The Cunninghams are moving across the country. Mr.Cunningham leaves 3 hours before Mrs. Cunningham. If he averages 55 mph and sheaverages 75 mph, how many hours will it take Mrs. Cunningham to catch up to Mr. Cunninham to catch up to mr.cunningham

Answers

Answer 1

Solution:

Remember, distance traveled is the rate times the time. (d = rt) Mrs. Cunningham will overtake Mr. Cunningham when they have traveled the same distance.

Mrs. Cunningham's equation will be:

[tex]d=\text{ }75t[/tex]

Since he was traveling 3 hours longer, Mr. Cunningham's equation will be:

[tex]d=55(t+3)[/tex]

If they travel the same distance, the equations can be set equal to each other:

[tex]\text{ }75t=55(t+3)[/tex]

applying the distributive property, this is equivalent to:

[tex]\text{ }75t=55t\text{ +165}[/tex]

this is equivalent to:

[tex]75t-55t\text{ = 165}[/tex]

this is equivalent to:

[tex]20t\text{ = 165}[/tex]

solving for t, we obtain:

[tex]t\text{ =}\frac{165}{20}=8.25[/tex]

So that, we can conclude that the correct answer is:

It will take Mrs. Cunningham 8.25 hours to overtake her husband.


Related Questions

The number of bottles a machine fills is proportional to the number of minutes the machine operates. The machine
fills 250 bottles every 20 minutes. Create a graph that shows the number of bottles, y, the machine fills in a minutes.
To graph a line, select the line tool. Click on a point on the coordinate plane that lies on the line. Drag your mouse to
another point on the coordinate plane and a line will be drawn through the two points

Answers

It is to be noted that the correct graph is graph A. This is because it shows the coordinates (2, 25). See the explanation below.

What is the calculation justifying the above answer?

It is information given is the rate of change of the linear relationship between the stated variable variables:

Number of Bottles; andTime.

The ratio given is depicted as:

r = [250 bottles]/ [20 mintures]

r = 25/2 bottles per min

By inference, we know that our starting point coordinates (0,0), because zero bottles were filled at zero minutes.

Thus, we must use the point-slope form to arrive at the equation that exhibits or represents the relationship of the linear graph.

The point-slope form is given as:

y-y₁ = m(x-x₁)

Recall that our initial coordinates are (0, 0,) where x₁ = 0 and y₁ = 0. Hence

⇒ y - 0 = 25/2(x-0)

= y = 25x/2

Hence, if x = 2, then y must = 25

Proof: y = 25(2)/2

y = 50/2

y = 25.

Hence, using the principle of linear relationships, the first graph is the right answer, because it shows the points (2,25) which are part of the relation.

Learn more about graphs:
https://brainly.com/question/25184007
#SPJ1

This probability distribution shows thetypical grade distribution for a Geometrycourse with 35 students.GradeEnter a decimal rounded to the nearest hundredth.Enter

Answers

Explanation:

The total number of students is

[tex]n(S)=35[/tex]

Concept:

To figure out the probability that a student earns grade A,B or C

Will be calculated below as

[tex]P(A,BorC)=P(A)+P(B)+P(C)[/tex]

The Probability of A is

[tex]P(A)=\frac{n(A)}{n(S)}=\frac{5}{35}[/tex]

The probabaility of B is

[tex]P(B)=\frac{n(B)}{n(S)}=\frac{10}{35}[/tex]

The probabaility of C is

[tex]P(B)=\frac{n(B)}{n(S)}=\frac{15}{35}[/tex]

Hence,

By substituting the values in the concept, we will have

[tex]\begin{gathered} P(A,BorC)=P(A)+P(B)+P(C) \\ P(A,BorC)=\frac{5}{35}+\frac{10}{35}+\frac{15}{35}=\frac{30}{35} \\ P(A,BorC)=0.857 \\ P(A,BorC)\approx0.86(nearest\text{ }hundredth) \end{gathered}[/tex]

Hence,

The final answer is

[tex]0.86[/tex]

A beach ball rolls off a cliff and onto the beach. The height, in feet, of the beach ball can be modeled by the function h(t)=64−16t2, where t represents time, in seconds.What is the average rate of change in the height, in feet per second, during the first 1.25 seconds that the beach ball is in the air?Enter your answer as a number, like this: 42

Answers

STEP - BY - STEP EXPLANATION

What to find?

