There are 720 different ways to position six individuals in a line for a photo.
How to calculate the valueFrom the information, the number of ways six people can be placed in a line for a photo can be determined using the expression 6!.
6! is the factorial of 6, which is the sum of all positive numbers ranging from 1 to 6. So,
6! = 6 x 5 x 4 x 3 x 2 x 1
When we simplify this expression, we get:
6! = 720
As a result, there are 720 different ways to position six individuals in a line for a photo.
Learn more about word problem on
https://brainly.com/question/21405634
#SPJ1
Show your calculation steps dearly Correct you answer to 4 decimal places and report the measurement unit when applicable. Question 1 (10 marks) A salad shop is selling fruit cups. Each fruit cup consists of two types of fruit, strawberries and blue berries. The weight of strawberries in a fruit cup is normally distributed with mean 160 grams and standard deviation 10 grams. The weight of blue berries in a fruit cup is normally distributed with mean u grams and standard deviation o grams. The weight of strawberries and blue berries are independent, and it is known that the weight of a fruit cup with average of 300 grams and standard deviation of 15 grams. (a) Find the values of u and o (b) The weights of the middle 96.6% of fruit cups are between (300 - K. 300 + K) grams. Find the value of K.
C) The weights of the middle 96.6% of fruit cups are between (L1, L2) grams. Find the values of LI and L2.
(a) The values of u is 140 g and o is 13.42 g. (b) The value of K in (300 - K. 300 + K) grams is 27.15 g. C) The weights of the middle 96.6% of fruit cups are between (L1, L2) grams. The values of LI is 272.85 g and L2 is 327.15 g.
(a) The mean weight of blueberries is:
300 g - 160 g = 140 g
The standard deviation of the weight is:
Var(X + Y) = Var(X) + Var(Y)
Adding the variances:
15^2 = 10^2 + o^2
Solving for o:
o = sqrt(15^2 - 10^2) = 13.42 g
Therefore, the values of u and o are u = 140 g and o = 13.42 g.
(b) Since the distribution is normal, we can use the standard normal distribution to find K.
The middle 96.6% of a standard normal distribution corresponds to the interval (-1.81, 1.81) (using a table or calculator). Therefore,
K = 1.81 * 15 = 27.15 g
Therefore, the weights of the middle 96.6% of fruit cups are between 300 - 27.15 = 272.85 g and 300 + 27.15 = 327.15 g.
(c) Using the standard normal distribution to find the corresponding interval on the standard normal scale:
(-1.81, 1.81)
We can then scale this interval to the distribution of the weight of fruit cups by dividing by the standard deviation and multiplying by 15 g:
L1 = 300 + (-1.81) * 15 = 272.85 g
L2 = 300 + 1.81 * 15 = 327.15 g
Therefore, the weights of the middle 96.6% of fruit cups are between 272.85 g and 327.15 g.
Know more about weights here:
https://brainly.com/question/86444
#SPJ11
Look at picture! It is all written there
Answer:
In/out
-18, -19
-17, -18
-15, -16
-7, -8
0, -1
14, 13
Step-by-step explanation:
the rule states "subtract 1" so if you look at the In, -15 for example goes to -16 for the out which proves that -15-1 is -16. so for all the In's you subtract each number by 1. to FIND a In from the out you just add 1. So just follow the rules and look at the rules carefully!
Parker has 9 gallons of water. How many quarts of water does he have?
Answer: 36 quarts
Step-by-step explanation:
pretty much just do 9 * 4 qts
hope this helped!!
Answer: Parker has 36 Quarts of water.
We are given the following:
Parker has 9 gallons of water.We are asked to find:
How many Quarts of Water does he have.This question strictly revolves the around the conversion of units. In other words, in order to answer this question, we must know how many quarts are in a gallon.
Fortunately, we know that 4 quarts = 1 gallon.
Since Parker possesses 9 gallons of water, we would do [tex]4*9=36[/tex]. Arriving us at our answer of 36 quarts of water.
Parker has 36 quarts of water.
2) A gho with a cost price of Nu 750 was sold for Nu 900. What was the percent markup?
