The following limit
limn→[infinity] n∑i=1 xicos(xi)Δx,[0,2π] limn→[infinity] n∑i=1 xicos⁡(xi)Δx,[0,2π]
is equal to the definite integral ∫baf(x)dx where a = , b = ,
and f(x) =

Answers

Answer 1

The given limit is equal to the definite integral: ∫[0, 2π] x cos(x) dx. So, a = 0, b = 2π, and f(x) = x cos(x).

To evaluate the limit using the Riemann sum, we need to express it in terms of a definite integral. Let's break down the given expression:

lim n→∞ n∑i=1 xi cos(xi)Δx,[0,2π]

Here, Δx represents the width of each subinterval, which can be calculated as (2π - 0)/n = 2π/n. Let's rewrite the expression accordingly:

lim n→∞ n∑i=1 xi cos(xi) (2π/n)

Now, we can rewrite this expression using the definite integral:

lim n→∞ n∑i=1 xi cos(xi) (2π/n) = lim n→∞ (2π/n) ∑i=1 n xi cos(xi)

The term ∑i=1 n xi cos(xi) represents the Riemann sum approximation for the definite integral of the function f(x) = x cos(x) over the interval [0, 2π].

Therefore, we can conclude that the given limit is equal to the definite integral:

∫[0, 2π] x cos(x) dx.

So, a = 0, b = 2π, and f(x) = x cos(x).

To learn more about Riemann sum visit:

brainly.com/question/32525875

#SPJ11


Related Questions

The water level (in feet) of Boston Harbor during a certain 24-hour period is approximated by the formula H= = 4.8 sin [(t – 10)] +76 Osts 24 - where t = 0 corresponds to 12 midnight. When is the water level rising and when is it falling? Find the relative extrema of H, and interpret your results.

Answers

The water level in Boston Harbor is rising when the derivative of the function H is positive, and it is falling when the derivative is negative. The relative extrema of H can be found by finding the critical points of the function, where the derivative is zero or undefined.

To determine when the water level is rising or falling, we need to find the derivative of the function H with respect to t. Taking the derivative of H=4.8sin[(t-10)]+76, we get dH/dt = 4.8cos[(t-10)].

When the derivative dH/dt is positive, it indicates that the water level is rising, and when it is negative, the water level is falling. The sign of the cosine function determines the sign of the derivative.

To find the relative extrema of H, we set dH/dt = 0 and solve for t. In this case, 4.8cos[(t-10)] = 0. Solving this equation gives us cos[(t-10)] = 0.

The cosine function equals zero at specific angles, such as π/2, 3π/2, etc. Therefore, we can find the critical points by solving (t-10) = π/2 + nπ, where n is an integer.

Interpreting the results, the critical points correspond to the times when the water level changes direction. At these points, the water level reaches a maximum or minimum value.

Learn more about cosine function here:

https://brainly.com/question/3876065

#SPJ11




Find the volume generated by rotating about the x-axis the region bounded by the graph of the equation. y= 74+x, x=2, x= 14 The volume is (Simplify your answer. Type an exact answer in terms of .)

Answers

The volume generated by rotating the region bounded by the graph of the equation y = 74 + x, x = 2, and x = 14 about the x-axis in terms of π, is (2180π/3) cubic units.

To find the volume, we divide the region into infinitely thin vertical strips or shells along the x-axis. The height of each shell is given by the function y = 74 + x. The width of each shell is the infinitesimally small change in x.

The formula for the volume of a cylindrical shell is V = 2πrhΔx, where r represents the distance from the x-axis to the shell, h is the height of the shell, and Δx is the width of the shell. In this case, the distance from the x-axis to the shell is x, and the height of the shell is y = 74 + x.

Integrating the volume formula from x = 2 to x = 14 with respect to x gives us the total volume. Evaluating the integral leads to the simplified exact answer of (2180π/3) cubic units.

Learn more about Integrating here:

https://brainly.com/question/31954835

#SPJ11

find the mass of the rectangular region 0≤x≤4, 0≤y≤3 with density function rho(x,y)=3−y

Answers

To find the mass of the rectangular region with the given density function rho(x, y) = 3 - y, where 0 ≤ x ≤ 4 and 0 ≤ y ≤ 3, we need to calculate the double integral of the density function over the region.

The mass of a region can be found by integrating the product of the density function and the area element over the region. In this case, the density function is rho(x, y) = 3 - y.

To calculate the mass, we need to set up the double integral over the rectangular region. The integral is given by:

M = ∬(0 to 4)(0 to 3) (3 - y) dA

To evaluate this integral, we integrate with respect to y first, and then with respect to x:

M = ∫(0 to 4) ∫(0 to 3) (3 - y) dy dx

Integrating with respect to y, we get:

M = ∫(0 to 4) [3y - (1/2)y^2] (0 to 3) dx

Simplifying the integral, we have:

M = ∫(0 to 4) (9/2) dx

Evaluating the integral, we get:

M = (9/2) * x | (0 to 4)

M = (9/2) * 4 - (9/2) * 0

M = 18

Therefore, the mass of the rectangular region is 18

Learn more about rectangular region here:

https://brainly.com/question/6910306

#SPJ11

Find and simplify each of the following for f(x) = 6x-3. (A) f(x + h) (B) f(x+h)-f(x) (C) f(x+h)-f(x) h (A) f(x+h) = (Do not factor.) Help me

Answers

According to the given functions, the solutions are :

(A) f(x + h) = 6x + 6h - 3

(B) f(x + h) - f(x) = 6h

(C) f(x + h) - f(x) / h = 6

To find and simplify each of the following expressions for the function f(x) = 6x - 3:

(A) f(x + h):

To find f(x + h), we substitute (x + h) into the function f(x):

f(x + h) = 6(x + h) - 3

Simplifying this expression, we distribute the 6:

f(x + h) = 6x + 6h - 3

(B) f(x + h) - f(x):

To find f(x + h) - f(x), we substitute the expressions for f(x + h) and f(x) into the equation:

f(x + h) - f(x) = (6x + 6h - 3) - (6x - 3)

Simplifying, we remove the parentheses and combine like terms:

f(x + h) - f(x) = 6x + 6h - 3 - 6x + 3

f(x + h) - f(x) = 6h

(C) f(x + h) - f(x) / h:

To find f(x + h) - f(x) / h, we divide the expression f(x + h) - f(x) by h:

f(x + h) - f(x) / h = 6h / h

Simplifying, the h in the numerator and denominator cancels out:

f(x + h) - f(x) / h = 6

In summary:

(A) f(x + h) = 6x + 6h - 3

(B) f(x + h) - f(x) = 6h

(C) f(x + h) - f(x) / h = 6

To learn more about functions visit : https://brainly.com/question/7954282

#SPJ11

6. Find the points on the curve where the tangent line is horizontal: a) f(x) = x?(4 – x?); b) f(x) = x+ 1 + c) f(x) = x2 – x+1 7. Find dy/dx if a) y2 = x-3; b) y sin x = x3 + cos y; c) x2 + xy =

Answers

Answer:

The function f(x) = x^2 – x + 1, the tangent line is horizontal at x = 1/2.

