Answer:
there is only a small amount of gravity present.
Explanation:
this is because the only force acting upon your body during free fall is the force of gravity which is a non contact force.
A car which is traveling at a velocity of 15 m/s undergoes an acceleration of 6.5 m/s2 over a distance of 340 m. How fast is it going after that acceleration?
Answer:68.15m/s
Explanation:
Given:
v₁=15m/s
a=6.5m/s²
v₁=?
x=340m
Formula:
v₁²=v₁²+2a (x)
Set up:
=[tex]\sqrt{15m/s} ^{2} +2(6.5m/s^2)(340m)[/tex]
Solution:68.15m/s
A student uses a microwave oven to heat a meal. The wavelength of the radiation is 8.97 cm. What is the energy of one photon of this microwave radiation? Multiply the answer you get by 1025 to be able to input a number more easily into canvas. Enter to 2 decimal places.
Answer:
The energy of one photon is 2.21x10⁻²⁴ J. Multiplied by 10²⁵ is 22.10 J.
Explanation:
The energy (E) of a photon is:
[tex] E = h\frac{c}{\lambda} [/tex]
Where:
h: is the Planck's constant = 6.62x10⁻³⁴ J.s
λ: is the wavelength of the radiation = 8.97 cm
c: is the speed of light = 3.00x10⁸ m/s
[tex] E = h\frac{c}{\lambda} = 6.62 \cdot 10^{-34} J.s\frac{3.00\cdot 10^{8} m/s}{8.97 \cdot 10^{-2} m} = 2.21 \cdot 10^{-24} J [/tex]
Hence, the energy of one photon is 2.21x10⁻²⁴ J.
Now, if we multiply the answer by 10²⁵ we have:
[tex] E = 2.21 \cdot 10^{-24} J \cdot 10^{25} = 22.10 J [/tex]
I hope it helps you!
The energy of one photon is 2.21x10⁻²⁴ J. Multiplied by 10²⁵ is 22.10 J.
Calculation of energy:We know that
[tex]E = h\frac{c}{\lambda}[/tex]
Here
h be the Planck's constant = 6.62x10⁻³⁴ J.s
λ be the wavelength of the radiation = 8.97 cm
c be the speed of light = 3.00x10⁸ m/s
Now
Here we need to multiply the answer 10^25 so that the correct answer could come.
[tex]E = 6.62.10^{-34} \frac{3.00.10^{8}}{8.97.10^{-2}}[/tex]
= 2.21x10⁻²⁴ J.
= 22.10 J.
Hence, the energy of one photon is 2.21x10⁻²⁴ J. Multiplied by 10²⁵ is 22.10 J.
learn more about energy here; https://brainly.com/question/24719731
The Earth's magnetic field is modeled as that of a bar magnet with the geographic poles being Magnetic poles of the bar magnet, Based on our definitions of Magnetic Poles, if you were to go to the Earth's Geographic North Pole, you would be at a Magnetic _______________ of the bar magnet.
Answer:
South pole
Explanation:
In a bar magnet, field lines go from the North Pole to the South Pole (outside the magnet).
As the earth magnetic field lines go from South Pole (geographic) to the North one, this means that the North pole (geographic) really behaves as a South Pole (magnetic).
Which statement accurately describes impulse?
State corrrect ans
Answer:
2nd option on edge2021
Explanation:
what happens to the temperature of water as time elapses? IF YOU ANSWER IT I WILL MARK YOU A BRAINLEST ANSWER
Answer:
I think it will get colder
Explanation:
Answer:
The water molecules go faster as it gets colder they go slower
Explanation:
trust me thats the answer
Define reflection of sound?
the radius of the earth social
A sleigh is being pulled horizontally by a train of horses at a constant speed of 6.38 m/s. The magnitude of the normal force exerted by the snow-covered ground on the sleigh is 7.50 ✕ 103 N.
(a) If the coefficient of kinetic friction between the sleigh and the ground is 0.26, what is the magnitude of the kinetic friction force experienced by the sleigh?
N
(b) If the only other horizontal force exerted on the sleigh is due to the horses pulling the sleigh, what must be the magnitude of this force?
N
Answer:
(a). The kinetic friction force is 1950 N.