The percent markup is 20%
The selling price of the Nu is 900
The cost price of the Nu is 750
The percent markup can be calculated as follows
= 900-750/750 × 100
= 150/750 × 100
= 0.2 × 100
= 20%
Hence the percent markup is 20%
Read more on percent markup here
https://brainly.com/question/29259999
#SPJ1
Find the value of sin N rounded to the nearest hundredth, if necessary
The value of the identity sin N = 3/5
How to determine the valueTo determine the value of the identity, we need to know the different trigonometric identities. These identities are;
cosinesinetangentcotangentsecantcosecantFrom the information given, we have that;
The angle of the triangle is N
The opposite side of angle N is 3
The hypotenuse side of angle N is 5
Using the sine identity, we have;
sin N = 3/5
Learn more about trigonometric identities at: https://brainly.com/question/7331447
#SPJ1
Find the area of the composite figure. In neccesary, round your answer to the nearest hundredth.
The area of the circle is approximately 55.39 square inches.
The circumference of the circle is approximately 26.38 inches.
What is the Area and Circumference of a Circle?The area of a circle = πr²
The circumference of the circle = 2πr
Where, r is the radius of the circle, which is half of the diameter of the circle.
Therefore, we have:
radius (r) = 8.4/2 = 4.2 inches
π = 3.14
Thus:
The area of the circle = πr² = 3.14 * 4.2²
Area ≈ 55.39 square inches [nearest hundredth]
The circumference of the circle = 2πr = 2 * 3.14 * 4.2
Circumference ≈ 26.38 inches.
Learn more about the circumference on:
https://brainly.com/question/30381834
#SPJ1
1. Find the component form and magnitude of the vector AB with
the following initial and terminal points.
i. A(12, 41), B(52, 33)
ii. A(8, 14), B(12, 3)
iii. A(9, -2, 5), B(8, 5, 11) (3D space)
i. To find the component form of the vector AB, we subtract the coordinates of A from the coordinates of B:
AB = <52 - 12, 33 - 41> = <40, -8>
To find the magnitude of the vector AB, we use the formula:
|AB| = sqrt((40)^2 + (-8)^2) = sqrt(1600 + 64) = sqrt(1664) ≈ 40.79
ii. Similarly, we find the component form of AB:
AB = <12 - 8, 3 - 14> = <4, -11>
And the magnitude of AB:
|AB| = sqrt((4)^2 + (-11)^2) = sqrt(157) ≈ 12.53
iii. To find the component form of AB in 3D space, we subtract the coordinates of A from the coordinates of B:
AB = <8 - 9, 5 - (-2), 11 - 5> = <-1, 7, 6>
To find the magnitude of AB, we use the formula:
|AB| = sqrt((-1)^2 + (7)^2 + (6)^2) = sqrt(86) ≈ 9.27
To learn more about Component Form & Vector : https://brainly.com/question/4088563
#SPJ11
Find the area of the composite figure by matching the area of each part below.
Area of the semi-circle
Area of the triangle
Total area of figure
USE 3.14 for pi! Round to the nearest hundredth if necessary!
Answer:
Area of the semi-circle:
(1/2)π(2^2) = 2π = 6.28 square centimeters
Area of the triangle:
(1/2)(4)(5.7) = 11.4 square centimeters
Total area:
6.28 + 11.4 = 17.68 square centimeters
Which is the area of the rectangle?
A rectangle of length 150 and width 93. Inside the rectangle, there is one segment from one opposite angle of base to the base. The length of that segment is 155.
The area of the rectangle is 13, 950 square unit.
We have,
length = 150
width= 93
So, Area of rectangle
= length x width
= 150 x 93
= 13950 square unit.
Thus, the required Area is 13, 950 square unit.
Learn more about Area here:
https://brainly.com/question/27683633
#SPJ1
researcher records the following scores for an Olympic gymnast following her routine: 9.9, 9.8, 9.6, 9.5, 9.7, 9.1, 8.9, and 9.8. What is the range for the scores?
1.0 (9.9 to 8.9)
0.3 (9.8 to 9.5)
0.5 (9.6 to 9.1)
It is not possible to compute a range with an even number of scores.
The range for the scores is 1.0 (from 9.9 to 8.9). The range is the difference between the highest and lowest numbers in a set of numbers. In this case, the highest score is 9.9 and the lowest score is 8.9, so the range is 1.0.
In mathematics, the range of a function can refer to one of two similar terms:
the common area of the function
The image of the function
Given two groups X and Y, the binary relation f between X and Y is a (exact) function (X to Y), if there is a y in Y for every x in X, so f is associated with y. The sets X and Y are called the area of f and the common domain, respectively.