Derivatives dy/dx for the given functions y' = (3x^2 - y cos(x))/(sin(x) + sin(y)).

Step-by-step explanation:

To find the points on the curve where the tangent line is horizontal, we need to find the values of x where the derivative dy/dx is equal to zero.

a) For the function f(x) = x^(4 – x^2):

To find the points where the tangent line is horizontal, we find dy/dx and set it equal to zero:

f(x) = x^(4 – x^2)

Using the power rule and chain rule, we find the derivative:

f'(x) = (4 – x^2)x^(4 – x^2 - 1) - x^(4 – x^2) * 2x * ln(x)

Setting f'(x) = 0:

(4 – x^2)x^(4 – x^2 - 1) - x^(4 – x^2) * 2x * ln(x) = 0

Simplifying and factoring:

(4 – x^2)x^(3 – x^2) - 2x^(2 – x^2)ln(x) = 0

From here, we can solve for x numerically using numerical methods or a graphing calculator.

b) For the function f(x) = x^2 – x + 1:

To find the points where the tangent line is horizontal, we find dy/dx and set it equal to zero:

f(x) = x^2 – x + 1

Taking the derivative:

f'(x) = 2x - 1

Setting f'(x) = 0:

2x - 1 = 0

Solving for x:

2x = 1

x = 1/2

Therefore, for the function f(x) = x^2 – x + 1, the tangent line is horizontal at x = 1/2.

7. Finding dy/dx for the given functions:

a) For y^2 = x - 3:

To find dy/dx, we implicitly differentiate both sides of the equation with respect to x:

2yy' = 1

Dividing both sides by 2y:

y' = 1/(2y)

b) For y sin(x) = x^3 + cos(y):

Again, we implicitly differentiate both sides of the equation:

y' sin(x) + y cos(x) = 3x^2 - sin(y) * y'

Rearranging and solving for y':

y' (sin(x) + sin(y)) = 3x^2 - y cos(x)

y' = (3x^2 - y cos(x))/(sin(x) + sin(y))

These are the derivatives dy/dx for the given functions.

Learn more about implicit differentiation:https://brainly.com/question/11887805

#SPJ11

Find functions fand g so that h(x) = f(g(x)). h(x) = √5x² + 4 (4 (g(x), f(t)) = ( al

Answers

So, the functions f and g that satisfy h(x) = f(g(x)) = √(5x² + 4) are f(t) = √t and g(x) = 5x² + 4.

To find function f and g such that h(x) = f(g(x)) = √(5x² + 4), we need to express h(x) as a composition of two functions.

Let's start by considering the inner function g(x).

want g(x) to be the expression inside the square root, which is 5x² + 4. So, we can define g(x) = 5x² + 4.

Next, we need to determine the outer function f(t) that will take the result of g(x) and produce the final output. In this case, the desired output is √(5x² + 4). So, we can define f(t) = √t.

Now, we have g(x) = 5x² + 4 and f(t) = √t. Substituting these functions into the composition, we get:

h(x) = f(g(x)) = f(5x² + 4) = √(5x² + 4)

Please note that "al" was mentioned at the end of the question, but its meaning is not clear. If there was a typographical error or if you need further assistance, please provide the correct information or clarify your request.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Consider the following. x = In(t), y = 8√√t, t≥1 (a) Eliminate the parameter to find a Cartesian equation of the curve.

Answers

The Cartesian equation of the curve that is defined by the parametric equations x = ln(t) and y = 8√√t, where t ≥ 1 is given by [tex]\(y = \pm 8e^{\frac{x}{4}}\)[/tex].

To eliminate the parameter and find a Cartesian equation of the curve defined by the parametric equations x = ln(t) and y = 8√√t, where t ≥ 1, we can square both sides of the equation for y and rewrite it in terms of t.

Starting with y = 8√√t, we square both sides:

y² = (8√√t)²

y² = 64√t

Now, we can express t in terms of x using the given parametric equation

x = ln(t).

Taking the exponential of both sides:

[tex]e^x = e^{(ln(t))}[/tex]

eˣ = t

Substituting this value of t into the equation for y²:

y² = 64√(eˣ)

To further simplify the equation, we can eliminate the square root:

[tex]\[y^2 = 64(e^x)^{\frac{1}{2}}\\\[y^2 = 64e^{\frac{x}{2}}\][/tex]

Taking the square root of both sides:

[tex]\[y = \pm \sqrt{64e^{\frac{x}{4}}}\\y = \pm 8e^{\frac{x}{4}}\][/tex]

This equation represents two curves that mirror each other across the x-axis. The positive sign corresponds to the upper branch of the curve, and the negative sign corresponds to the lower branch.

Learn more about Cartesian equation:

https://brainly.com/question/30268198

#SPJ11


Please Answer ALL
51. Determine whether the series below are divergent or convergent. Be sure to specify what test you use and explain your reason. too (A) WI 21% (B) +00 Σ Inn n=1 52. Determine whether the series bel

Answers

The p-series test, the series converges.The series \(\sum \frac{1}{n^2}\) converges and the series \(\sum \ln(n)\) diverges.

(A) To determine the convergence or divergence of the series \(\sum \frac{1}{n^2}\), we can use the p-series test. The p-series test states that if a series is of the form \(\sum \frac{1}{n^p}\), where \(p > 0\), then the series converges if \(p > 1\) and diverges if \(p \leq 1\).

In this case, the series \(\sum \frac{1}{n^2}\) is a p-series with \(p = 2\), which is greater than 1. Therefore, by the p-series test, the series converges.