(b). The magnitude of force will be equal of friction force
Explanation:
Given that,
Constant speed = 6.38 m/s
Force [tex]F=7.50\times10^{3}\ N[/tex]
Kinetic friction = 0.26
(a). We need to calculate the friction force
Using formula of friction force
[tex]f_{k}=\mu F_{N}[/tex]
Put the value into the formula
[tex]f_{k}=0.26\times7.50\times10^{3}[/tex]
[tex]f_{k}=1950\ N[/tex]
(b). If the only other horizontal force exerted on the sleigh is due to the horses pulling the sleigh,
We need to calculate the magnitude of this force
According to given data,
The same force will be applied to keep constant velocity.
Hence, (a). The kinetic friction force is 1950 N.
(b). The magnitude of force will be equal of friction force.
(a). The kinetic friction force is 1950 N.
(b). The magnitude of force will be equal of friction force
The calculation is as follows;a. The magnitude of the kinetic friction force experienced by the sleigh is
[tex]= 0.76 \times 7.50 \times 10^3[/tex]
= 1950 N
b. It should be equivalent to the friction force.
Learn more: https://brainly.com/question/24908711?referrer=searchResults
HELP PLEASE!!!
If we have a sample of silicon (Si) atoms that has 14 protons, 14 electrons, and 18 neutrons
What is the name of this specific silicon isotope?
si-14
si-32
si-46
si-153
Answer:
It is si-32
Explanation:
Answer:
silicon-32
Explanation:
just took the quiz and got it right
Weight of a person's muscles, bones, tendons, and ligaments.
A. flexibility
B. lean mass
C. aerobic
Consider a particle of mass m which can move freely along the x axis from -a/2 to a/2, but which is strictly prohibited from being found outside this region. The wave function of the particle within the allowed region is
Answer:
φ = B sin (2π n/a x)
Explanation:
In quantum mechanics when a particle moves freely it implies that the potential is zero (V = 0), so its wave function is
φ = A cos kx + B sin kx
we must place the boundary conditions to determine the value of the constants A and B.
In our case we are told that the particle cannot be outside the boundary given by x = ± a / 2
therefore we must make the cosine part zero, for this the constant A = 0, the wave function remains
φ = B sin kx
the wave vector is
k = 2π /λ
now let's adjust the period, in the border fi = 0 therefore the sine function must be zero
φ (a /2) = 0
0 = A sin (2π/λ a/2)
therefore the sine argument is
2π /λ a/2 = n π
λ= a / n
we substitute
φ = B sin (2π n/a x)
A pendulum can be formed by tying a small object, like a tennis ball, to a string, and then connecting the other end of the string to the ceiling. Suppose the pendulum is pulled to one side and released at t1. At t^2, the pendulum has swung halfway back to a vertical position. At t^3, the pendulum has swung all the way back to a vertical position. Rank the three instants in time by the magnitude of the centripetal acceleration, from greatest to least. Most of the homework activities will be Context-rich Problems.
Answer:
1- t^3
2- t^2
3- t1
Explanation:
The acceleration produced in a body, while travelling in a circular motion, due to change in direction of motion is called centripetal acceleration. The formula of the centripetal acceleration is as follows:
ac = v²/r
where,
ac = centripetal acceleration
v = speed
r = radius
for a constant radius the centripetal acceleration will be directly proportional to the speed of object. The speed of pendulum will be lowest at t1 due to zero speed initially. Then the speed will increase gradually having greater speed at t^2 and the highest speed and centripetal acceleration at t^3. Therefore, the three instants in tie can be written in following order from greatest centripetal acceleration to lowest:
1- t^3
2- t^2
3- t1
The boys are finally old enough to compete in the box car derby race at the local fair. They have been working on their cars since the conclusion of the race last year. One boy's car raced down the track and placed 2nd in his race. However, the other boy's car started well but half-way through the race a wheel came off and his car came to a complete stop. The boy was very disappointed and the other boy felt horrible for his friend. Which of the following graphs best represents the motion of boy's car that stopped?
describe the energy conversion that occurs in a diesel engine
Pls help pls pls pls pls
What's the difference between an open cluster and a globular cluster
An open cluster is a group of up to a few thousand stars that were formed from the same giant molecular cloud, and are still loosely gravitationally bound to each other. In contrast, globular clusters are very tightly bound by gravity. ... Open clusters are very important objects in the study of stellar evolution.