The average rate of change in the height, in feet per second, during the first 1.25 seconds that the beach ball is in the air.

Given:

[tex]h(t)=64-16t^2[/tex]

Step 1

Differentiate the heigh with reospect to t.

The rate of change of height is the differentiation of the height.

[tex]\frac{dh(t)}{dt}=-32t[/tex]

Step 2

Substitute t= 1.25

[tex]h^{\prime}(t)=-32(1.25)[/tex][tex]=-40ft\text{ /s}[/tex]

ANSWER

Average rate = -40 ft / s

Simplify the expression using order of operation 9/g + 2h + 5, when g = 3 and h = 6

Answers

9/g + 2h + 5

When g = 3 and h = 6

First, replace the values of g and h by the ones given:

9/(3) + 2(6) + 5

9/3 + 2(6)+5

Then, divide and multiply:

3+12+5

Finally, add

20



Help me please what is the probability of all the letters?

Answers

Given:

• Number of male who survived = 338

,

• Number if female sho survived = 316

,

• Number f children who survived = 57

,

• Number of male who died = 1352

,

• Number of female who died = 109

,

• Number of children who died = 52

,

• Total number of people = 2224

Let's solve for the following:

(a). Probability of the passenger that survived:

[tex]P(\text{survived)}=\frac{nu\text{mber who survived}}{total\text{ number if people }}=\frac{711}{2224}=0.320[/tex]

(b). Probability of the female.

We have:

[tex]P(\text{female)}=\frac{\text{ number of females}}{total\text{ number }}=\frac{425}{2224}=0.191[/tex]

(c). Probability the passenger was female or a child/

[tex]P(\text{female or child)}=\frac{425}{2224}+\frac{109}{2224}=\frac{425+109}{2224}=0.240[/tex]

(d). Probability that the passenger is female and survived:

[tex]P(femaleandsurvived)=\frac{316}{2224}=0.142[/tex]

(e). Probability the passenger is female and a child:

[tex]P(\text{female and child)=}\frac{425}{2224}\times\frac{109}{2224}=0.009[/tex]

(f). Probability the passenger is male or died.

[tex]P(male\text{ or died) = P(male) + }P(died)-P(male\text{ and died)}[/tex]

Thus, we have:

[tex]P(\text{male or died)}=\frac{1690}{2224}+\frac{1513}{2224}-\frac{1352}{2224}=0.832[/tex]

(g). If a female passenger is selected, what is the probability that she survived.

[tex]P(\text{survived}|\text{female)}=\frac{316}{425}=0.744[/tex]

(h). If a child is slelected at random, what is the probability the child died.

[tex]P(died|\text{ child)=}\frac{52}{109}=0.477[/tex]

(i). What is the probability the passenger is survived given that the passenger is male.

[tex]=\frac{338}{1690}=0.2[/tex]

ANSWER:

• (a). 0.320

,

• (b). 0.191

,

• (c). 0.240

,

• (d). 0.142

,

• (e). 0.009

,

• (f). 0.832

,

• (g) 0.744

,

• (h). 0.477

,

• (i) 0.2

classify given equation as rational or irrational:2 root 3 + 3 root 2 - 4 root 3 + 7 root 2

Answers

Irrational

Explanation

[tex]2\sqrt{3}+3\sqrt{2}-4\sqrt{3}+7\sqrt{2}[/tex]