The range is a measure of dispersion in a set of numbers. To find the range, you need to subtract the lowest score from the highest score. In this case, the scores for the Olympic gymnast are: 9.9, 9.8, 9.6, 9.5, 9.7, 9.1, 8.9, and 9.8.
First, identify the highest and lowest scores:
Highest score: 9.9
Lowest score: 8.9
Next, subtract the lowest score from the highest score:
Range = 9.9 - 8.9
The range for the scores is 1.0 (9.9 to 8.9).
Your answer: 1.0 (9.9 to 8.9)
Learn more about Range:
brainly.com/question/28135761
#SPJ11
Triangle BHY is shown, where m
mLNYB= (3x +81)°.
H
B
a. Determine the value of x. Show your work.
Y
N
The value of x is equal to 17.
What is the exterior angle theorem?In Mathematics, the exterior angle theorem or postulate is a theorem which states that the measure of an exterior angle in a triangle is always equal in magnitude (size) to the sum of the measures of the two remote or opposite interior angles of that triangle.
By applying the exterior angle theorem, we can reasonably infer and logically deduce that the sum of the measure of the two interior remote or opposite angles in the triangle BHY is equal to the measure of angle x (∠NYB);
m∠BHY + m∠HBY = m∠NYB
(2x + 7)° + (8x - 18)° = (4x + 91)°
10x - 11 = 4x + 91
10x - 4x = 91 + 11
6x = 102
x = 102/6
x = 17.
Read more on exterior angle theorem here: brainly.com/question/28034179
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
Given two independent random samples with the following results: n_1 = 561 n_2=741 p_1 =0.72 p_2 = 0.82 Can it be concluded that the proportion found in Population 2 exceeds the proportion found in Population 1? Use a significance level of alpha = 0.05 for the test. Step 1 of 5: State the null and alternative hypotheses for the test.
H0: p1 = p2 (the proportions are equal)
Ha: p2 > p1 (the proportion in Population 2 exceeds that in Population 1)
Hypothesis testing involves making a statement about a population parameter (such as a mean or a proportion) based on a sample of data. The statement is made in the form of two hypotheses: the null hypothesis (H0) and the alternative hypothesis (Ha).
The null hypothesis is the default assumption that there is no significant difference between the two populations being compared. In this case, the null hypothesis would be that the proportion found in Population 2 is not significantly different from the proportion found in Population 1.
The alternative hypothesis is the statement we are trying to support with our evidence. In this case, the alternative hypothesis would be that the proportion found in Population 2 exceeds the proportion found in Population 1.
So, in step 1 of hypothesis testing, we would state the null and alternative hypotheses as follows:
H0: p1 = p2 (the proportions are equal)
Ha: p2 > p1 (the proportion in Population 2 exceeds that in Population 1)
To learn more about making visit:
https://brainly.com/question/31428646
#SPJ11
(b) What is the probability of obtaining x= 126 or more individuals with the characteristic? That is, what is P(p20.63)?
P(p≥ 0.63)=
(Round to four decimal places as needed.)
in example
Get more help.
G
The probability of obtaining 126 or more individuals with the characteristic, P(p ≥ 0.63) is 0.5.
What is the probability?The binomial distribution is used to approximate the probability.
The mean of the binomial distribution is np is 200 * 0.63
mean = 126
The standard deviation is √(np(1-p)) = √(200 * 0.63 * 0.37)
standard deviation = 5.18.
Standardize the random variable p as follows:
z = (x - μ) / σ
z = (126 - 126) / 5.18 = 0
Using a calculator to find the probability of z being greater than or equal to 0, the given probability is 0.5.
Learn more about probability at: https://brainly.com/question/24756209
#SPJ1
Tom bought $72 worth of merchandise at a yard sale and sold it for $84 at a flea market. To the nearest percent, by what percent did he increase his investment?
Tom increased his investment by 16.67% percent when he sold the merchandise at the flea market.
Given that Tom bought $72 worth of merchandise at a yard sale
Tom sold it for $84 at a flea market.