Help me out on this?
A 75 Kg skateboarder is riding downhill, exerting 25 N. What is their acceleration?
Answer:
[tex]a=0.33\frac{m}{s^2}[/tex]
Explanation:
Hello.
In this case, since the force is defined in terms of the mass and acceleration as follows:
[tex]F=ma[/tex]
Given the force and the mass, we can compute the acceleration as shown below:
[tex]a=\frac{F}{m}=\frac{25N}{75kg}=\frac{25kg\frac{m}{s^2} }{75kg}\\ \\a=0.33\frac{m}{s^2}[/tex]
Best regards.
A
6. All other changeable factors that must
be kept the same to ensure a fair test
(what you keep the same).
Answer:
a constant variable?
Explanation:
A constant variable is any aspect of an experiment that a researcher intentionally keeps unchanged throughout an experiment.
Experiments are always testing for measurable change, which is the dependent variable. You can also think of a dependent variable as the result obtained from an experiment. It is dependent on the change that occurs
A boat initially moving at 10 m/s accelerates at 2 m/s for 10 s. What is the velocity of the boat after 10 seconds?
Answer:
30 m/s
Explanation:
v = u + at
given that,
u = 10 m/s (initial speed)a = 2 m/s^2 t = 10sv =?(final speed)v = 10 + ( 2 × 10)
v = 10 + 20
v = 30 m/s
What is the key for a successful relationship? and Why?
Answer:
communication, if you don't talk you'll never know what's going on.
Explanation:
What do mammoths and tigers need energy for
In a mattress test, you drop a 7.0 kg bowling ball from a height of 1.5 m above a mattress, which as a result compresses 15 cm as the ball comes to a stop. (a) What is the kinetic energy of the ball just bef
Answer:
(a) The kinetic energy of the bowling ball just before it hits the matress is 102.974 joules.
(b) The work done by the gravitational force of Earth on bowling ball during the first part of the fall is 102.974 joules.
(c) Work done by gravitational force on bowling ball when mattress is compressed is 10.298 joules.
(d) The work done by the mattress on the bowling ball is 113.272 joules.
Explanation:
The statement is incomplete. The complete question is:
In a mattress test, you drop a 7.0 kg bowling ball from a height of 1.5 m above a mattress, which as a result compresses 15 cm as the ball comes to a stop.
(a) What is the kinetic energy of the ball just before it hits the mattress?
(b) How much work does the gravitational force of the earth do on the ball as it falls, for the first part of the fall (from the moment you drop it to just before it hits the mattress)?
(c) How much work does the gravitational force do on the ball while it is compressing the mattress?
(d) How much work does the mattress do on the ball? (You’ll need to use the results of parts (a) and (c))
(a) Based on the Principle of Energy Conservation, we know that ball-earth system is conservative, so that kinetic energy is increased at the expense of gravitational potential energy as ball falls:
[tex]K_{1}+U_{g,1} = K_{2}+U_{g,2}[/tex] (Eq. 1)
Where:
[tex]K_{1}[/tex], [tex]K_{2}[/tex] - Kinetic energies at top and bottom, measured in joules.
[tex]U_{g,1}[/tex], [tex]U_{g,2}[/tex] - Gravitational potential energies at top and bottom, measured in joules.
Now we expand the expression by definition of gravitational potential energy:
[tex]U_{g,1}-U_{g,2} = K_{2}-K_{1}[/tex]
[tex]K_{2}= m\cdot g \cdot (z_{1}-z_{2})+K_{1}[/tex] (Eq. 1b)
Where:
[tex]m[/tex] - Mass of the bowling ball, measured in kilograms.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final heights of the bowling ball, measured in meters.
If we know that [tex]m = 7\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]z_{1}= 1.5\,m[/tex], [tex]z_{2} = 0\,m[/tex] and [tex]K_{1} = 0\,J[/tex], the kinetic energy of the ball just before it hits the matress:
[tex]K_{2} = (7\,kg)\cdot \left(9.807\,\frac{m}{s^{2}}\right)\cdot (1.5\,m-0\,m)+0\,m[/tex]
[tex]K_{2} = 102.974\,J[/tex]
The kinetic energy of the bowling ball just before it hits the matress is 102.974 joules.