Step 1

simplify

[tex]\begin{gathered} 2\sqrt{3}+3\sqrt{2}-4\sqrt{3}+7\sqrt{2} \\ \lparen2-4)\sqrt{3}+\left(3+7\right)\sqrt{2} \\ -2\sqrt{3}+4\sqrt{2} \\ \end{gathered}[/tex]

Step 2

the square root of 2 is an irrational number,because there is not number such that

[tex]\sqrt{2}=\frac{a}{b}[/tex]

and

The square root of 3 is an irrational number √3 cannot be expressed in the form of p/q

hence

the sum of 2 irrational numbers gives a irrational result,Sum of two irrational numbers is always irrational.

so, the answer is

Irrational

I hope this helps you

Show the steps needed to Evaluate (2)^-2

Answers

Answer:

[tex]\dfrac{1}{4}[/tex]

Step-by-step explanation:

Given expression:

[tex]2^{-2}[/tex]

[tex]\boxed{\textsf{Exponent rule}: \quad a^{-n}=\dfrac{1}{a^n}}[/tex]

Apply the exponent rule to the given expression:

[tex]\implies 2^{-2}=\dfrac{1}{2^2}[/tex]

Two squared is the same as multiplying 2 by itself, therefore:

[tex]\begin{aligned}\implies 2^{-2}&=\dfrac{1}{2^2}\\\\&=\dfrac{1}{2 \times 2}\\\\&=\dfrac{1}{4}\end{aligned}[/tex]

Solution

[tex]2^{-2}=\dfrac{1}{4}[/tex]

Answer:

1/4

Step-by-step explanation:

Now we have to,

→ find the required value of (2)^-2.

Let's solve the problem,

→ (2)^-2

→ (1/2)² = 1/4

Therefore, the value is 1/4.

image

Determine the value of x.
Question 17 options:

A)

x = 20°

B)

x = 45°

C)

x = 4.5°

D)

x = 90°

Answers

The value of the x in the rectangle is 4.5°

Rectangle:

A rectangle is a two-dimensional shape (2D shape) in which the opposite sides are parallel and equal to each other and all four angles are right angles

Given,

Here we have the rectangle with one angle as 90°.

Here we have to find the value of x.

We know that, we we divide the rectangle as two distinct right angled triangle.

We know that, the right triangles are triangles in which one of the interior angles is 90 degrees, a right angle.

So,

20x = 90

x = 90/20

x = 4.5°

Therefore, the value of x is 4.5°.

To know more Rectangle here.

https://brainly.com/question/15019502

#SPJ1

I think of a number.
I add 5 to it and then double the result.
I then subtract 10 from this answer.
I then subtract the original number I thought of.
Using algebra and a pronumeral to represent the number I think of, explain
why I get back to the number I started with.

Answers

Answer: [2(x + 5)] - 10 - x = 2x+10-10-x = 2x-x = x

Step-by-step explanation:

I think of a number, represented by the variable/pronumeral x.

I add 5 to it: x + 5

then double the result: 2(x + 5)

I then subtract 10 from this answer: [2(x + 5)] - 10

I then subtract the original number I thought of: [2(x + 5)] - 10 - x

Simplifying the expression will explain why you get the original number.

[2(x + 5)] - 10 - x = 2x+10-10-x = 2x-x = x.  

Kepler's third law of planetary motion states that the square of the time required for a planet to make one revolution about the sun varies directly as the cube of the average distance of the planet from the sun. If you assume that Jupiter is 5.2 times as far from the sun as is the earth, find the approximate revolution time for Jupiter in years.

Show work pls ;-;

Answers

By applying Kepler's third law of planetary motion, the approximate revolution time for Jupiter is equal to 12 years.

What is Kepler's third law?

Mathematically, Kepler's third law of planetary motion is given by this mathematical expression:

T² = a³

Where:

T represents the orbital period.a represents the semi-major axis.

Note: Earth has 1 astronomical unit (AU) in 1 year of time.