(B) The series \(\sum \ln(n)\) does not converge. To determine this, we can use the integral test. The integral test states that if a function \(f(x)\) is continuous, positive, and decreasing on the interval \([n, \infty)\), and \(a_n = f(n)\) for all \(n\), then the series \(\sum a_n\) and the integral \(\int_n^\infty f(x) \, dx\) either both converge or both diverge.

In this case, \(f(x) = \ln(x)\) is a continuous, positive, and decreasing function for \(x > 1\). Thus, we can compare the series \(\sum \ln(n)\) with the integral \(\int_1^\infty \ln(x) \, dx\).

Evaluating the integral, we have:

\[\int_1^\infty \ln(x) \, dx = \lim_{{t\to\infty}} \left[ x \ln(x) - x \right]_1^t = \lim_{{t\to\infty}} (t \ln(t) - t + 1) = \infty\]

Since the integral \(\int_1^\infty \ln(x) \, dx\) diverges, by the integral test, the series \(\sum \ln(n)\) also diverges.

To learn more about series click here:

brainly.com/question/31586547

#SPJ11

6. (-/1 Points] DETAILS LARAPCALC10 5.3.022. M Use the Log Rule to find the indefinite integral. (Use C for the constant of integration. Remember to use absolute values where ar dx

Answers

The indefinite integral of ∫ (x² - 6)/(6x) dx is (1/6) * (x³ - 6x²) + C, where C is the constant of integration.

We have the integral:

∫ (x² - 6)/(6x) dx.

We can simplify the integrand by factoring out (1/6x):

∫ (x - 6/x) dx.

To solve this integral, we can first simplify the integrand by factoring out (1/6x):

∫ (x² - 6)/(6x) dx = (1/6) * ∫ (x - 6/x) dx.

Now, we can split the integral into two separate integrals:

∫ x dx - (1/6) * ∫ (6/x) dx.

Integrating each term separately, we get:

(1/6) * (x²/2) - (1/6) * (6 * ln|x|) + C.

Simplifying further, we have:

(1/6) * (x³/2) - ln|x| + C.

Finally, we can rewrite the expression as:

(1/6) * (x³ - 6x²) + C.

learn more about Indefinite integral here:

https://brainly.com/question/29845193

#SPJ4

The complete question is:

Find the indefinite integral of (x² - 6)/(6x) dx using the Log Rule. Use C as the constant of integration and remember to include absolute values where necessary.

The manager of the local computer store estimates the demand for hard drives for the next months to be 100, 100, 50, 50, and 210. To place an order for the hard drives costs $50 regardless of the order size, and
he estimates that holding one hard drive per month will cost him $0.50. a. Apply Least Unit Cost method to order the correct quantity each period. What is the total cost of holding
and ordering?
b. Apply Part period balancing method to order the correct quantity each period. What is the total cost of
holding and ordering?

Answers

To apply the Least Unit Cost method and Part Period Balancing method, we need to calculate the Economic Order Quantity (EOQ) for each period.

a) Least Unit Cost Method:To determine the order quantity using the Least Unit Cost method, we need to calculate the EOQ for each period.

EOQ formula is given by:

EOQ = √(2DS/H)Where:

D = Demand for the periodS = Cost of placing an order

H = Holding cost per unit per period

Using the given values:D1 = 100, S = $50, H = $0.50

D2 = 100, S = $50, H = $0.50D3 = 50, S = $50, H = $0.50

D4 = 50, S = $50, H = $0.50D5 = 210, S = $50, H = $0.50

Calculate EOQ for each period:

EOQ1 = √(2 * 100 * $50 / $0.50) = √(10000) = 100EOQ2 = √(2 * 100 * $50 / $0.50) = √(10000) = 100

EOQ3 = √(2 * 50 * $50 / $0.50) = √(5000) ≈ 70.71EOQ4 = √(2 * 50 * $50 / $0.50) = √(5000) ≈ 70.71

EOQ5 = √(2 * 210 * $50 / $0.50) = √(42000) ≈ 204.12

Order quantity for each period:Period 1: Order 100 hard drives

Period 2: Order 100 hard drivesPeriod 3: Order 71 hard drives

Period 4: Order 71 hard drivesPeriod 5: Order 204 hard drives

Total cost of holding and ordering:

Total cost = (D * S) + (H * Q/2)Total cost = (100 * $50) + ($0.50 * 100/2) + (100 * $50) + ($0.50 * 100/2) + (50 * $50) + ($0.50 * 71/2) + (50 * $50) + ($0.50 * 71/2) + (210 * $50) + ($0.50 * 204/2)

Total cost ≈ $10,900

b) Part Period Balancing Method:To determine the order quantity using the Part Period Balancing method, we need to calculate the EOQ for the total demand over all periods.

Total Demand = D1 + D2 + D3 + D4 + D5 = 100 + 100 + 50 + 50 + 210 = 510

EOQ = √(2 * Total Demand * S / H) = √(2 * 510 * $50 / $0.50) = √(102000) ≈ 319.15

Order quantity for each period:Period 1: Order 64 hard drives (510 / 8)

Period 2: Order 64 hard drives (510 / 8)Period 3: Order 64 hard drives (510 / 8)

Period 4: Order 64 hard drives (510 / 8)Period 5: Order 128 hard drives (510 / 4)

Learn more about Period here:

 https://brainly.com/question/11131191

#SPJ11

Suppose a rocket is shot into the air from a tower and follows a path represented by the function f(x) =-16x^2+100x+50, where f(x) represnts the height in feet and x represnts the elapsed time in seconds How high will the rocket be after one second?

Answers

The rocket would be at a height of 134 feet.

To determine the height of the rocket after one second, we can substitute x = 1 into the given function f(x) = -16x^2 + 100x + 50.

Let's calculate the height:

f(1) = -16(1)^2 + 100(1) + 50

= -16 + 100 + 50

= 134.

Therefore, the rocket will be at a height of 134 feet after one second.

The given function f(x) = -16x^2 + 100x + 50 represents a quadratic equation that describes the height of the rocket as a function of time.

The term -16x^2 represents the influence of gravity, as it is negative, indicating a downward parabolic shape. The coefficient 100x represents the initial upward velocity of the rocket, and the constant term 50 represents an initial height or displacement.

By substituting x = 1 into the equation, we find the specific height of the rocket after one second. In this case, the rocket reaches a height of 134 feet.

It's important to note that this calculation assumes the rocket was launched from the ground at time x = 0. If the rocket was launched from a tower or at a different initial height, the equation would need to be adjusted accordingly to incorporate the starting point. However, based on the given equation and the specified time of one second.

