the circle below is centered at the point (2,-1 ) and had a radius of length 3 what is its equation

The Circle Below Is Centered At The Point (2,-1 ) And Had A Radius Of Length 3 What Is Its Equation

Answers

Answer 1

The standard equation for a circle is

[tex]\begin{gathered} (x-a)^2+(y-b)^2=r^2 \\ \text{where} \\ a=2 \\ b=-1 \\ r=\text{radius}=3 \\ (x-2)^2+(y-(-1))^2=3^2 \\ (x-2)^2+(y+1)^2=3^2 \\ \end{gathered}[/tex]


Related Questions

Use the Distibutive Property: Expand -3(x + 3)

Answers

The distributive property of multiplication states the following:

[tex]a(b+c)=a\cdot b+a\cdot c[/tex]

So, for the given expression, we have:

[tex]-3(x+3)=(-3)\cdot x+(-3)\cdot3=-3x-9[/tex]

Write an equation for a rational function with:
Vertical asymptotes at x = -5 and x =
-6
x intercepts at x = -3 and x = -4
y intercept at 4

Answers

Equation for a rational function is 10(x2 + 7x + 12) / (x2 + 11x + 30) = 0.

What is Rational Function?

Any function that can be expressed mathematically as a rational fraction—an algebraic fraction in which both the numerator and the denominator are polynomials—is referred to as a rational function. The polynomials' coefficients don't have to be rational numbers; they can be found in any field K.

So this will be a rational function with the vertical asymptotes given by the denominators:

(x + 5) and (x + 6).

The x-intercepts will be provided by the numerator,

which will be:

a(x + 3)(x + 4)

The letter an is a constant.

Given that (0,4) is the y intercept, we have:

4 = a(0+3)(0+4) / (0+5)(0+6)

4= 12a / 30

12a = 120

now,

a = 120/12,

a = 10,

and a = 1.

Now,

a(x+3)(x+4) / (x+5)(x+6) = 0

10 (x^2 + 7x + 12) / (x^2 + 11x + 30) = 0

Hence, We have the following equation for a rational function:

10 (x2 + 7x + 12) / (x2 + 11x + 30) = 0.

To learn more about Rational Function click on the link

https://brainly.com/question/19044037

#SPJ9

Leila triples her recipe that calls for 2/5 of a cup of flour. Leila has 1 cup of flour. Does she have enough to triple her recipe?

no
yes

Answers

Answer:

No

Step-by-step explanation:

3 × [tex]\frac{2}{5}[/tex] = [tex]\frac{6}{5}[/tex] = 1 [tex]\frac{1}{5}[/tex] cups required to triple her recipe

she only has 1 cup

so does not have enough to triple her recipe

Answer:

No

Step-by-step explanation:

If she triples it that means you need to triple the 2/5 so she would neew 6/5 of flour which is 1/5 more than what she has.

A bakery makes and sells hot cocoa bombs during the holidays. The first 12 hot cocoa bombs of an order cost is $4.00 each. Each of the next 6 hot cocoa bombs cost $3.50 each. For orders exceeding 18, the cost drops to $3 each. The function C(x) represents the bakery's pricing.

Answers

Solution

Step 1

Given data for C(x), the bakery's pricing

[tex]\begin{gathered} F\text{or this range 0}\leq x\leq12ofhotcocoabombs\text{ we use C(x) =4x} \\ \text{For this range }1218,ofhotcocoabombs\text{ we useC(x) = }3x+15 \end{gathered}[/tex]

Required

Step 1

To find the cost of 8 hot cocoa bombs

[tex]\begin{gathered} C(8)\text{ lies in the range 0}\leq x\leq12 \\ \text{Hence we use 4x where x = 8} \\ \text{The cost of 8 hot cocoa bombs = 4(8) = \$32} \end{gathered}[/tex]

Step 2

To find the cost of 18 hot cocoa bombs

[tex]\begin{gathered} C(18)\text{ lies in the range 12}Step 3

To find the C(30)

[tex]\begin{gathered} C(30)\text{ lies in the range x}\ge18 \\ \text{Hence we use 3x +15, where x = 30} \\ C(30)\text{ = 3(30) + 15 = 90 + 15 = \$105} \\ \end{gathered}[/tex]

Step 4

What C(30) represents.