For this direct variation, the value of the constant of proportionality (k) is given by:

T² = ka³

k = T²/a³

k = 1²/1³

k = 1.

When the semi-major axis or the distance of Jupiter from Sun is 5.2, we have;

T² = ka³

T² = 1 × 5.2³

T² = 140.608

T = √140.608

T = 11.858 ≈ 12 years.

Read more on Kepler's third law here: https://brainly.com/question/15691974

#SPJ1

Find the slope of the line through the given points . If the slope of the line is undefined state so (13,1) and (1,4)

Answers

ANSWER:

A. The slope of the line is -1/4

STEP-BY-STEP EXPLANATION:

Given:

(13,1) and (1,4)

The slope can be calculated using the following formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

We substitute each value and calculate the slope:

[tex]m=\frac{1-4}{13-1}=\frac{-3}{12}=-\frac{1}{4}[/tex]

Therefore, the correct answer would be:

A. The slope of the line is -1/4

Solve.(3.3 × 10³) (2 × 10²)

Answers

Here are the steps in multiplying scientific notations:

1. Multiply the coefficients first.

[tex]3.3\times2=6.6[/tex]

2. Multiply the base 10 by adding their exponents.

[tex]10^3\times10^2=10^{3+2}=10^5[/tex]

3. Connect the result in steps 1 and 2 by the symbol for multiplication.

[tex]6.6\times10^5[/tex]

Hence, the result is 6.6 x 10⁵.

A biologist just discovered a new strain of bacteria that helps defend the human body against the flu virus. To know the dosage that should be given to someone, the doctor must first know if the bacteria can multiply fast enough to combat the virus. To find the rate at which the bacteria multiplies, she puts 10 cells in a petri dish. In an hour, she comes back to find that there are now 12 cells in the dish.

Answers

Part 3

An exponential growth function has the general form:

[tex]f(t)=a\cdot(1+r)^t[/tex]

where r is the rate of growth, t is the time, and a is a constant. Notice that if calculate f(t) for t = 0, we have (1 + r)º = 1 (any number with exponent 0 equals 1). So, we obtain:

[tex]f(0)=a(1+r)^0=a\cdot1=a[/tex]

Thus, the constant a is the initial value of the function.

Now, the rate at which a bacteria grows is exponential. So, the function C(h) is given by:

[tex]C(h)=C(0)\cdot(1+r)^h[/tex]

Notice that we represented the time by the letter h instead of t.

Since C(0) = 10 and C(1) = 12, we can replace h by 1 to find:

[tex]\begin{gathered} C(1)=10\cdot(1+r)^1 \\ \\ 12=10+10r \\ \\ 12-10=10r \\ \\ 10r=2 \\ \\ r=0.2 \end{gathered}[/tex]

Thus, the number of cells C(h) is given by:

[tex]C(h)=10\cdot(1.2)^h[/tex]

Notice that this is valid for C(15) = 154:

[tex]C(15)=10\cdot(1.2)^{15}\cong154.07\cong154_{}[/tex]

Part 1

Then, using this formula, we find:

[tex]\begin{gathered} C(2)=10(1.2)^2\cong14 \\ \\ C(3)=10(1.2)^3\cong17.3\cong17 \\ \\ C(4)=10(1.2)^4\cong20.7\cong21 \\ \\ C(5)=10(1.2)^5\cong24.9\cong25 \\ \\ C(6)=10(1.2)^6\cong29.9\cong30 \\ \\ C(7)=10(1.2)^7\cong35.8\cong36 \\ \\ C(8)=10(1.2)^8\cong43 \\ \\ C(9)=10(1.2)^9\cong51.6\cong52 \\ \\ C(10)=10(1.2)^{10}\cong61.9\cong62 \\ \\ C(11)=10(1.2)^{11}\cong74.3\cong74 \\ \\ C(12)=10(1.2)^{12}\cong89.2\cong89 \\ \\ C(13)=10(1.2)^{13}\cong107 \\ \\ C(14)=10(1.2)^{14}\cong128.4\cong128 \end{gathered}[/tex]

Part 2

Now, plotting the points, rounded to the nearest whole cell, on the graph, we obtain:

Part 4

Using a calculator, we obtain the following graph of the function C(h):

Comparing the graph to the plot of the data, we see that they match.