For more such question on height. visit :

https://brainly.com/question/73194

#SPJ8

3(e+4)–2(2e+3)<-4

Solve for e

Answers

Answer:

6 - e < -4

Step-by-step explanation:

3(e+4) – 2(2e+3) < -4

3e + 12 - 4e - 6 < -4

6 - e < -4

So, the answer is 6 - e < -4

Starting salaries for engineering students have a mean of $2,600 and a standard deviation of $1600. What is the probability that a random sample of 64 students from the school will have an average salary of more than $3,000?

Answers

The problem states that the starting salaries for engineering students have a mean of $2,600 and a standard deviation of $1,600. We are asked to find the probability that a random sample of 64 students from the school will have an average salary of more than $3,000 is approximately 2.28%.

To solve this problem, we can use the Central Limit Theorem, which states that the distribution of sample means tends to be approximately normal, regardless of the shape of the population distribution, as the sample size increases.

Since the sample size is large (n = 64), we can assume that the distribution of sample means will be approximately normal. The mean of the sample means will still be $2,600, but the standard deviation of the sample means, also known as the standard error, will be the population standard deviation divided by the square root of the sample size. In this case, the standard error is $1,600 / sqrt(64) = $200.

Next, we need to calculate the z-score, which measures the number of standard deviations an observation is from the mean. The z-score can be calculated using the formula: z = (sample mean - population mean) / standard error. In this case, the z-score is (3000 - 2600) / 200 = 2.

Finally, we can use a standard normal distribution table or a calculator to find the probability of a z-score greater than 2. The probability is approximately 0.0228 or 2.28%.

Therefore, the probability that a random sample of 64 students from the school will have an average salary of more than $3,000 is approximately 2.28%.

Learn more about standard error here:

https://brainly.com/question/13179711

#SPJ11

Given the function f(x) - 2kx - 4 and g(x) 설 설 Find a) value of k if fo=3

Answers

To find the value of k if f(0) = 3, substitute x = 0 into the equation f(x) = 2kx - 4 and solve for k. The value of k is -2.

Given the function f(x) = 2kx - 4, we are asked to find the value of k if f(0) = 3. To find this, we substitute x = 0 into the equation and solve for k.

Plugging in x = 0, we have f(0) = 2k(0) - 4 = -4. Since we know that f(0) = 3, we set -4 equal to 3 and solve for k. -4 = 3 implies 2k = 7, and dividing by 2 gives k = -7/2 = -3.5. Therefore, the value of k that satisfies f(0) = 3 is -3.5.


To learn more about function click here: brainly.com/question/30721594

#SPJ11

Practice 7-7
Find the circumference and area of each circle. Round to the nearest
hundredth.
1.
6
12 cm
A3.4 (666)11
Can

Answers

Area = Pi times r^2
The radius would be six.

Area = 3.1416 x (6)^2
Area = 3.1416 x 36
Area = 113.0976
Simplified, it’d be 113.1 cm^2.

A salesperson is selling eight types of genie lamps, made of gold, silver, brass or iron and purportedly containing male or female genies. It turns out that out of each lot of 972 genie lamps of a given type, the numbers of lamps actually containing a genie are observed as follows: Gold: female- 121 Male-110 Silver: Female-60 Male-45 Brass: Female-22 Male-35 Iron: Female-80 Male-95 A king wishes to construct a palace and is looking for divine help. In search of such help, he bought three genie lamps: one female gold genie lamp, one male silver genie lamp, and one female iron lamp. A) What is the probability that a genie will appear from all three lamps? B) What is the probability exactly one genie will appear? C) assume we know that exactly one genie appears, but we do not know from which lamp. What is the conditional probability that a female genie appears?

Answers

A) The probability that a genie will appear from all three lamps is 0.00016.

B) The probability that exactly one genie will appear is 0.175.

C) The conditional probability that a female genie appears, given that exactly one genie appears, is approximately 0.699 or 69.9%.

What is the probability?

A) Probability of a female genie appearing from a gold lamp: 121/972

Probability of a male genie appearing from a silver lamp: 45/972

Probability of a female genie appearing from an iron lamp: 80/972

The probability that a genie will appear from all three lamps will be:

(121/972) * (45/972) * (80/972) ≈ 0.00016

B) Probability of one genie appearing from the gold lamp: (121/972) * (927/972) * (927/972)

Probability of one genie appearing from the silver lamp: (927/972) * (45/972) * (927/972)

Probability of one genie appearing from the iron lamp: (927/972) * (927/972) * (80/972)

The probability exactly one genie will appear = [(121/972) * (927/972) * (927/972)] + [(927/972) * (45/972) * (927/972)] + [(927/972) * (927/972) * (80/972)]

The probability exactly one genie will appear ≈ 0.175

C) Probability of a female genie appearing from a gold lamp: (121/972) / 0.175

Probability of a female genie appearing from a silver lamp: (60/972) / 0.175

Probability of a female genie appearing from an iron lamp: (80/972) / 0.175

The conditional probability = [(121/972) / 0.175] + [(60/972) / 0.175] + [(80/972) / 0.175]

The conditional probability ≈ 0.699

Learn more about probability at: https://brainly.com/question/23417919

#SPJ4

HELP ASAP

With Zelda’s bank account, a credit, a deposit, and any interest earned all represent adding money to her account balance. A debit, a withdrawal, and any fees for financial services all represent money subtracted from her account balance. The following transactions occurred with her bank account over the last two weeks:

02/05/18: deposit of $523. 76

02/08/18: debit of $58. 03

02/10/18: withdrawal of $347. 99

02/13/18: credit of $15. 31

02/15/18: $25 fee for financial services

02/16/18: $8. 42 interest earned on her account

Answers

Zelda's bank account has the following transactions for the last two weeks:02/05/18: Deposit of $523.7602/08/18: Debit of $58.0302/10/18: Withdrawal of $347.9902/13/18: Credit of $15.3102/15/18: $25 fee for financial services02/16/18: $8.42 interest earned on her account, the current balance of Zelda's bank account is $116.47.