C(30) represents the cost of ordering 30 hot cocoa bombs which is $105

Given the measure -845°, which answer choice correctly gives an angle measure coterminal with the given angle and on the interval,0 < 0 < 360

Answers

Given the measure -845° we can find its coterminal measure on the interval, [0,360) below

Explanation

For angles measured in degrees

[tex]\begin{gathered} β=α±360*k,where\text{ }k\text{ }is\text{ }a\text{ }positive\text{ }integer \\ -845°=\frac{-169}{36}π≈-4.694π \\ Coterminal\text{ }angle\text{ }in\text{ \lbrack}0,360°)range:\text{ 235\degree, located in the third quadrant.} \end{gathered}[/tex]

Answer: Option A

on a map where each unit represents one kilometer two marinas are located at p(4,2) and q(8,12). if a boat travels in a straight line from one marina to the other how far does the boat travel. Answer choices: 14 kilometers 2^296 kilometer 2^5 kilometers

Answers

Solution

Step 1:

Write the two given points:

p(4,2) and q(8,12)

Step 2

Find the distance between the two points:

[tex]\begin{gathered} Distance\text{ = }\sqrt{(8-4)^2+(12-2)^2} \\ \\ =\text{ }\sqrt{4^2+10^2} \\ \\ =\text{ }\sqrt{16+100} \\ \\ =\text{ }\sqrt{116} \\ \\ =\text{ 2}\sqrt{29} \end{gathered}[/tex]

Answer

[tex][/tex]

7.5 is 15% of what number?

Answers

Let the number be x. So equation for x is,

[tex]\begin{gathered} \frac{15}{100}\cdot x=7.5 \\ x=\frac{7.5\cdot100}{15} \\ =\frac{750}{15} \\ =50 \end{gathered}[/tex]

The number is 50.

Give the first four terms of the geometric sequence for which A1 = -7 and r = -4.07 7 7 74, 16, 64, 256 -7,28, -112, 448 -7, -11, -15, -1928. -112, 448. - 1792

Answers

Given:

[tex]\begin{gathered} firstterm(a_1\text{) = -7} \\ \text{common ratio (r) = -4} \end{gathered}[/tex]

Required: First four terms

The nth term of a geometric sequence :

[tex]a_{n\text{ }}=a_1\text{ }\times r^{n-1}[/tex]

Hence, we can obtain the next four terms by substituting

[tex]\begin{gathered} \text{when n = 1, a}_1\text{ = -7} \\ n=2,a_2\text{ =-7 }\times(-4)^{2\text{ - 1}} \\ a_2\text{ = -7 }\times\text{ -4} \\ =\text{ 28} \\ \\ \text{when n =3, a}_3\text{ = -7 }\times(-4)^{3\text{ -1 }} \\ a_3\text{ = -7 }\times\text{ 16} \\ =\text{ -112} \\ \\ \text{when n = 4, a}_4\text{ = }-7\text{ }\times(-4)^{4-1} \\ a_4\text{ = -7 }\times\text{ -64} \\ =\text{ 448} \end{gathered}[/tex]

Find the lateral surface area and volume of the object in picture below

Answers

So first of all we have to find the lateral surface of the truncated pyramid. This surface is composed of 4 equal trapezoids. The are of a trapezoid is given by half the sum of its bases multiplied by its height. The large base of these faces are 6' long, the short base are 5' long and their height are 2.1' long. Then the area of each trapezoid is:

[tex]\frac{(6^{\prime}+5^{\prime})}{2}\cdot2.1^{\prime}=11.55in^2[/tex]

Then the total lateral surface is:

[tex]11.55in^2\cdot4=46.2in^2[/tex]

Then we need to find the volume of the truncated pyramid. This is given by the following formula:

[tex]\frac{1}{3}h(a^2+ab+b^2)[/tex]

Where a and b are the bottom and top side of its two square faces and h is the height of the pyramid i.e. the vertical distance between bases. The lengths of the bases is 5' and 6' whereas the height of the pyramid is 2' then its volume is given by:

[tex]\frac{1}{3}\cdot2^{\prime}\cdot(5^{\prime2}+6^{\prime}\cdot5^{\prime}+6^{\prime2})=60.7in^3[/tex]

In summary, the lateral surface is 46.2in² and the volume is 60.7in³.