Part 5

After a full day, it has passed 24 hours. So, we need to use h = 24 in the function C(h):

[tex]C(24)=10(1.2)^{24}\cong795[/tex]

Therefore, the answer is 795 cells.

after three tests, brandon has a test average of 90. after his fourth test, his average dropped to an 85. what did he score on his fourth test?

Answers

Answer:

70

Step-by-step explanation:

Average = Sum/Number of tests

90 = Sum/3 tests

Sum = 270

85 = 270 + test/4 tests

340 = 270 + test

70

9Use the expression 43 + 8 – to find an example of each kind of expression.уKind of expression ExampleQuotientу9SumyVariable43 + 8Stuck? Review related articles/videos or use a hint.Repc

Answers

A quotient is a division between two terms. In this expression, and example of a quotient is "9/y".

An example of a sum from this expression is"4^3+8".

NOTE: A substraction can be also expressed as a sum by changing the sign of the second term.

In this case, the only variable is "y" which can take different values.

Answer:

Quotient: 9/y

Sum: 4^3+8

Variable: y

pls help. i dont get it​

Answers

Is there a picture??

Answer:

hey what don't u get? u didn't show the question

help meeeee pleaseeeee!!!





thank you

Answers

The values of f(4) , f(0) and f(-5) are 16/7, -12 and -7/11 respectively.

We are given the function:-

f(x) = (x + 12)/(2x - 1)

We have to find the values of  f(4) , f(0) and f(-5).

Putting x = 4 in the given function, we can write,

f(4) = (4+12)/(2*4-1) = 16/7

Putting x = 0 in the given function, we can write,

f(0) = (0 + 12)/(2*0 - 1) = 12/(-1) = -12

Putting x = -5 in the given function, we can write,

f(-5) = (-5 + 12)/(2*(-5) - 1) = 7/(-10-1) = 7/(-11) = -7/11

To learn more about function, here:-

https://brainly.com/question/12431044

#SPJ1

find the value of x for which r parallels s. then find the measures of angles 1 and 2 measure angle 1= 80-2xmeasure angle 2= 93-3xthe value of x for which r parallels s is....measure of angle 1 is.....°measure of angle 2 is.....°

Answers

Since the lines r and s are parallel the angles 1 and 2 must be equal

write an equation

[tex]80-2x=93-3x[/tex]

solve the equation for x

[tex]\begin{gathered} 80-2x=93-3x \\ -2x+3x=93-80 \\ x=13 \end{gathered}[/tex]

the value for x in which r and s are parallel must be 14

measure of angle 1 and 2 must be 54°

A 12 -inch ruler is closest in length to which one of the following Metric units of measure? 0.030 Kilometers30,000 millimeters30 centimeters30 meters

Answers

Inch is one of the units of measuring length.

Converting from inch to meters,

[tex]1inch=0.0254m[/tex]

A 12-inch ruler converted to meters will be;

[tex]12\times0.0254=0.3048m[/tex]

Converting the meter equivalent of the ruler into the sub-units of meters measurement,

[tex]\begin{gathered} 0.3048m \\ To\text{ kilometer} \\ 1000m=1\operatorname{km} \\ 0.3048m=\frac{0.3048}{1000}=0.0003048\operatorname{km} \\ \\ To\text{ millimeter} \\ 1m=1000\operatorname{mm} \\ 0.3048m=0.3048\times1000=304.8\operatorname{mm} \\ \\ \\ To\text{ centimeters} \\ \text{1m =100cm} \\ 0.3048m\text{ =0.3048}\times100=30.48\operatorname{cm} \\ \\ \\ To\text{ meters } \\ 12\text{ inch = 0.3048m} \end{gathered}[/tex]