Current balance is equal to the sum of all transactions. Using the following transactions, compute the total balance of Zelda’s bank account:

Deposit = + $523.76

Debit = - $58.03

Withdrawal = - $347.99

Credit = + $15.31

Fee for financial services = - $25

Interest earned = + $8.42

We will compute the current balance of her bank account:

$$523.76 - $58.03 - $347.99 + $15.31 - $25 + $8.42 = $116.47

You can learn more about transactions at: brainly.com/question/24730931

#SPJ11








5. SE At what point does the line 1, (3,0,1) + s(5,10,-15), s € R intersect the line Ly (2,8,12) +t(1,-3,-7),1 € 5 marks

Answers

The line defined by the equation 1, (3,0,1) + s(5,10,-15), where s is a real number, intersects with the line defined by the equation Ly (2,8,12) + t(1,-3,-7), where t is a real number.

To find the intersection point of the two lines, we need to equate their respective equations and solve for the values of s and t.

Equating the x-coordinates of the two lines, we have:

3 + 5s = 2 + t

Equating the y-coordinates of the two lines, we have:

0 + 10s = 8 - 3t

Equating the z-coordinates of the two lines, we have:

1 - 15s = 12 - 7t

We now have a system of three equations with two variables (s and t). By solving this system, we can determine the values of s and t that satisfy all three equations simultaneously.

Once we have the values of s and t, we can substitute them back into either of the original equations to find the corresponding point of intersection.

Solving the system of equations, we find:

s = -1/5

t = 9/5

Substituting these values back into the first equation, we get:

3 + 5(-1/5) = 2 + 9/5

3 - 1 = 2 + 9/5

2 = 2 + 9/5

Since the equation is true, the lines intersect at the point (3, 0, 1).

Therefore, the intersection point of the given lines is (3, 0, 1).

Learn more about equation that defines a line:

https://brainly.com/question/27847754

#SPJ11

The Laplace Transform of 2t f(t) = 6e3+ + 4e is = Select one: 10s F(S) $2+ s-6 2s - 24 F(s) = S2 + S s-6 = O None of these. 10s F(S) S2-S- - 6 2s + 24 F(s) = 2– s S-6 =

Answers

The Laplace transform of the given function f(t) = 6e^(3t) + 4e^t is F(s) = 10s / (s^2 - s - 6).

To find the Laplace transform, we substitute the expression for f(t) into the integral definition of the Laplace transform and evaluate it. The Laplace transform of e^(at) is 1 / (s - a), and the Laplace transform of a constant multiple of a function is equal to the constant multiplied by the Laplace transform of the function.

Therefore, applying these rules, we have F(s) = 6 * 1 / (s - 3) + 4 * 1 / (s - 1) = (6 / (s - 3)) + (4 / (s - 1)).

Simplifying further, we can rewrite F(s) as 10s / (s^2 - s - 6), which matches the first option provided. Hence, the correct answer is F(s) = 10s / (s^2 - s - 6).

Learn more about Laplace Transform here: brainly.in/question/20463187
#SPJ11

1-5 Equations of Lines and Planes: Problem 3 Previous Problem Problem List Next Problem (1 point) Find an equation of a plane containing the three points (-5, 2, 2), (0, 6, 0), (0, 7, 2) in which the

Answers

Normal vector is perpendicular to the line given by the parametric equations x = 2 - t, y = 3 + 2t, z = 4t.

To find an equation of the plane, we first need to determine the normal vector. Since the plane is perpendicular to the line, the direction vector of the line will be parallel to the normal vector of the plane.

The direction vector of the line is given by <dx/dt, dy/dt, dz/dt> = <-1, 2, 4>.

To find a normal vector, we can take the cross product of two vectors in the plane. We can choose two vectors by considering two pairs of points on the plane.

Let's consider the vectors formed by the points (-5, 2, 2) and (0, 6, 0), and the points (-5, 2, 2) and (0, 7, 2).

Vector 1 = <0 - (-5), 6 - 2, 0 - 2> = <5, 4, -2>

Vector 2 = <0 - (-5), 7 - 2, 2 - 2> = <5, 5, 0>

Taking the cross product of Vector 1 and Vector 2, we have:

<5, 4, -2> x <5, 5, 0> = <-10, 10, 5>

This resulting vector, <-10, 10, 5>, is perpendicular to the plane.

Now we can use the normal vector and one of the given points, such as (-5, 2, 2), to write the equation of the plane in the form ax + by + cz = d.

Plugging in the values, we have:

-10(x - (-5)) + 10(y - 2) + 5(z - 2) = 0

Simplifying, we get:

-10x + 50 + 10y - 20 + 5z - 10 = 0

Combining like terms, we have:

-10x + 10y + 5z + 20 = 0

Dividing both sides by 5, we obtain the equation of the plane:

-2x + 2y + z + 4 = 0

Therefore, an equation of the plane containing the three given points and with a normal vector perpendicular to the line is -2x + 2y + z + 4 = 0.

To learn more about equation of the plane visit:

brainly.com/question/27190150

#SPJ11

For continuous random variables, the probability of being less than some value, x, is not the same as the probability of being less than or equal to the same value, x.
O TRUE
O FALSE

Answers

FALSE. For continuous random variables, the probability of being less than or equal to a certain value, x, is the same as the probability of being less than that value, x.

In the case of continuous random variables, the probability is represented by the area under the probability density function (PDF) curve. Since the probability is continuous, the area under the curve up to a specific point x is equivalent to the probability of being less than or equal to x.

Mathematically, we can express this as P(X ≤ x) = P(X < x), where P represents the probability and X is the random variable. The equal sign indicates that the probability of being less than or equal to x is the same as the probability of being strictly less than x.

This property holds for continuous random variables because the probability of landing exactly on a specific value in a continuous distribution is infinitesimally small. Therefore, the probability of being less than or equal to a certain value is effectively the same as the probability of being strictly less than that value.

To learn more about probability, refer:-

https://brainly.com/question/31828911

#SPJ11

assume that the following histograms are drawn on the same scale. four histograms which one of the histograms has a mean that is smaller than the median?

Answers

The histogram that has a mean smaller than the median is the histogram with a negatively skewed distribution.

In a histogram, the mean and median represent different measures of central tendency. The mean is the average value of the data, while the median is the middle value when the data is arranged in ascending or descending order. When the mean is smaller than the median, it indicates that the distribution is negatively skewed.

Negative skewness means that the tail of the histogram is elongated towards the lower values. This occurs when there are a few extremely low values that pull the mean down, resulting in a smaller mean compared to the median. The majority of the data in a negatively skewed distribution is concentrated towards the higher values.

To identify which histogram has a mean smaller than the median, examine the shape of the histograms. Look for a histogram where the tail extends towards the left side (lower values) and the peak is shifted towards the right side (higher values). This histogram represents a negatively skewed distribution and will have a mean smaller than the median.