We have to find the percent did he increase his investment
Tom's initial investment was $72, and he sold the merchandise for $84. The difference between these amounts is:
$84 - $72 = $12
To express this difference as a percentage of his initial investment, we can use the formula:
percent increase = (difference / initial investment) x 100%
Substituting the values we have:
percent increase = ($12 / $72) x 100%
= 0.1667 x 100%
= 16.67%
Hence, Tom increased his investment by approximately 16.67% when he sold the merchandise at the flea market.
To learn more on Percentage click:
https://brainly.com/question/24159063
#SPJ1
an auditorium can see 1800 and there's always a capacity for shells the owner wants to increase revenue by raising ticket prices tickets currently cost $6.00 and he estimates that for each $0.50 increase in price 100 few people were 10 what pressure he said it takes to make the most money based on this scenario
HELPP
Answer:
Step-by-step explanation:
To find the optimal ticket price that will maximize revenue, we need to determine the price point where the increase in revenue from selling each ticket at a higher price is greater than the decrease in revenue from selling fewer tickets due to the higher price.
Let's start by calculating the current revenue generated at the current ticket price of $6.00:
Current revenue = 1800 x $6.00 = $10,800
Now, we need to determine the effect of increasing ticket prices by $0.50 on the number of tickets sold:
For each $0.50 increase in ticket price, 100 fewer people will attend. So, for a $0.50 increase, the new ticket price will be $6.50, and the number of attendees will be:
1800 - 100 = 1700
For a $1.00 increase, the new ticket price will be $7.00, and the number of attendees will be:
1700 - 100 = 1600
And so on.
We can create a table to calculate the revenue at different price points:
Ticket Price Number of Tickets Sold Revenue
$6.00 1800 $10,800
$6.50 1700 $11,050
$7.00 1600 $11,200
$7.50 1500 $11,250
$8.00 1400 $11,200
$8.50 1300 $11,050
$9.00 1200 $10,800
As we can see from the table, the optimal ticket price that will maximize revenue is $7.50, where the revenue is $11,250. Beyond this point, the decrease in attendance outweighs the increase in ticket price, resulting in a decrease in revenue.
Therefore, the owner should increase the ticket price to $7.50 to maximize revenue.
Find all real zeros of the function.
h(x)=-5x(x−2)(16)
If there is more than one answer, separate them with commas.
zero(s):
00
X
The zeroes of the function as required to be determined in the task content are; 0, 2, -4, 4.
What are the real zeroes of the function?It follows from the task content that the zeroes of the given function; f(x) = -5x (x - 2) (x² - 16) is to be determined.
To determine the zeroes; we have;
-5x = 0; x = 0
x - 2 = 0; x = 2
x² - 16 = 0; x² = 16; x = ± 4.
Ultimately, the zeroes of the function are; 0, 2, -4, 4.
Read more on zeroes of a function;
https://brainly.com/question/65114
#SPJ1
Use polar coordinates to find the volume of the given solid.
Enclosed by the hyperboloid −x2 − y2 + z2 = 6 and the plane z = 3
-x2 - y2 + 9 = 6 >>> x2 + y2= 3 so r2 = 3 >>> squart 0<=r <=3
My question is that why negative square root of 3 is not included in the range???
In polar coordinates, the radial distance "r" is defined as the distance from the origin to a point in the plane. Since distance cannot be negative, we only consider the positive square root of 3 in the range for this problem. So, the correct range for "r" is 0 ≤ r ≤ √3, and negative square root of 3 is not included because it doesn't represent a valid distance in polar coordinates.
To find the volume of the given solid enclosed by the hyperboloid −x2 − y2 + z2 = 6 and the plane z = 3 using polar coordinates, we need to express the equation of the hyperboloid in terms of polar coordinates.
Substituting x = rcosθ and y = rsinθ, we get:
−r2cos2θ − r2sin2θ + z2 = 6
Simplifying, we get:
z2 = 6 - r2
Since the plane z = 3 intersects the hyperboloid, we have:
3 = √(6 - r2)
Solving for r, we get:
r = √3
Hence, the range for r is 0 ≤ r ≤ √3.
In summary, the negative square root of 3 is not included in the range of r because r represents a distance and cannot be negative. The volume of the solid can be found by integrating the function f(r,θ) = √(6 - r2) over the range 0 ≤ r ≤ √3 and 0 ≤ θ ≤ 2π using polar coordinates. The result will be in cubic units and can be obtained by evaluating the integral.