From the conversions of metric units of length above, the 12-inch ruler measures 30.48cm which is closest to 30cm

Therefore, the ruler is closest to 30 centimeters

Use the definition of the derivative to find the derivative of the function with respect to x. Show steps

Answers

The derivative of the function f(x) = √x-5 is 1/2√(x-5)

Given f(x) = √x-5

from the formula d/dx (√x) = 1/2√x

hence d/dx √x-5 = 1/2√x-5

or

d/dx √x-5 = 1/2 (x-5)¹/²

The formula for the derivative of root x is d(x)/dx = (1/2) x-1/2 or 1/(2x). The exponential function with x as the variable and base equal to 1/2 is the root x provided by x. Utilizing the Power Rule and the First Principle of Derivatives, we can get the derivative of root x.

Hence we get the value as 1/2 (x-5)¹/²

Learn more about Derivatives here:

brainly.com/question/28376218

#SPJ1

When a projectile is launched at an initial height of H feet above the ground at an angle of theta with the horizontal and initial velocity is Vo feet per second. the path of the projectile...

Answers

Given,

The initial height of H feet.

The initial velocity of the object is Vo.

The equation of the path of projectile is,

[tex]y=h+x\text{ tan }\theta-\frac{x^2}{2V_0\cos ^2\theta}_{}\text{ }[/tex]

This is the expression of the projectle path.

Hence, the path of the projectile object is y = h + xtan(theta) - x²/2V₀²cos²(theta)

Adding mixed fractions (A)1 1/14 + 3 1/14 =

Answers

Explanation:

To add mixed fractions we have to follow these steps:

[tex]1\frac{1}{14}+3\frac{1}{14}=[/tex]

1. Add the whole numbers together

[tex]1+3=4[/tex]

2. Add the fractions

[tex]\frac{1}{14}+\frac{1}{14}=\frac{2}{14}=\frac{1}{7}[/tex]

3. If the sum of the fractions is an improper fraction then we change it to a mixed number and add the whole part to the whole number we got in step 1.

In this case the sum of the fractions results in a proper fraction, so we can skip this step.

Answer:

The result is:

[tex]4\frac{1}{7}[/tex]

A water tank holds 276 gallons but is leaking at a rate of 3 gallons per week. A second water tank holds414 gallons but is leaking at a rate of 5 gallons per week. After how many weeks will the amount of waterin the two tanks be the same?The amount of water in the two tanks will be the same inweeks.

Answers

In order to solve the problem we will first create equations to represent the volume of water on the gallons through the weeks. The output of the functions will be the volume of each and the entry will be the number of weeks passed.

For the first one:

[tex]\text{vol(week) = 276 -3}\cdot week[/tex]

While on the second one:

[tex]\text{vol(week) = 414 -5}\cdot week[/tex]

In order to calculate the number of weeks it'll take until they have the same volume of water we need to find the "week" which would make them equal. So we will equate both expressions and solve for that variable.

[tex]\begin{gathered} 276\text{ - 3}\cdot week\text{ = 414 - 5}\cdot week \\ 5\cdot\text{week - 3}\cdot week\text{ = 414 - 276} \\ 2\cdot\text{week = }138 \\ \text{week = }\frac{138}{2}\text{ = }69 \end{gathered}[/tex]

It'll take 69 weeks for the tanks to have the same volume.

Count the unit squares, and Ind the surface area of the shape represented byeach net. One cube = 1 ft^2

Answers

The surface area of the figure is the sum of the area of the squares. Since they're all equal, is the amount of squares times the area of one square. We have a total of six squares, with a side length equal to 4 units. The area of a square is given by the product of its side length by itself, therefore, the total surface area of this figure is

[tex]6\cdot(4^2)=6(16)=96[/tex]

The area of this figure is 96 ft².