A plane intersects both bases of a cylinder, passing through the center of each baseof the cylinder. What geometric figure will be formed from this intersection?

Answers

When a plane intersects both bases of a cylinder, passing through the center of each base of the cylinder, the cross section formed is a rectangle.

Let A = {0, 2, 4, 6}, B = {1, 2, 3, 4, 5}, and C = {1, 3, 5, 7}. Find AU (BNC).{

Answers

Solution:

Given that;

[tex]\begin{gathered} A=\left\{0,2,4,6\right\} \\ B=\left\{1,2,3,4,5\right\} \\ C=\left\{1,3,5,7\right\} \end{gathered}[/tex]

For B∩C, i.e . common elements between bot sets

[tex]B\cap C=\lbrace1,3,5\rbrace[/tex]

Then, A∪(B∪C), i.e. all the elements in A and B∩C

[tex]A∪\left(B∪C\right)=\lbrace0,1,2,3,4,5,6\rbrace[/tex]

Hence, A∪(B∪C) is

[tex]\begin{equation*} \lbrace0,1,2,3,4,5,6\rbrace \end{equation*}[/tex]

Find the interest odf the loan using banker's ruleP - $350,- = 4.8%, t = 150 days

Answers

i = P r T

interest: i

Principal = $350

Interest rate : 4.8% (in decimal form, 4.8/100 = 0.048)

time = t = days/365 = 150/360

Replacing:

i= 350 (0.048) (150/360) = 7

which of the following liner equations passes through points (-1,5) and (1,5)?

Answers

[tex]\begin{gathered} \text{The equation of a line that passes through two(2) points is given as:} \\ \frac{y_2-y_1}{x_2-x_1}=\frac{y-y_1}{x-x_1} \end{gathered}[/tex][tex]\begin{gathered} \text{From the given coordinates (-1,5) and (1,5)} \\ x_1=-1,y_1=5 \\ x_2=1,y_2=5 \end{gathered}[/tex][tex]\begin{gathered} \text{Thus,} \\ \frac{5-5}{1-(-1)}=\frac{y-5}{x-(-1)} \\ \frac{0}{2}=\frac{y-5}{x+1} \\ 0=\frac{y-5}{x+1}_{} \\ y-5=0 \\ y=5 \end{gathered}[/tex]

Hence, the correct option is Option D. None of the choices are correct.

Find the probability that a randomly selected passenger has a waiting time greater than 2.25 minutes.

Answers

The probability that a randomly selected passenger have a waiting time greater than 2.25 minutes is .

in the question ,

it is given that

the waiting time is randomly distributed  between 0 and 6 minutes .

Since it is uniformly distributed , the Uniform distribution have two bounds a and b .

The probability of finding the value greater than x can be calculated using the formula .

P(X>x) = (b-x)/(b-a)

Given that , the waiting time is Uniformly distributed 0 and 6 minutes , we get a=0 and b=6,

Substituting the values in the Probability formula , we get

P(X>2.25) = (6-2.25)/(6-0)

= 3.75/6

= 0.625

Therefore , the probability that a randomly selected passenger have a waiting time greater than 2.25 minutes is 0.625.

The given question is incomplete , the complete question is

The waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 0 and 6 minutes. Find the probability that a randomly selected passenger has a waiting time greater than 2.25 minutes.