Learn more about coordinates here : brainly.com/question/16634867
#SPJ11
What is the area of the base of this right triangular prism?
hellp me pls
Step-by-step explanation:
Area of a triangle = 1/2 base leg * height
area = 1/2 * 9 * 6 = 27 cm^2
Answer: 27 cm²
Step-by-step explanation:
To find the area of the base of this right triangular prism we can use the area formula for a triangle. Make sure you are using the correct base (b) and height (H) in the formula that apply to the base triangle.
Given:
A = [tex]\frac{bH}{2}[/tex]
Substitute known values:
A = [tex]\frac{(9\;cm)(6\;cm)}{2}[/tex]
Multiply:
A = [tex]\frac{54\;cm^2}{2}[/tex]
Divide:
A = 27 cm²
the average age of community college students is 24.6 years. state the null and alternative hypothesis
The null hypothesis states that the average age of community college students is equal to 24.6 years. The alternative hypothesis states that the average age of community college students is not equal to 24.6 years.
In other words, the null hypothesis assumes that the given average age is accurate, and the alternative hypothesis suggests that the given average age is either higher or lower than 24.6 years. These hypotheses can be tested through statistical analysis to determine if there is sufficient evidence to reject the null hypothesis and accept the alternative hypothesis. This analysis can provide insights into the characteristics of the community college student population and inform decisions related to education policy and programs.
Learn more about hypothesis here:
brainly.com/question/27515741
#SPJ11
in (x-2)+in(x+1)=2
x = -2.6047
x = 4.2312
x = 3.652
x = 3.6047
Answer:
Step-by-step explanation:
The number in your question is expressed in scientific notation, which is typically used to express numbers that are either too large or too small. The number in scientific notation is expressed as a power of 10. A positive exponent means the # is large whereas if the exponent is negative, then the # is small.
3.652 x 10-4 --> negative exponent, therefore, # is small.
All you need to do is to convert this number to standard notation by moving the decimal 4 places to the left.
3.652 x 10-4 = 0.0003652
Kim made 3 batches of this fruit punch recipe. Combine: 70 milliliters of strawberry juice 500 milliliters of pineapple juice 2 liters of apple juice How many liters of fruit punch did Kim make?
For made a fruit punch, Kim used the 3 batches of this fruit punch recipe. From unit conversion, the total quantity in litres used to fruit punch is equals to the 2.570 L.
We have Kim made 3 batches of this fruit punch recipe. It includes the combination of following,
quantity of strawberry juice = 70 mL
quantity of apple juice = 2 L
quantity of pineapple juice = 500 mL
We have to determine the number of liters of fruit punch he made. Using the unit conversion,
one liters = 1000 mililiters
=> 1 mL = 0.001 L ( conversion factor)
so, quantity of strawberry juice = 70 mL = 70× 0.001 L = 0.070 mL
quantity of pineapple juice = 500 mL = 500× 0.001 L = 0.500 L
So, total quantity of fruit punch made by Kim in liters = strawberry juice + pineapple juice + apple juice
= 0.070 L + 0.500 L + 2 L
= 2.570 L
Hence, the required value is 2.570 liters.
For more information about unit conversion, visit:
https://brainly.com/question/4158962
#SPJ4
HELP PLEASE 100 POINTS!!!
Answer:
56.52 units³-------------------------------
Volume of cylinder formula:
V = πr²hWe are given values:
π = 3.14, r = 3 units,h = 2 units.Substitute and calculate the volume:
V = 3.14*3²*2 = 56.52 units³Part B What will be the area, in square inches, of the piece of sheet metal after both sections are cut and removed?
The dimensions of section B are 36 inches by 48 inches, and the area of the piece of sheet metal after both sections are cut and removed is 6336 square inches.
Given the width and length of a rectangular piece of sheet metal as 60 inches and 44 inches, we need to find the dimensions of section B and the area of the piece of sheet metal after both sections are cut and removed.
The length of rectangle B can be found as TR = SR - ST = PQ - ST, where SR and PQ are opposite sides of the rectangle. Here, PQ is the length of the rectangular sheet metal, which is 60 inches, and ST is the width of the rectangle WVTX, which is 24 inches. Therefore, the length of rectangle B is:
TR = PQ - ST = 60 - 24 = 36 inches
The breadth of rectangle B can be found as UR = QR - QV - VT - TU. Here, QR and PS are opposite sides of the rectangle PQRS, so QR = PS = 144 inches. Also, QV is the width of rectangle WVTX, which is 36 inches, and VT and TU are the lengths of rectangle WVTX, which are both 24 inches. Therefore, the breadth of rectangle B is:
UR = QR - QV - VT - TU = 144 - 36 - 24 - 36 = 48 inches
So, the dimensions of section B are 36 inches by 48 inches.