Answer: 72 Square Meters sorry super late

Step-by-step explanation:

Look at the expression below.2h + y 4h^2_______ - _____9h^2-y^2 3h+yWhich of the following is the least common denominator for the expression?

Answers

Answer:

(3h+y)*(3h-y)

Step-by-step explanation:

We are given the following expression:

[tex]\frac{2h+y}{9h^2-y^2}-\frac{4h^2}{3h+y}[/tex]

We want to find the LCD for:

9h²-y² and 3h + y.

3h+y is already in it's most simplified way.

9h²-y² , according to the notable product of (a²-b²) = (a-b)*(a+b), can be factored as:

(3h-y)*(3h+y).

The factors of each polynomial is:

3h + y and (3h-y)*(3h+y)

The LCD uses all unique factors(If a factor is present in more than one polynomial, it only appears once).

So the LCD is:

(3h+y)*(3h-y)

Which is option B.

In the diagram, MN is parallel to KL. What is the length of MN? K M 24 cm 6 cm 2 12 cm L O A. 6 cm O B. 18 cm O c. 12 cm D. 8 cm

Answers

[tex]MN\text{ = 8 CM}[/tex]

To solve this question, we shall be using the principle of similar triangles

Firstly, we identify the triamgles

These are JKL and JMN

JKL being the bigger and JMN being the smaller

Mathematically, when two triangles are similar, the ratio of two of their corresponding sides are equal

Thus, we have it that;

[tex]\begin{gathered} \frac{JN}{MN}\text{ = }\frac{JL}{KL} \\ \\ \frac{6}{MN}=\text{ }\frac{18}{24} \\ \\ MN\text{ = }\frac{24\times6}{18} \\ MN\text{ = 8 cm} \end{gathered}[/tex]

an equation that shows that two ratios are equal is a(n)

Answers

An equation that shows that two ratios are equal is referred to as a true proportion.

What is an Equation?

This refers to as a mathematical term which is used to show or depict that two expressions are equal and is  usually indicated by the sign = .

In the case in which the equation shows that two ratios are equal is referred to as a true proportion and an example is:

10/5 = 4/2 which when expressed will give the same value which is 2 as the value which makes them equal and is thereby the reason why it was chosen as the correct choice.

Read more about Equation here https://brainly.com/question/13763238

#SPJ1

CRITICAL THINKING Describe two different sequences of transformations in which the blue figure is the image of the red figi 1 1 2 B I y ET

Answers

1) rotation 90° clockwise over the origin and a reflection over the x-axis

2) rotation 90° counter clockwise over the origin and reflection over y-axis

-1/2 (2/5y - 2) (1/10y-4)

Answers

[tex]-\frac{1}{2}(\frac{2}{5}y-2)(\frac{1}{10}y-4)[/tex]

we multiply the first parenthesis by its coefficient

[tex]\begin{gathered} ((-\frac{1}{2}\times\frac{2}{5}y)+(-\frac{1}{2}\times-2))(\frac{1}{10}y-4) \\ \\ (-\frac{2}{10}y+\frac{2}{2})(\frac{1}{10}y-4) \\ \\ (-\frac{1}{5}y+1)(\frac{1}{10}y-4) \end{gathered}[/tex]

now multiply each value and add the solutions

[tex]\begin{gathered} (-\frac{1}{5}y\times\frac{1}{10}y)+(-\frac{1}{5}y\times-4)+(1\times\frac{1}{10}y)+(1\times-4) \\ \\ (-\frac{1}{50}y^2)+(\frac{4}{5}y)+(\frac{1}{10}y)+(-4) \\ \\ -\frac{1}{50}y^2+(\frac{4}{5}y+\frac{1}{10}y)-4 \\ \\ -\frac{1}{50}y^2+\frac{9}{10}y-4 \end{gathered}[/tex]

The rotation of the smaller wheel in the figure causes the larger wheel to rotate. Find the radius of the largerwheel in the figure if the smaller wheel rotates 70.0° when the larger wheel rotates 40.0°The radius of the large wheel is approximately ____ cm.