Learn more about distribution here:

https://brainly.com/question/29664850

#SPJ11

Consider the following. S2x?y da, where D is the top half of the disk with center the origin and radius 2 Change the given integral to polar coordinates. dr de JO AE B- Evaluate the integral.

Answers

The value of the given integral is 4π. In polar coordinates, the given integral, ∬S2x²+y²dA, where D is the top half of the disk with center at the origin and radius 2, can be rewritten as ∬D(r²) rdrdθ. Now, let's evaluate the integral.

To evaluate the integral, we need to express the domain of integration in polar coordinates. The top half of the disk can be represented in polar coordinates as D: 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π.

Now, substituting the variables and domain of integration, the integral becomes:

∫(θ=0 to π) ∫(r=0 to 2) r³dr dθ.

First, we integrate with respect to r, treating θ as a constant:

∫(θ=0 to π) [(1/4)r⁴] evaluated from r=0 to r=2 dθ.

Simplifying the inner integral, we get:

∫(θ=0 to π) (1/4)(2⁴) dθ.

Further simplifying, we have:

∫(θ=0 to π) 4 dθ.

Integrating with respect to θ, we obtain:

[4θ] evaluated from θ=0 to θ=π.

Finally, substituting the limits, we get:

[4π] - [0] = 4π.

Therefore, the value of the given integral is 4π.

Learn more about integral here: https://brainly.com/question/31059545

#SPJ11

Consider the following. y - 3x2 + 5x + 3 Find the relative maxima, relative minima, and points of infection. (If an answer does not exist, enter DNE.) relative maxima (XY)= relative minima (X,Y) - points of inflection (X,Y)= Sketch the graph of the function у 5 - 10 - X 10 -5 5 10 - 10 -5 o X 10 - 10 5 -5 5 - 10 10

Answers

The given function is y = -3x^2 + 5x + 3. To find the relative maxima and minima, we can use calculus. Plugging this value back into the original function, we find y = -3(5/6)^2 + 5(5/6) + 3 = 25/12. So the relative minimum is at (5/6, 25/12).

To determine the points of inflection, we need to find the second derivative. Taking the derivative of y', we get y'' = -6. Setting y'' equal to zero gives no solutions, which means there are no points of inflection in this case.  To find the relative maxima and minima, we can use calculus. Taking the derivative of the function, we get y' = -6x + 5. To find the critical points, we set y' equal to zero and solve for x. In this case, -6x + 5 = 0 gives x = 5/6.

In summary, the function has a relative minimum at (5/6, 25/12), and there are no relative maxima or points of inflection.

To find the relative maxima and minima, we used the first derivative test. By setting the derivative equal to zero and solving for x, we found the critical point (x = 5/6). We then plugged this value into the original function to obtain the corresponding y-value. This gave us the relative minimum at (5/6, 25/12). To determine the points of inflection, we looked at the second derivative. However, since the second derivative was constant (-6), there were no solutions to y'' = 0, indicating no points of inflection. The graph of the function would be a downward-facing parabola with the vertex at the relative minimum point and no points of inflection.

Learn more about derivative here:

https://brainly.com/question/29020856

#SPJ11

10. DETAILS MY NOTES ASK YOUR TEACHER A pencil cup with a capacity of 32 in.3 is to be constructed in the shape of a right circular cylinder with an open top. If the material for the sides costs 13¢/in.² and the material for the base costs 37¢/in.2, what should the radius of the base of the cup be to minimize the construction cost (in ¢)? Letr and h (in in.) be the radius and height of the pencil cup, respectively. r = in. (Round your answer to two decimal places, if necessary.) Complete the following parts. (a) Give a function f in the variabler for the quantity to be optimized. f(r) = cents (b) State the domain of this function. (Enter your answer using interval notation.) (c) Give the formula for h in terms of r. h = (d) To determine the optimal value of the function f, we need the critical numbers of ---Select--- (e) These critical numbers are as follows. (Round your answer(s) to two decimal places, if necessary. If a critical number is an endpoint of the domain, do NOT include it in your answer. Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) r =

Answers

The critical number for f(r) is r = 0.

The cost of the material for the sides is given as 13¢/in.². The surface area of the side of a right circular cylinder is given by the formula A_side = 2πrh.Thus, the cost of the material for the sides can be expressed as:

Cost_sides = 13¢/in.² × A_side

= 13¢/in.² × 2πrh

The cost of the material for the base is given as 37¢/in.². The area of the base of a right circular cylinder is given by the formula A_base = πr². Therefore, the cost of the material for the base can be expressed as:

Cost_base = 37¢/in.² × A_base

= 37¢/in.² × πr²

To find the total construction cost:

f(r) = Cost_sides + Cost_base

= 13¢/in.² × 2πrh + 37¢/in.² × πr²

= 26πrh + 37πr² cents

(b) The domain of this function, in the context of the problem, will be the valid values for the radius r. Since we are dealing with a physical object, the radius cannot be negative, and there is no maximum limit specified.

Therefore, the domain of the function is: Domain: r ≥ 0

(c) The formula for h (the height) in terms of r (the radius) can be obtained from the problem statement, where the pencil cup is a right circular cylinder with an open top. In such a case, the height is equal to the radius, so: h = r

(d) To determine the optimal value of the function f, we need to find the critical numbers of f(r). Critical numbers occur when the derivative of the function is either zero or undefined.

(e) To find the critical numbers, we need to take the derivative of f(r) with respect to r and set it equal to zero:

f'(r) = 26πh + 74πr

26πh + 74πr = 0 (Setting f'(r) = 0)

Since h = r, we can substitute it into the equation:

26πr + 74πr = 0

100πr = 0

r = 0

The critical number is r = 0.

To know more about surface area refer here:

https://brainly.com/question/29101132#

#SPJ11

Find the length of the curve defined by 2 y = 3 In (3)" 1) from x = 8 to x = 10.

Answers

The resulting value of L will give us the length of the curve defined by the equation 2y = 3ln(3x) + 1) from x = 8 to x = 10.

To find the length of the curve defined by the equation 2y = 3ln(3x) + 1) from x = 8 to x = 10, we can use the arc length formula for a curve defined by a parametric equation.

The parametric equation of the curve can be written as:

x = t

y = (3/2)ln(3t) + 1/2

To find the length of the curve, we need to evaluate the integral of the square root of the sum of the squares of the derivatives of x and y with respect to t, and then integrate it over the given interval.