Learn more about Probability here

https://brainly.com/question/13014997

#SPJ1

find the slope of the line that passes through (10,2) and (2,10)

Answers

[tex]\begin{gathered} \text{the slope is} \\ m=\frac{10-2}{2-10} \\ m=\frac{8}{-8} \\ \\ m=-1 \end{gathered}[/tex][tex]\begin{gathered} \text{ The slope that passes through the points }(x_1,y_1)\text{ and }(x_2,y_2) \\ m=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]

Michael earns (2x3 + 3x) every month. His wife earns (3x2 + 6) every month. x represents the number of days they work in a month. What is the total earnings in a month?2x3 - 3x2 + 3x - 62x3 + 3x2 + 3x + 66x5 + 21x3 + 18x(2x3 + 3x) / (3x2 + 6)

Answers

From the question, we can derive the following:

Micheal earns 2x³ + 3x

His wife earns 3x² + 6

If x represents the number of days they work, in a month, we are asked to find the total earnings in a month.

So we will have:

(2x³ + 3x) + (3x² + 6)

Adding up the two earnings:

2x³ + 3x² + 3x + 6

So, (2x³ + 3x² + 3x + 6) is the total earnings in a month.

So the correct answer is the second option wich is (2x³ + 3x² + 3x + 6).

I need help, I did 1-2b, but i do not mind someone answering it either way so I can double check, but I am mainly stuck with 2c and if someone can tell me the answer and as to why, it would mean a lot and you can get brainlest if it is the right answer :)(Not a multiple choice question)

Answers

Absolute Minimum: an absolute minimum point is a point where the function obtains its least possible value.

The given function :

[tex]f(x)=x^4-4x^3-x^2+12x-2[/tex]

In the graph of the f(x) , the least value of x of the given curve is : (-0.939)

and the f(x) at x = (-0.939) is -10.065

The absolute minimum value is (x,y) = (-0.939, -10.065)

To round off in the nearest hundredth : (x, y) = (-0.94, -10.07)

Answer : (x, y) = (-0.94, -10.07)

The change in the value of a stock is represented by the rational number -5.90 describe in words what this means

Answers

The change in the value of a stock which is represented by the rational number -5.90 means that the stock decreased by 5.90 units.

Whenever we use negative value to describe change, it means that the value of that particular entity that been decreased by that number.

On the contrary, If we are using positive value to describe change, it means that the value of that particular entity that been increased by that number.

For example:- The change in total money possessed by Daniel is $ 50 means there is an increase of $ 50 in the money with Daniel.

To learn more about rational number, here:-

https://brainly.com/question/24398433

#SPJ1

Suppose that $2000 is invested at a rate of 2.8%, compounded quarterly. Assuming that no withdrawals are made, find the total amount after 5 years.Do not round any intermediate computations, and round your answer to the nearest cent.

Answers

Solution:

Given the amount invested, P; the rate, r, at which it was invested and the time, t, it was invested.

Thus,

[tex]\begin{gathered} p=2000, \\ \\ r=2.8\text{ \%}=0.028 \\ \\ t=5 \end{gathered}[/tex]

Then, we would solve for the total amount, A, using the formula;

[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ \\ Where; \\ n=4 \end{gathered}[/tex]

Thus;

[tex]\begin{gathered} A=2000(1+\frac{0.028}{4})^{(4)(5)} \\ \\ A=2000(1.007)^{20} \\ \\ A=2299.43 \end{gathered}[/tex]

ANSWER: $2,299.43

David had $350. After shopping, he was left with $235. If c represents the amount he spent, write an equation to represent this situation. Then use the equation to find the amount of money David spent.(Not sure if I'm expressing this correctly.)c = amount spent350 - c = 235c= 115

Answers

Given:

David had $350. After shopping, he was left with $235.

Required:

If c represents the amount he spent, write an equation to represent this situation. Then use the equation to find the amount of money David spent.

Explanation:

We know c is the amount spent

So,

Available amount = Total amount - spent amount

235 = 350 - c

c= 350 - 235

c = 115

Answer:

Hence, David spent $115.

Tasty Subs acquired a food-service truck on October 1, 2024, for $23,100. The company estimates a residual value of $1,500 and a six-year service life. Required:Calculate depreciation expense using the straight-line method for 2024 and 2025, assuming a December 31 year-end.

Answers

The company estimates a residual value of $1,500 and a six-year service life.