Next, we need to find the area of the piece of sheet metal after both sections are cut and removed.
The area of rectangle B is the product of its length and breadth, which is:
Area of rectangle B = length × breadth = 36 × 48 = 1728 square inches
The area of rectangle WVTX is the product of its length and breadth, which is:
Area of rectangle WVTX = length × breadth = 24 × 24 = 576 square inches
The area of rectangle PQRS is the product of its length and breadth, which is:
Area of rectangle PQRS = PQ × PS = 60 × 144 = 8640 square inches
Therefore, the area of the piece of sheet metal after both sections are cut and removed is:
Area of the piece of sheet metal = Area of rectangle PQRS - Area of rectangle B - Area of rectangle WVTX
= 8640 - (1728 + 576)
= 8640 - 2304
= 6336 square inches
Learn more about the area of a rectangle here:
https://brainly.com/question/16586387
#SPJ1
How many different simple random samples of size 4 can be obtained from a population whose size is 48? The number of simple random samples which can be obtained is ____. (Type a whole number.)
The number of simple random samples of size 4 that can be obtained from a population of size 48 is 194,580.
To find the number of different simple random samples of size 4 that can be obtained from a population whose size is 48, we can use the combination formula. The combination formula is written as:
C(n, k) = n! / (k!(n-k)!)
where n is the population size (48), k is the sample size (4), and ! denotes a factorial (e.g., 5! = 5 × 4 × 3 × 2 × 1).
So, in this case:
C(48, 4) = 48! / (4!(48-4)!)
C(48, 4) = 48! / (4!44!)
C(48, 4) = (48 × 47 × 46 × 45) / (4 × 3 × 2 × 1)
C(48, 4) = 194580
Therefore, the number of simple random samples of size 4 that can be obtained from a population of size 48 is 194,580.
Learn more about "sample": https://brainly.com/question/24466382
#SPJ11
The Higher Education Research Institute at UCLA collected data from 203,967 incoming first-time, full-time freshmen from 270 four-year colleges and universities in the U.S. 71.6% of those students replied that, yes, they believe that same-sex couples should have the right to legal marital status. Suppose that you randomly pick nine first-time, full-time freshmen from the survey. You are interested in the number that believes that same-sex couples should have the right to legal marital status. What is the standard deviation (σ)?
The standard deviation (σ) of the number of students who believe that same-sex couples should have the right to legal marital status among a random sample of nine students is approximately 1.168.
To find the standard deviation (σ) of the number of students who believe that same-sex couples should have the right to legal marital status among a random sample of nine students, we need to use the binomial distribution.
Given that 71.6% of all first-time, full-time freshmen believe that same-sex couples should have the right to legal marital status, the probability (p) that a randomly selected student from this population believes this is:
p = 0.716
Since we are interested in the number of students in a sample of nine who believe this, we can model this using the binomial distribution with parameters n = 9 and p = 0.716.
The formula for the standard deviation of a binomial distribution is:
σ = sqrt(n * p * (1 - p))
Substituting in the values of n and p, we get:
σ = sqrt(9 * 0.716 * (1 - 0.716))
σ = 1.168
Therefore, the standard deviation (σ) of the number of students who believe that same-sex couples should have the right to legal marital status among a random sample of nine students is approximately 1.168.
To learn more about deviation visit:
https://brainly.com/question/2554578
#SPJ11
Segment AB falls on line 6x + 3y = 12. Segment CD falls on line 4x+2y=8. What is true about segments AB and CD?
O They are parallel because they have the same slope of -2.
O They are parallel because they have the same slope of
2
O They are lines that lie exactly on top of one another because they have the same slope and the same y-intercept.
O They are lines that lie exactly on top of one another because they have the same slope and a different y-intercept
Answer:
(c) They are lines that lie exactly on top of one another because they have the same slope and the same y-intercept.
Step-by-step explanation:
You want to know the relation between the lines ...