Let's start by finding the derivatives of x and y with respect to t:

dx/dt = 1

dy/dt = (3/2)(1/t) = 3/(2t)

The square of the derivatives is:

(dx/dt)² = 1

(dy/dt)² = (3/(2t))² = 9/(4t²)

Now, we can calculate the integrand for the arc length formula:

√((dx/dt)² + (dy/dt)²) = √(1 + 9/(4t²)) = √((4t² + 9)/(4t²)) = √((4t² + 9))/(2t)

The arc length formula over the interval [8, 10] becomes:

L = ∫[8,10] √((4t² + 9))/(2t) dt

To solve this integral, we can use various integration techniques, such as substitution or integration by parts. In this case, a suitable substitution would be u = 4t² + 9, which gives du = 8t dt.

Applying the substitution, the integral becomes:

L = (1/2)∫[8,10] √(u)/t du

Now, the integral can be simplified and evaluated:

L = (1/2)∫[8,10] (u^(1/2))/t du

= (1/2)∫[8,10] (1/t)(4t² + 9)^(1/2) du

= (1/2)∫[8,10] (1/t)√(4t² + 9) du

At this point, we can evaluate the integral numerically using numerical integration techniques or software tools.

Learn more about parametric equation at: brainly.com/question/30748687

#SPJ11

Please help!
In the diagram, line g is parallel to line h.

Which statements are true? Select all that apply.

Answers

The true statements are:

∠4 ≅ ∠8 because they are corresponding angles.

∠6 ≅ ∠7 because they are vertical angles.

m∠4 +  m∠6 = 180.

Here, we have,

from the given figure, we get,

There are two parallel lines and a transversal .

now, we know that,

Corresponding Angles Formed by Parallel Lines and Transversals. If a line or a transversal crosses any two given parallel lines, then the corresponding angles formed have equal measure. When the lines are parallel, the corresponding angles are congruent .

and, we know,

Vertical angles are formed when two lines meet each other at a point. They are always equal to each other. In other words, whenever two lines cross or intersect each other, 4 angles are formed. We can observe that two angles that are opposite to each other are equal and they are called vertical angles.

so, we get,

∠4 ≅ ∠8 because they are corresponding angles.

∠6 ≅ ∠7 because they are vertical angles.

m∠4 +  m∠6 = 180,

these statements are true.

To learn more on angle click:

brainly.com/question/28451077

#SPJ1

A region, in the first quadrant, is enclosed by the equations below. 2= = бу, Find the volume of the solid obtained by rotating the region about the y-axis.

Answers

To find the volume of the solid obtained by rotating the region about the y-axis, we can use the method of cylindrical shells.

The given region is enclosed by the equations:

2x = y² (equation 1)

x = y (equation 2)

First, let's solve equation 2 for x:

x = y

Now, let's substitute this value of x into equation 1:

2(y) = y²

y² - 2y = 0

Factoring out y, we get:

y(y - 2) = 0

So, y = 0 or y = 2.

The region is bounded by the y-axis (x = 0), x = y, and the curve y = 2.

To find the volume of the solid, we integrate the area of each cylindrical shell over the interval from y = 0 to y = 2.

The radius of each cylindrical shell is given by r = x = y.

The height of each cylindrical shell is given by h = 2 - 0 = 2.

The differential volume of each cylindrical shell is given by dV = 2πrh dy.

Thus, the volume V of the solid is obtained by integrating the differential volume over the interval from y = 0 to y = 2:

[tex]V = \int\limits^2_0 {2\pi (y)(2) dy} V = 4\pi \int\limits^2_0 { y dy} \\V = 4\pi [y^2/2] \limits^2_0 \\V = 4\pi [(2^2/2) - (0^2/2)]\\V = 4\pi (2)\\V= 8\pi[/tex]

Therefore, the volume of the solid obtained by rotating the region about the y-axis is 8π cubic units.

To learn more about volume of the solid visit:

brainly.com/question/30785714

#SPJ11

Find and approximo four decimal places) the value of where the gran off has a horrortin 0.164*.0.625.-20.02 roo-

Answers

When the result of the calculation 0.164 * 0.625 - 20.02 is rounded to four decimal places from its initial value, the value that is obtained is about -20.8868.

It is possible for us to identify the value of the expression by carrying out the necessary computations in a manner that is step-by-step in nature. In order to get started, we need to discover the solution to 0.1025, which can be found by multiplying 0.164 by 0.625. Following that, we take the outcome of the prior step, which was 0.1025, and deduct 20.02 from it. This brings us to a total of -19.9175. Following the completion of this very last step, we arrive at an estimate of -20.8868 by bringing this value to four decimal places and rounding it off.

It is possible to reduce the complexity of the expression 0.164 multiplied by 0.625 as follows, in more depth: 0.164 multiplied by 0.625 = 0.102

After that, we take the result from the prior step and subtract 20.02 from it:

0.1025 - 20.02 = -19.9175

In conclusion, after taking this amount and rounding it to four decimal places, we arrive at an answer of around -20.8868 for the formula 0.164 * 0.625 - 20.02. This is the response we get when we plug those numbers into the formula.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Express the vector - 101 - 10j +5k as a product of its length and direction. - 10i – 10j + 5k = = [(i+ (Dj+(Ok] Ii; i (Simplify your answers. Use integers or fractions for any numbers in the express

Answers

The vector <-10, -10, 5> can be expressed as a product of its length (15) and direction <-2/3, -2/3, 1/3>.

To express the vector <-10, -10, 5> as a product of its length and direction, we first need to calculate its length or magnitude.

The length or magnitude of a vector v = <a, b, c> is given by the formula ||v|| = √([tex]a^2 + b^2 + c^2[/tex]).

The length or magnitude of a vector v = (v1, v2, v3) is given by the formula ||v|| = sqrt([tex]v1^2 + v2^2 + v3^2[/tex]).

For our vector <-10, -10, 5>, the length is:

||v|| = √([tex](-10)^2 + (-10)^2 + 5^2[/tex])

= √(100 + 100 + 25)

= √225

= 15.

Now, to express the vector as a product of its length and direction, we divide the vector by its length:

Direction = v/||v||

= <-10/15, -10/15, 5/15>

Simplifying each component:

-10i / 15 = -2/3 i

-10j / 15 = -2/3 j

5k / 15 = 1/3 k

= <-2/3, -2/3, 1/3>.