It is given that,

Cost of truck delivery = $ 23100

Salvage value = $ 1500

Useful life = 6 years

Depreciation expenses by using the straight-line method are calculated as,

[tex]Depreciation\text{ expenses p.a = }\frac{cost\text{ - salvage value }}{useful\text{ life}}[/tex]

Substituting the value in the formula,

[tex]\begin{gathered} Depreciation\text{ expenses p.a = }\frac{23100\text{ - 1500}}{6} \\ Depreciation\text{ expenses p.a = }\frac{21600}{6} \\ Depreciation\text{ expenses p.a = 3600} \end{gathered}[/tex]

Thu

4(px+1)=64The value of x when p is -5 is ?

Answers

Answer:

x = -3

Explanation:

Given the equation:

[tex]4\left(px+1\right)=64[/tex]

We are required to find the value of x when p is -5.

[tex]\begin{gathered} 4\left(px+1\right)=64\colon p=-5 \\ 4\left(-5x+1\right)=64 \\ -20x+4=64 \\ -20x=64-4 \\ -20x=60 \\ \text{Divide both sides by -20} \\ x=\frac{60}{-20} \\ x=-3 \end{gathered}[/tex]

The distance to the nearest exit door is less than 200 feet.

Answers

ANSWER

d < 200

EXPLANATION

If d is the distance to the nearest exit door, and this distance is less than 200 feet, then the inequality to represent this situation is d < 200.

Line k contains the points (-9,4) and (9,-8) in the xy-coordinate plane. What are the two other points that lie on line k?

Answers

Answer

D. (-3, 0) and (3, -4)

Explanation

Let the coordinate of the points be A(-9, 4) and B(9, -8).

We shall look for the gradient m of line using

m = (y₂ - y₁)/(x₂ - x₁)

Substitute for x₁ = -9, y₁ = 4, x₂ = 9 and y₂ = -8

m = (-8 - 4)/(9 - -9) = -12/18 = -2/3

From option A - D given, only C and D would have the same gradient of -2/3 as line AB

To know the correct option, we shall look for the equation of the line AB, that is,

(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁)

(y - 4)/(x - -9) = (-8 - 4)/(9 - -9)

(y -4)/(x + 9) = -12/18

(y - 4)/(x + 9) = -2/3 -----------*

Between option C and D, only D satisfies the equation *

That is, using (-3, 0), we have (0 - 4)/(-3 + 9) = -4/6 = -2/3

Also, using (3, -4), we have (-4 - 4)/(3 + 9) = -8/12 = -2/3

New York City is a popular field trip destination. This year the senior class at High School A and
the senior class at High School B both planned trips there. The senior class at High School A
rented and filled 2 vans and 6 buses with 244 students. High School B rented and filled 4 vans
and 7 buses with 298 students. Every van had the same number of students in it as did the buses.
Find the number of students in each van and in each bus.

Answers

There are eight students in each van and 38 students are in each bus.

What is the equation?

The term "equation" refers to mathematical statements that have at least two terms with variables or integers that are equal.

Let the number of students fit into a van would be v

And the number of students fit into a bus would be b

School A:

2v + 6b = 244  ...(i)

2v = 244 - 6b

v = 122 - 3b

School B:

4v + 7b = 298  ...(ii)

Substitute the value of v = 122 - 3b in the equation (ii),

4(122 - 3b) + 7b = 298

Solve for b to get b = 38.

Substitute the value of b = 38 in equation (i),

2v + 6(38) = 244

2v + 228 = 244

2v = 16

v = 8

Therefore, eight students are in each van and 38 students are in each bus.

Learn more about the equation here:

brainly.com/question/13947055

#SPJ1

Write a multiplication expression to represent each situation. Then find each product and explain its meaning. Ethan burns 650 calories when he runs for 1 hour. Suppose he runs 5 hours in one week.

Answers

We know that

• Ethan burns 650 calories per hour.

If he runs 5 hours we just have to multiply this time with the given rate.

[tex]650\cdot5=3,250[/tex]Therefore, Ethan burns 3,250 calories in 5 hours.

Hello, I need help completing this math problem. I will include a picture. Thank you so much!

