor of x³ + 2x² - 5x - 6, it will not have a remainder when it is divided.

Since remainder = 0

Yes, (x - 2) is a factor of x³ + 2x² - 5x - 6

$1750 is invested in an account earning 3.5% interest compounded annualy. How long will it need to be in an account to double?

Answers

Given :

[tex]\begin{gathered} P\text{ = \$ 1750} \\ R\text{ = 3.5 \%} \\ A\text{ = 2P} \\ A\text{ = 2}\times\text{ 1750 = \$ 3500} \end{gathered}[/tex]

Amount is given as,

[tex]\begin{gathered} A\text{ = P( 1 + }\frac{R}{100})^T \\ 3500\text{ = 1750( 1 + }\frac{3.5}{100})^T \\ \text{( 1 + }\frac{3.5}{100})^T\text{ = }\frac{3500}{1720} \end{gathered}[/tex]

Further,

[tex]\begin{gathered} \text{( 1 + }\frac{3.5}{100})^T\text{ = 2} \\ (\frac{103.5}{100})^T\text{ = }2 \\ (1.035)^T\text{ = 2} \end{gathered}[/tex]

Taking log on both the sides,

[tex]\begin{gathered} \log (1.035)^T\text{ = log 2} \\ T\log (1.035)\text{ = log 2} \\ T\text{ = }\frac{\log \text{ 2}}{\log \text{ 1.035}} \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} T\text{ = }\frac{0.3010}{0.0149} \\ T\text{ = 20.20 years }\approx\text{ 20 years} \end{gathered}[/tex]

Thus the required time is 20 years.

Find the 5th term of the arithmetic sequence -5x – 5, -123 – 8,- 19x – 11, ...Answer:Submit Answer

Answers

5x – 5, -123x – 8,

- 19x – 11, ...

Difference is =

Find decimal notation for 100%

Answers

The decimal notation of percentage is the quotient of the percentage divided by 100.

So it follows that :

[tex]\frac{100\%}{100}=1[/tex]

The answer is 1

Can someone help out with a math prob?
pic of question below

Answers

The polar equation of the curve with the given Cartesian equation is r = √7

How to convert polar equation to cartesian equation

Given the Cartesian equation: x² + y² = 7

The relationships between polar and cartesian equation :

x = r cosθ

y = r sinθ

Where r is the radius and θ is the angle

Put the values of x and y into the given cartesian equation:

(r cosθ)² + (r sinθ)² = 7

r²cos²θ + r²sin²θ = 7

r²(cos²θ + sin²θ) = 7

Since the trigonometric identity cos²θ + sin²θ = 1

r²(1) = 7

r² = 7

r = √7

Therefore, the polar equation for the represented curve is r = √7

Learn more about polar equation on:

https://brainly.com/question/3572787

#SPJ1

Other Questions
What events mark the beginning and end of the classical periods? describe what art was like during the high classical period. Which line is perpendicular to a line that has a slopeof 1?Oline MNOline ABOline EFOline JK Identify the false choice. The Argentine Radicals, who came to power in 1916 . . .a. came to power only a few years after the vote was given to all adult males.b. took their socioeconomic views from nineteenth-century liberalism.supported organized labor unequivocally.c. were toppled by a military coup after failing to cope with the crisis of the Great Depression. Help quick thanks so much Question 2 A recipe for homemade modeling clay requires 4 parts plain flour to 1 part cornstarch. Indicate whether each set of ingredients below is proportional to the recipe. Proportional Not Proportional 8 cups plain flour and 2 cups cornstarch 20 cups plain flour and 5 cups cornstarch 2 cups plain flour and 1 cup cornstarch Next Question Check Answer Privacy and Cookies | Terms of Use | Minimum Frequirements | Platform Status 2021 McGraw-HI Education. All Rights Reserved 1 litre=1000cm. About how many test tubes, each holding 24cm of water, can be filled from a1 litre flask? when an organization undertakes a complete overhaul of its critical work processes to make them more efficient and able to deliver higher quality, it is engaging in: What is the concentration in molarity of a solution which is 2.91 %m/v benzene (CH, MM =78.11 g/mol ) in CCl (MM = 153.81 g/mol)? Add these fractions using fraction bars after choosing a common denominator Use the fraction bar inactivate to find the difference Tom Blasting invested $4,500 in an investment paying 10% compounded quarterly for 3 years. Find the interest How does this work of art legitimize and glorify the Mughal Emperor? What big ideas have survived from freuds psychoanalytic theory? in what ways has freuds theory been criticized?. You are researching the speed of sound waves in dry airat 86F. The linear function d = 0.217t represents the distances d (in miles) sound wavestravel in t seconds.A. Represent the situation using a table and a graph.B. Which of the three representations would you use to find how long it takes sound waves to travel 0.1 mile in dry air at 86F? Explain. How would implementing Discretionary Spending Caps affect inflation? For the function f(x)5x 2, what does the x represent? A car drove 300 miles in four hours. How fast was the car traveling in miles per hour? the most desirable combination of output attainable with existing resources, technology, and social values is known as the: group of answer choices optimal mix of output optimal mix of production efficient mix of output efficient choice of production Please explain how to get the answer. a gas reacts with a solid that is present in large chunks, then the reaction is run again with the solid pulverized. how does the increase in the surface area of the solid affect the rate of its reactoi Suppose demand, d, for a companys product at cost, x, is predicted by the function ()=.+,d of open x close equals negative , 0.25 , , x squared , plus , 1,000, and the price, p, that the company can charge for the product is given by ()=+. Find the companys revenue function.Enter your answer.