Answers

Let's begin by listing out the information given to us:

r (1) = 11.4 cm, θ (1) = 70°, θ (2) = 40°, r(2) = ?

The arc length is the same for the 2 circles

r (1) * θ (1) = r (2) * θ (2)

11.4 * 70° = r (2) * 40°

r (2) = 11.4 * 70 ÷ 40

r (2) = 19.95 cm

Hence, the radius of the larger circle is 19.95 cm

Other Questions
Now, read about the purpose of the international trade association by opening this link. according to the passage, which phrases describe the purpose of the ita? check all that apply. to assist us companies as they trade to steer small- and medium-sized businesses away from exporting to reduce levels of investment in trade to help businesses to create exports to create trade opportunities for us companies Given: ZADB = ZCBD ZABDZCDB m ZA= 3x + 15 mZC=8x-20 Find: x and m ZA A4 D B In the given figure, find the mesure of angle BCD Given the figure below, determine the angle that is a same side interior angle with respect to1. To answer this question, click on the appropriate angle. Iuanyware is a ________ application that is designed to run within a computer browser such as firefox, chrome, opera, or edge. an industrial manufacturing company uses an inverted conical (cone-shaped) tank to dispense liquid into containers. the tank measure 24 inches with a base radius of 48 inches. if the liquid flows out of the tank at a rate of 40 cubic inches per minute, at what rate is the height of the liquid falling when the height of the liquid is 10 inches deep? I WILL GIVE 40 POINTS TO THOSE WHO FILL IN THE BLANKS NOOOO SCAMS PLEASE 8. A boy owns 6 pairs of pants, 8 shirts, 2 ties, and 3 jackets. How many outfits can he wear to school if he must wear one of each item? A bag contains 4 blue and 6 white tokens. Two tokens are drawn from the bag one after another, without replacement. Find the probability that: the first is blue and the second is white. Use the given conditions to write an equation for the line.Passing through (7,6) and parallel to the line whose equation is 2x-5y-8=0 pulse rates of adult females are normally distributed with a mean of 74.0 beats per minute (bpm) and a standard deviation of 12.5 bpm. what is the percentage of adult females with pulse rates between 49.0 bpm and 86.5 bpm? what percentage of adult females have pulse rates below 90 bpm? what should the height of the container be so as to minimize cost What is the meaning of estimate during a fermentation experiment in lab, two different samples of grape juice have been inoculated with yeast. air has been evacuated from sample i, but not from sample ii. in which sample would you predict to the greater alcohol production? Can you please help me solve this question. Thank you an interference pattern is produced by four parallel and equally spaced narrow slits. by drawing appropriate phasor diagrams, explain why there is an interference minimum when the phase difference from adjacent slits is: A rectangular athletic field is twice as long as it is wide if the perimeter of the athletic field is 360 yards what are its dimensions. The width isThe length is the tinsley company exchanged land that it had been holding for future plant expansion for a more suitable parcel located farther from residential areas. tinsley carried the land at its original cost of $62,500. according to an independent appraisal, the land currently is worth $150,000. tinsley paid $23,000 in cash to complete the transaction. required: what is the fair value of the new parcel of land received by tinsley assuming the exchange has commercial substance? prepare the journal entry to record the exchange assuming the exchange has commercial substance. prepare the journal entry to record the exchange assuming the exchange lacks commercial substance. prepare the journal entry to record the exchange except that tinsley received $30,000 in the exchange, and the exchange lacks commercial substance. A patient who is admitted to the hospital after a stroke suffers from the following symptoms: episodes of intense, unexplainable fear; difficulty speaking and reading aloud; and blindness in his right visual field a client has just been given a prescription for diphenoxylate with atropine. the nurse determines that the client understands important information about this medication if the client makes what statement?