6x +3y = 124x +2y = 8Standard formThese equations can be put into standard form by removing the common factor from the coefficients:
6x +3y = 12 ÷3 ⇒ 2x +y = 44x +2y = 8 ÷2 ⇒ 2x +y = 4We see that the equations give the same line. That is ...
(c) They are lines that lie exactly on top of one another because they have the same slope and the same y-intercept.
<95141404393>
Q.5.f(x,y) = x + y; if both x & y are even f(x,y) = x - y; if both & y are odd f(x, y) = 2x – y2, if any one of them is odd & other is = even. Find f(2,3) - f(2,4) a)-31 b) -56 c)-11 d) -13
f(x,y) = x + y; if both x & y are even f(x,y) = x - y; if both & y are odd f(x, y) = 2x – y2, if any one of them is odd & other is = even. Then the result of f(2,3) - f(2,4) is -11, which corresponds to option c).
Determining f(2,3)
Since x = 2 (even) and y = 3 (odd)
Then, the function definition for this case is f(x,y) = 2x - y²
f(2,3) = 2(2) - 3² = 4 - 9 = -5
Determining f(2,4)
Since x = 2 (even) and y = 4 (even)
Then, the function definition for this case is f(x,y) = x + y.
f(2,4) = 2 + 4 = 6
Now, Calculating f(2,3) - f(2,4)
f(2,3) - f(2,4) = -5 - 6 = -11
Therefore, the answer is option c) -11.
To learn more about functions: https://brainly.com/question/11624077
#SPJ11
a 6. Let Xn be a bounded martingale and let T be a stopping time (NOT necessarily bounded). Prove that E[XT] = E[X] by considering the stopping times Tn= min(T, n).]
For a bounded martingale Xₙ and stopping time T (not necessarily bounded), E[XT] = E[X] is proved by considering the stopping times Tₙ= min(T, n) and using the Optional Stopping Theorem.
To prove that E[XT] = E[X], we can utilize the Optional Stopping Theorem.
First, we know that since Xₙ is a bounded martingale, it satisfies the conditions for the Optional Stopping Theorem stating that for any stopping time T, [tex]E[X_{T}] = E[X_{0}][/tex], where [tex]X_{0}[/tex] is the initial value of Xₙ.
Now, taking into consideration stopping times Tn = min(T, n). As Tn is a bounded stopping time, we utilize the Optional Stopping Theorem to get:
[tex]E[X_{Tn}] = E[X_{0}][/tex]
We can rewrite this as:
[tex]E[X_{Tn}] - E[X_{0}] = 0[/tex]
Now, if we take the limit as n→∞.As Xn is a bounded martingale, it follows that E[|Xn|] < infinity for all n. Thus, utilizing Dominated Convergence Theorem, we get:
[tex]lim_{n} E[X_{Tn}] = E[lim_{n} X_{Tn}] = E[XT][/tex]
Similarly, [tex]lim_{n} E[X_{0}] = E[X].[/tex]
Therefore, taking the limit as n→∞ in our previous equation, we get:
E[XT] - E[X] = 0
Or, equivalently:
E[XT] = E[X]
So, E[XT] = E[X] by considering the stopping times Tn= min(T, n)].
To know more about the martingale visit:
https://brainly.com/question/31700267
#SPJ11
a large sports supplier has many stores located world wide. a regression model is to be constructed to predict the annual revenue of a particular store based upon the population of the city or town where the store is located, the annual expenditure on promotion for the store and the distance of the store to the center of the city.
The use of regression modeling in retail analytics can help businesses make data-driven decisions that ultimately lead to increased profits and growth.
Based on the information given, it seems that the large sports supplier is interested in predicting the annual revenue of a particular store based on various factors, such as population, promotion expenditure, and distance from the city center. This is a common approach in retail analytics, where regression models are often used to predict sales or revenue based on different variables.
By constructing a regression model, the sports supplier can gain valuable insights into which factors are most strongly associated with revenue, and how they can optimize their operations to increase sales. For example, they may find that stores located closer to the city center tend to have higher revenue, or that increased promotion expenditure leads to a greater increase in revenue in smaller towns.
Know more about regression here:
https://brainly.com/question/14313391
#SPJ11
Find the volume of the prism
Answer:
Volume formal= L × W × W
Volume formal= 6 × 8 × 9
Answer= 6×8×9= 432