Please note that the direction of a vector is given by the ratios of its components. In this case, the direction vector has been simplified by dividing each component by the magnitude of the original vector.

For more such question on vector. visit :

https://brainly.com/question/15519257

#SPJ8

Other Questions
The frequency table shows the results of a survey that asked 100 eighth graders if they have a cell phone or a tablet.What is the frequency of an 8th grader that has a cell phone but no tablet? Find the volume of the region bounded above by the cylinder z = 4 - y2 and below by the paraboloid z = 2x + y2. rhon An extended coverage policy of title insurance covers all of the following EXCEPT:a) coverage offered by the standard policy. b) off-record easements. c) rights of parties in possession. d) liens placed by the insured. what are benefits of reusing or recycling glass bottles? select all that apply. responses it will prevent depletion of natural resources from earth. it will prevent depletion of natural resources from earth. it will reduce the space required in landfills. it will reduce the space required in landfills. it will reduce the need for new construction materials. it will reduce the need for new construction materials. it will promote the production and sale of new glass bottles in the market. A random sample of 80 employees at a large grocery store with multiple locations was asked if they spend more than 30 minutes commuting to work Assume the true proportion of employees that spend more than 30 minutes commuting to work 35%, which of the following is closest to the probability that fewer than 30% of the employees in the sample would respond that they spend more than 30 minutes commuting to work each day? a. 0.8258 b. 0.1742 Consider the following initial-value problem. f'(x) = 6x2 - 8x, f(1) = 3 Integrate the function f'(x). (Remember the constant of integration.) /rx- f'(x)dx Find the value of C using the condition f(1) Trisha is screaming at her psychoanalyst to stop asking her so many questions. Her psychoanalyst ispleased, as this indicates that Trisha is experiencing:Transference in this case is emotions associated in a persons life are being transferred on to the psychoanalyst 3 4 1. Decide if the vector belongs to Span {[1] 3 6 -2 (Equivalently, determine if the system x +x 6 has a solution)2. Show that the columns of the matrix 10 5 -5 20 -4 -2 2 -8 Echelon Form wher an american put option gives its holder the right to . buy the underlying asset at the exercise price on or before the expiration date buy the underlying asset at the exercise price only at the expiration date sell the underlying asset at the exercise price on or before the expiration date sell the underlying asset at the exercise price only at the expiration date the normal boiling point of ammonia is 33.34c, and its enthalpy of vaporization is 23.35 kj/mol. what pressure would have to be applied for ammonia to boil at 25.00c? What could Christians do for them now, based on the example of Jesus? Which of the following developments in the business of a firm often lead to a change in the firm's organizational structure? (Check all that apply.) A. Introduction of a new productB. Merger or acquisition C. Implementation of a new information system D. Change in the CEO A week before the end of the study, all employees were told that there will be lay-offs in Company Z. The participants were all worried while taking the post-test andgreatly affected their final scores. What threat to internal validity was observed in this scenario? Find the area of the surface with parametric equations x = u^2, y = uv, z = v2/2, 0 u 5, 0 v 3. For the function f(x) x6x + 12x - 11, find the domain, critical points, symmetry, relative extrema, regions where the function increases or decreases, inflection points, regions where the function is concave up and down, asymptotes, and graph it. you flip a coin twice. what is the probability that you observe tails on the first flip and heads on the second flip? (write as a decimal) Find an equivalent algebraic expression for the composition: cos(sin()) 14- 2 4+ 2 14+ 2.10 Module Project: Museum Exhibit on Feudalism in Western Europe and JapanName:Date/Teacher: Choose five specific "artifacts" from the information covered in the module. You should definitely capture the feudal system in some way, the significance of the Church and the Crusades, the beginning of nationalism, and of course at least one artifact from Japan.Artifact 1: (Your artifacts do not have to be physical objects; they can be something intangible, like a law or a belief, a person or group of people, or an event)Lesson (ex 2.03): Description-Who:What:When:Where:Explanation- Your explanation should be at least two sentences and explain the historical significance of the artifact and why you feel the artifact important enough to be included in your exhibit (Why). Consider the following in your explanation: did the artifact a) change the way people did things, b) change the way people thought about themselves and their world, or c) change the course of history? Artifact 2:(Your artifacts do not have to be physical objects; they can be something intangible, like a law or a belief, a person or group of people, or an event)Lesson (ex 2.03): Description-Who:What:When:Where:Explanation- Your explanation should be at least two sentences and explain the historical significance of the artifact and why you feel the artifact important enough to be included in your exhibit (Why). Consider the following in your explanation: did the artifact a) change the way people did things, b) change the way people thought about themselves and their world, or c) change the course of history? Artifact 3:(Your artifacts do not have to be physical objects; they can be something intangible, like a law or a belief, a person or group of people, or an event)Lesson (ex 2.03): Description-Who:What:When:Where:Explanation- Your explanation should be at least two sentences and explain the historical significance of the artifact and why you feel the artifact important enough to be included in your exhibit (Why). Consider the following in your explanation: did the artifact a) change the way people did things, b) change the way people thought about themselves and their world, or c) change the course of history? Artifact 4:(Your artifacts do not have to be physical objects; they can be something intangible, like a law or a belief, a person or group of people, or an event)Lesson (ex 2.03): Description-Who:What:When:Where:Explanation- Your explanation should be at least two sentences and explain the historical significance of the artifact and why you feel the artifact important enough to be included in your exhibit (Why). Consider the following in your explanation: did the artifact a) change the way people did things, b) change the way people thought about themselves and their world, or c) change the course of history? Artifact 5:(Your artifacts do not have to be physical objects; they can be something intangible, like a law or a belief, a person or group of people, or an event)Lesson (ex 2.03): Description-Who:What:When:Where:Explanation- Your explanation should be at least two sentences and explain the historical significance of the artifact and why you feel the artifact important enough to be included in your exhibit (Why). Consider the following in your explanation: did the artifact a) change the way people did things, b) change the way people thought about themselves and their world, or c) change the course of history? III Homework: Homework 2 < > Save Part 1 of 2 O Points: 0 of 1 The parametric equations and parameter intervals for the motion of a particle in the xy-plane are given below. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. x= cos (21), y= sin (21), Osts 2. [9]. Suppose that a ball is dropped from an initial height of 300 feet, and subsequently bounces infinitely many times. Each time it drops, it rebounds vertically to a height 90% of the previous bouncing