Answers

From the given picture, we can see that the figure is a right triangle, so we can apply Pythagorean theorem, that is,

[tex]5^2+8^2=x^2[/tex]

where x denotes the missing length. Then, our equation give us

[tex]\begin{gathered} x^2=25+64 \\ x^2=89 \end{gathered}[/tex]

By taking square root to both side, we have

[tex]\begin{gathered} x=\sqrt[]{89} \\ x=9.4339 \end{gathered}[/tex]

Therefore, by rounding this result to the nearest tenth, the answer is 9.4 ft

What is 58 divided into 7275

Answers

Answer:125.431034

Step-by-step explanation:

2.05x0.004 I know the answer is 0.0082 but when I multiply it myself I get 0.08200?

Answers

Answer:[tex]2.05\times0.004=0.0082[/tex]Explanation:

2 . 0 5 0

0 . 0 0 4

---------------------------------

8 2 0 0

+ 0 0 0 0

0 0 0 0

0 0 0 0

------------------------------

0 . 0 0 8 2 0 0 =

-----------------------------

v+1.6>-5.5
nnnnnnnnnnnn

Answers

Answer:

v > -7.1

Step-by-step explanation:

Other Questions
O GRAPHS AND FUNCTIONSGraphically solving a system of linear equations think about the experience olaudah equiano described of a young boy captured by traders and brought to a slave ship. what new and strange things did the boy encounter? how did he explain these things to himself? what kept him from descending into despair? What is data mining study about? QuestionRead the dictionary definition for the word optical.optical \ p-ti-kl \ adjective: of or related to visionBased on this definition, in which sentence is the word optician used correctly?ResponsesThe optician examined the child to see if he needed glasses.The , optician, examined the child to see if he needed glasses.We took our dog to the optician for his annual vaccinations. We took our dog to the , optician, for his annual vaccinations. The optician gave her a prescription for a flu medicine.The , optician, gave her a prescription for a flu medicine.When the children are ill, they go to the optician. I need help in math can you please help me You push a 2.1 kg object on a table with 42N of force. The box then slowly skids to a stop over 2.2 m. What is the force of friction? Use the Pythagorean Theorem to find the missing side length. *A. 12B. 144C. 10D. 24 Metals will always form _________________ ions, called _______________. The sum of two consecutive integers is 97. What is the smaller integer? which of the following will be the strongest oxidizing agent (weakest reducing agent)? a) chromium (0) b) chromium (ii) c) chromium (iii) d) chromium (iv) e) chromium (vi) Some students cheat because they are not prepared for the test or assignment. a. True b. False Suppose a person is standing on the top of a building and that she has an instrument that allows her tomeasure angles of depression. There are two points that are 100 feet apart and lie on a straight line that isperpendicular to the base of the building. Now suppose that she measures the angle of depression from thetop of the building to the closest point to be 34.5 and the angle of depression from the top of thebuilding to the furthest point to be 27.8. Determine the height of the building. (Round your answer to thenearest tenth of a foot.) describing, recommending, showing and offering a variety of food and beverage choices to a guest is known as a. order taking b. sales competition c. suggestive selling d. hard selling e. serving orce and Motion Unit TestUse the following scenario to answer the question.Taj and Micah chose to go bowling. Taj rolled the ball toward the pins first, knocking them all down.Which of the following is affecting these objects?point)O Gravity is affecting these objects.O An unbalanced force is affecting the objects.O Inertia is affecting these objects.O A balanced force is affecting the objects. What is another way to say disciplinary experiences the current argument over whether to build a wall between mexico and the united states reflects, in part, what long-standing aspect of how race is constructed and managed in the united states? What two pieces of information would you need in order to measure the masses of stars in an eclipsing binary system?. The greatest civilizations of china developed along rivers just like civilization of fertile crescent, india and egypt. justify the given statement. A real estate agent has 18 properties that she shows. She feels that there is a 50% chance of selling any one property during a week. The chance of selling any one property is independent of selling another property. Compute the probability of selling more than 4 properties in one week. Round your answer to four decimal places. One fourth the sum of r and ten is identical to r minus 4.