(b) The gravitational work done by the gravitational force of Earth ([tex]\Delta W[/tex]), measured in joules, is obtained by Work-Energy Theorem and definition of gravitational potential energy:
[tex]\Delta W = U_{g,1}-U_{g,2}[/tex]
[tex]\Delta W = m\cdot g\cdot (z_{1}-z_{2})[/tex] (Eq. 2)
If we know that [tex]m = 7\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]z_{1}= 1.5\,m[/tex] and [tex]z_{2} = 0\,m[/tex], then the gravitational work done is:
[tex]\Delta W = (7\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1.5\,m-0\,m)[/tex]
[tex]\Delta W = 102.974\,J[/tex]
The work done by the gravitational force of Earth on bowling ball during the first part of the fall is 102.974 joules.
(c) The work done by the gravitational force of Earth while the bowling when mattress is compressed is determined by Work-Energy Theorem and definition of gravitational potential energy:
[tex]\Delta W = U_{g,2}-U_{g,3}[/tex]
Where [tex]U_{g,3}[/tex] is the gravitational potential energy of the bowling ball when mattress in compressed, measured in joules.
[tex]\Delta W = m\cdot g \cdot (z_{2}-z_{3})[/tex]
Where [tex]z_{3}[/tex] is the height of the ball when mattress is compressed, measured in meters.
If we know that [tex]m = 7\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]z_{2}= 0\,m[/tex] and [tex]z_{3} = -0.15\,m[/tex], the work done is:
[tex]\Delta W = (7\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot [0\,m-(-0.15\,m)][/tex]
[tex]\Delta W = 10.298\,J[/tex]
Work done by gravitational force on bowling ball when mattress is compressed is 10.298 joules.
(d) The work done by the mattress on the ball equals the sum of kinetic energy just before mattress compression and the work done by the gravitational force when mattress is compressed:
[tex]\Delta W' = K_{2}+\Delta W[/tex]
([tex]K_{2} = 102.974\,J[/tex], [tex]\Delta W = 10.298\,W[/tex])
[tex]\Delta W' = 113.272\,J[/tex]
The work done by the mattress on the bowling ball is 113.272 joules.
How long would it take you to walk 3,962 km from New York to Los
Angeles?
Answer:
913 hours ur welcome :)
If Mary runs 5 miles in 50 minutes, what is her speed with the correct
label?
Your TV has a resistance of 10 ohms and a wall voltage of 120 V. How much current and power does it use
Answer:
Current used is 12 ampere.
Power is 1440 watts.
Explanation:
To find the current used by the TV.
Current (I) = voltage/resistance
Current= 120/10
Current is 12Ampere.
To get power used by the TV,
Power = voltage × current.
= 120× 12
Power = 1440 watts.
Two charged objects are separated by distance, d. The first charge has a larger magnitude (size) than the second charge. Which one exerts the most force?
Answer:
The two charged objects will exert equal and opposite forces on each other.
Explanation:
Coulomb's law states that the electrical force between two charged objects is directly proportional to the product of charges on the objects and inversely proportional to the square of the distance between the two objects.
This force of attraction or repulsion between the two charged objects is always equal and opposite.
Therefore, the two charged objects will exert equal and opposite forces on each other.
Compare and contrast the CONFLICT (choose one) in the short story you read with the elements appearing in The Watsons Go to Birmingham—1963. Explain how they are similar or different in a few sentences.
Answer:
they were in two places in flint and Birmingham and in Birmingham it is hot but flint of cold the Simi is they both have Sunday school for Joetta
Explanation:
use in your own words teachers know when your not trust me.
-. What is the acceleration of 4 kg trolling bag pulled by a girl with a
force of 3 N?
Answer:
Acceleration(a) = 0.75 m/s²
Explanation:
Given:
Force(F) = 3 N
Mass of thing(m) = 4 kg
Find:
Acceleration(a)
Computation:
Force(F) = ma
3 = (4)(a)
Acceleration(a) = 3/4
Acceleration(a) = 0.75 m/s²
what phase changes take place when you are adding energy to the substance
Answer:
During a phase change, a substance undergoes transition to a higher energy state when heat is added, or to a lower energy state when heat is removed. Heat is added to a substance during melting and vaporization. Latent heat is released by a substance during condensation and freezing. Explanation: