The probability distribution for arandom variable x is given in the table.-105101520Probability.2015051.25115Find the probability that -5 < x < 5

The Probability Distribution For Arandom Variable X Is Given In The Table.-105101520Probability.2015051.25115Find

Answers

Answer 1

Answer:

P = 0.30

Explanation:

From the table, we see that:

When: x = -5, Probability = 0.15

When: x = 0, Probability = 0.05

When: x = 5, Probability = 0.1

Therefore, the probability of -5 ≤ x ≤ 5 is obtained by the sum of the probabilities from -5 to 5, we have:

[tex]\begin{gathered} P=0.15+0.05+0.10 \\ P=0.30 \end{gathered}[/tex]

Therefore, the probability is 0.30


Related Questions

Type the correct answer in each box use numerals instead of words What are the values of the function

Answers

Given the following function:

[tex]h(x)=\begin{cases}{3x-4;x<0} \\ {2x^2-3x+10;0\leq x<4} \\ {2^x};x\ge4\end{cases}[/tex]

We will find the value of the function when x = 0 and when x = 4

First, when x = 0, the function will be equal to the second deifinition

So, h(0) will be as follows:

[tex]h(0)=2(0)^2-3(0)+10=10[/tex]

Second, when x = 4, the function will be equal to the third definition

So, h(4) will be as follows:

[tex]h(4)=2^4=16[/tex]

So, the answer will be:

[tex]\begin{gathered} h(0)=10 \\ h(4)=16 \end{gathered}[/tex]

Find the exact value of the expression. No decimal answers. Show all work.Hint: Use an identity to expand the expression.

Answers

Given the expression:

[tex]\cos (\frac{\pi}{4}+\frac{\pi}{6})[/tex]

You can expand it by using the following Identity:

[tex]\cos \mleft(A+B\mright)\equiv cos(A)cos(B)-sin(A)sin(B)[/tex]

You can identify that, in this case:

[tex]\begin{gathered} A=\frac{\pi}{4} \\ \\ B=\frac{\pi}{6} \end{gathered}[/tex]

Then, you can expand it as follows:

[tex]\cos (\frac{\pi}{4}+\frac{\pi}{6})=cos(\frac{\pi}{4})cos(\frac{\pi}{6})-sin(\frac{\pi}{4})sin(\frac{\pi}{6})[/tex]

By definition:

[tex]\cos (\frac{\pi}{4})=\frac{\sqrt[]{2}}{2}[/tex][tex]\cos (\frac{\pi}{6})=\frac{\sqrt[]{3}}{2}[/tex][tex]\sin (\frac{\pi}{4})=\frac{\sqrt[]{2}}{2}[/tex][tex]\sin (\frac{\pi}{6})=\frac{1}{2}[/tex]

Then, you can substitute values:

[tex]=(\frac{\sqrt[]{2}}{2})(\frac{\sqrt[]{3}}{2})-(\frac{\sqrt[]{2}}{2})(\frac{1}{2})[/tex]

Simplifying, you get:

[tex]\begin{gathered} =(\frac{\sqrt[]{2}}{2})(\frac{\sqrt[]{3}}{2})-(\frac{\sqrt[]{2}}{2})(\frac{1}{2}) \\ \\ =\frac{\sqrt[]{6}}{4}-\frac{\sqrt[]{2}}{4} \end{gathered}[/tex][tex]=\frac{\sqrt[]{6}-\sqrt[]{2}}{4}[/tex]

Hence, the answer is:

[tex]\frac{\sqrt[]{6}-\sqrt[]{2}}{4}[/tex]

If there are 3 possible outcomes for event A, 5 possible outcomes for event B, and 2 possible outcomes for event C, how many possible outcomes are there for event A & event B & event C? Note that these three events are independent of each other. The outcome of one event does not impact the outcome of the other events.

Answers

Possible outcomes for events A and events B and events C which are independent of each other is equal to 3/100.

As given in the question,

Total number of outcomes = 10

Possible outcomes of event A =3

P(A) =3/10

Possible outcome of event B =5

P(B) =5/10

Possible outcome of event C =2

P(C)=2/10

A, B, C are independent of each other

P(A∩B∩C) = P(A) × P(B) × P(C)

                  = (3/10) × (5/10) × (2/10)

                  = 3/100

Therefore, possible outcomes for events A and events B and events C which are independent of each other is equal to 3/100.

Learn more about possible outcomes here

brainly.com/question/3726145

#SPJ1

Graph the function f(x) = 4 sin(-2x) on the graph below

Answers

Answer:

Explanation:

Here, we want to plot the graph of f(x)

The general equation of a sine graph is:

[tex]y\text{ = A sin (Bx + C) + D}[/tex]

where A is the amplitude of the curve

B is -2

C is 0

D is 0

Mathematically, the period of the graph and B are related as follows:

[tex]\begin{gathered} \text{Period = }\frac{2\pi}{|B|} \\ \\ Period\text{ = }\frac{2\pi}{2} \\ \\ \text{Period = }\pi \end{gathered}[/tex]

What this means is that the distance between two peaks on the graph is pi

We have the plot as follows:

The area of a rectangular garden is 289 square feet. The garden is to be enclosed by a stone wall costing $22 per linear foot. The interior wall is to be constructed with brick costing $9 per linear foot. Express the cost C, to enclose the garden and add the interior wall as a function of x.

Answers

the area of the rectangular garden is 289 square ft

so

[tex]x\times y=289[/tex]

so the value of y is 289/x

the outer perimeter of the garden is 2(x+y)

now perimeter is 2(x+289/x)

it is given that the outer wall cost 22 $ per linear foot

so the total cost is

[tex]\begin{gathered} 22\times2(x+\frac{289}{x}) \\ 22\times(2x+\frac{578}{x}) \end{gathered}[/tex]

it is given that the cost of an interior wall is 9 $

and the length of the interior wall is x

the total cost of the interior wall is 9x

so the total cost of the wall is 9x +22 (2x + 578/x).

and the correct answer is 9x +22 (2x + 578/x). option B.

O A. 1376 square inchesO B. 672 square inchesO C. 1562 square inchesO D. 936 square inches

Answers

The seat back cushion is a cuboid. The surafce area can be calculated below

[tex]\begin{gathered} l=26\text{ inches} \\ h=5\text{ inches} \\ w=18\text{ inches} \\ \text{surface area=2(}lw+wh+hl\text{)} \\ \text{surface area=}2(26\times18+18\times5+5\times26) \\ \text{surface area=}2(468+90+130) \\ \text{surface area=}2\times688 \\ \text{surface area}=1376inches^2 \end{gathered}[/tex]

what is the answer to this? 3√5+15√5

Answers

what is the answer to this? 3√5+15√5​

we have

3√5+15√5​=18√5

answer is 18√5

I have the answers for the first two but now I'm just confused

Answers

[tex]\begin{gathered} 3)\text{ Toal cost is:} \\ \text{ x + 0.07x + 35} \\ 1.07x\text{ + 35} \\ \end{gathered}[/tex]

First use the Pythagorean theorem to find the exact length of the missing side. Then find the exact values of the six trigonometric functions for angle 0.

Answers

The trigonometric functions are given by the following formulas:

[tex]\begin{gathered} \sin \theta=\frac{a}{h} \\ \cos \theta=\frac{b}{h} \\ \tan \theta=\frac{a}{b} \\ \cot \theta=\frac{b}{a} \\ \sec \theta=\frac{h}{b} \\ \csc \theta=\frac{h}{a} \end{gathered}[/tex]

Where we call a to the opposite leg to the angle θ (the side whose measure equals 20), b is the adjacent leg to angle θ (the side whose measure equals 21) and we call h to the hypotenuse (the larger side, whose measure equals 29).

By replacing 20 for a, 21 for b and 29 for h into the above formulas, we get:

[tex]\begin{gathered} \sin \theta=\frac{20}{29} \\ \cos \theta=\frac{21}{29} \\ \tan \theta=\frac{20}{21} \\ \csc \theta=\frac{29}{20} \\ \sec \theta=\frac{29}{21} \\ \cot \theta=\frac{21}{20} \end{gathered}[/tex]

which of the following terms best describes a group of equations in which at least one equation is nonlinear, all of the equations have the same variables, and all of the equations are used together to solve a problem?a) solution of nonlinear equationb) graph of nonlinear equationc) graph of linear equationsd) system of nonlinear equations

Answers

Solution

- The correct answer is "A system of nonlinear equations"

- This is because the definition of a system of nonlinear equations is is a system of two or more equations in two or more variables containing at least one equation that is not linear.

Final Answer

OPTION D

If triangle ABC with C =90°,if C = 31MM & B equals 57° then a equals

Answers

SOLUTION

Step1; Draw the Triangle and locate the angles

We are to obtain the value of a that is the side |BC|

Applying trigonometry ratios we have

[tex]\begin{gathered} \text{hypotenuse}=c=31 \\ \text{Adjacent}=a \\ \theta=57^0 \end{gathered}[/tex][tex]\begin{gathered} \cos \theta=\frac{adjacent}{Hypotenuse} \\ \cos 57^0=\frac{a}{31}\ldots.\text{ cross multiply} \\ a=31\times cos57^0 \end{gathered}[/tex][tex]\begin{gathered} a=31\times0.8999 \\ a=27.89 \end{gathered}[/tex]

Then the value of a = 28mm to the nearest whole number

Which of the following is not a valid way of starting the process of factoring60x² +84x +49?Choose the inappropriate beginning below.O A. (x )(60)OB. (2x (30%)O C. (6x X10x)OD. (2x (5x )

Answers

Given the equation:

60x^2 + 84x + 49

We are to determine among the options which is not a process of factorizing.

In factorizing, you get factors of the given numbers of the equation that when they are being multiplied or added, they give the numbers in the equation.

So, looking at the options, the only option that does not satisfies the requirement for starting a factorization process is B, which is (2x (30%)

Therefore, the inappropriate process of starting factorization among the option is option B which is (2x (30%).

The number of skateboards that can be produced by a company can be represented by the function f(h) = 325h, where h is the number of hours. The total manufacturing cost for b skateboards is represented by the function g(b) = 0.008b2 + 8b + 100. Which function shows the total manufacturing cost of skateboards as a function of the number of hours? g(f(h)) = 325h2 + 80h + 100 g(f(h)) = 3425h + 100 g(f(h)) = 845h2 + 2,600h + 100 g(f(h)) = 2.6h2 + 2,600h + 100

Answers

The function which shows the total manufacturing cost of skateboards as a function of the number of hours is; g(f(h)) = 845h2 + 2,600h + 100.

Which function shows the manufacturing cost as a function of number of hours?

It follows from the task content that the function which shows the manufacturing cost as a function of the number of hours be determined.

Since, the number of skateboards is given in terms of hours as; f(h) = 325h and;

The manufacturing cost, g is given in terms of the number of skateboards, b manufactured;

The function instance which represents the manufacturing cost as a function of hours is; g(f(h)).

Therefore, we have; g(f(h)) = 0.008(325h)² + 8(325h) + 100.

Hence, the correct function is; g(f(h)) = 845h2 + 2,600h + 100.

Read more on function instances;

https://brainly.com/question/28839856

#SPJ1

A circular pool measures 12 feet across. One cubic yard of concrete is to be used to create a circular border of uniform width around the pool. If the border is to have a depth of 6 inches, how wide will the border be?

Answers

SOLUTION:

Step 1:

In this question, we are given the following:

A circular pool measures 12 feet across.

One cubic yard of concrete is to be used to create a circular border of uniform width around the pool.

If the border is to have a depth of 6 inches, how wide will the border be?

Step 2:

From the question, we can see that:

[tex]6\text{ inches = 0. 5 feet}[/tex]

[tex]1\text{ cubic yard = 3 ft x 3ft x 3ft = }27ft^3[/tex][tex]\begin{gathered} \text{Let the radius of the pool = ( 6+x ) feet} \\ \text{Let the width of the concrete that is used to } \\ \text{create the circular border = 6 feet} \end{gathered}[/tex][tex]\text{Let the depth of the border = 6 inches = }\frac{6}{12}=\text{ 0. 5 inches}[/tex]

Step 3:

[tex]\begin{gathered} U\sin g\text{ } \\ \pi R^2h\text{ - }\pi r^2\text{ h = 27} \\ \pi(6+x)^2\text{ 0. 5 - }\pi(6)^2\text{ 0. 5 = 27} \\ \text{0. 5}\pi(x^2\text{ + 12x + 36 - 36 ) = 27} \\ 0.\text{ 5 }\pi(x^2\text{ + 12 x) = 27} \\ \text{Divide both sides by 0. 5 }\pi\text{ , we have that:} \end{gathered}[/tex][tex]x^2\text{ + 12 x - (}\frac{27}{0.\text{ 5}\pi})=\text{ 0}[/tex]

Solving this, we have that:

CONCLUSION:

From the calculations above, we can see that the value of the x:

( which is the width of the border ) = 1. 293 feet

(correct to 3 decimal places)

A board game that normally costs $30 is on sale for 25 percent off. What is the sale price of the game?
$22.50
$27.50
$32.50
$37.50

Answers

$22.50

30.00 times 0.25= 7.5
30.00-7.50=22.50

Type the correct answer in each box.1020PX1150Parallel lines pand gare cut by two non-parallel lines, mand n, as shown in the figure.►gmnThe value of xisdegrees, and the value of y isdegrees.ResetNext

Answers

EXPLANATION

Given the parallel lines that are cutted by two non-parallel lines, m and n, the supplementary angle to 102 degrees is by the supplementary angles theorem 180-102= 78 degrees.

By the alternate interior angles theorem, the value of x is 78 degrees.

Also, by the corresponding angles theorem, the value of y is 115 degrees.

PLEASE HELP! *not a test, just a math practice that I don't understand.

Answers

1) Let's analyze those statements according to the Parallelism Postulates/Theorems.

8) If m∠4 = 50º then m∠6 =50º

Angles ∠4 and ∠6 are Alternate Interior angles and Alternate Interior angles are always congruent

So m∠4 ≅ m∠6

9) If m∠4 = 50, then m∠8 =50º

Angles ∠4 and ∠8 are Corresponding angles and Corresponding angles are always congruent

10) If m∠4 = 50º, then m∠5 =130º

Angles ∠4 and ∠5 are Collateral angles and Collateral angles are always supplementary. So

A net of arectangular pyramidis shown. Therectangular base haslength 24 cm andwidth 21 cm. Thenet of the pyramidhas length 69.2 cmand width 64.6 cm.Find the surfacearea of the pyramid.

Answers

Solution

The Image will be of help

To find x

[tex]\begin{gathered} x+24+x=69.2 \\ 2x+24=69.2 \\ 2x=69.2-24 \\ 2x=45.2 \\ x=\frac{45.2}{2} \\ x=22.6 \end{gathered}[/tex]

To find y

[tex]\begin{gathered} y+21+y=64.6 \\ 2y+21=64.6 \\ 2y=64.6-21 \\ 2y=43.6 \\ y=\frac{43.6}{2} \\ y=21.8 \end{gathered}[/tex]

The diagram below will help us to find the Surface Area of the Pyramid

The surface area is

[tex]SurfaceArea=A_1+2A_2+2A_3[/tex]

To find A1

[tex]A_1=24\times21=504[/tex]

To find A2

[tex]\begin{gathered} A_2=\frac{1}{2}b\times h \\ 2A_2=b\times h \\ 2A_2=21\times22.6 \\ 2A_2=474.6 \end{gathered}[/tex]

To find A3

[tex]\begin{gathered} A_3=\frac{1}{2}bh \\ 2A_3=b\times h \\ 2A_3=24\times21.8 \\ 2A_3=523.2 \end{gathered}[/tex]

The surface Area

[tex]\begin{gathered} SurfaceArea=A_1+2A_2+2A_3 \\ SurfaceArea=504+474.6+523.2 \\ SurfaceArea=1501.8cm^2 \end{gathered}[/tex]

Thus,

[tex]SurfaceArea=1501.8cm^2[/tex]

the x intercept of a functions is called?

Answers

In this case, the answer is very simple:

x

decide whether the events are independent or dependent and explain your answer.-drawing a ball from a lottery machine, not replacing it, and then drawing a second ball.

Answers

If the probability of an event is unaffected by other events, it is called an independent event. If the probability of an event is affected by other events, then it is called a dependent event.

A ball is drawn from a lottery machine. Then, a second ball is drawn without replacing the first ball. Let T be the number of balls in the lottery machine initially. Before the first ball is drawn, the number of balls in the machine is T. At the time the second ball is drawn, the number of balls in the machine is T-1. From T-1 balls, the second ball is drawn. So, the event of drawing the second ball is affected by the event of drawing the first ball.

Therefore, the event of drawing a ball from a lottery machine, not replacing it, and then drawing a second ball is a dependent event.


[tex]x \geqslant - 2[/tex]
PLEASE HELP!!
A)
B)
C)
D)​

Answers

Answer:

B

Step-by-step explanation:

[tex]x\geq -2[/tex] means that [tex]x[/tex] can be all values that are greater than -2, and the line under the inequality sign adds that [tex]x[/tex] can be equal to it as well.

Since B represents all values of [tex]x[/tex] that are greater than -2 along with -2 itself due to the closed circle, it is the correct answer.

Answer:

it is c i took the test i hope this helps

Find the component form of the sum of u and v with direction angles u and v.

Answers

We will have the following:

[tex]\begin{gathered} U_x=14cos(45) \\ \\ U_y=14sin(45) \\ \\ V_x=80cos(180) \\ \\ V_y=80sin(180) \end{gathered}[/tex]

Then:

[tex]\begin{gathered} \sum_x=\frac{14\sqrt{2}}{2}+(-80)\Rightarrow\sum=7\sqrt{2}-80 \\ \\ \sum_y=\frac{14\sqrt{2}}{2}+(0)\Rightarrow\sum=7\sqrt{2} \end{gathered}[/tex]

So, the component form for the sum of the vectors will be:

[tex]u+v=(7\sqrt{2}-80)i+(7\sqrt{2})j[/tex]

This figure shows two similar polygons; DEFG∼TUVS. Find the value of x.

Answers

According to the question, both polygons are similar. It means you can use proportions to find the value of x.

[tex]\frac{DE}{TU}=\frac{EF}{UV}[/tex]

Replace for the given values in the picture

[tex]\begin{gathered} \frac{x}{6}=\frac{4}{12} \\ x=\frac{4}{12}\cdot6 \\ x=2 \end{gathered}[/tex]

x has a value of 2.

An online company is advertising a mixer on sale for 25 percent off the original price for 260.99. What is the sale price for the mixer . Round your answer to the nearest cent , if necessary.

Answers

$195.74

1) We can find out the sale price for the mixer, by writing out an equation:

In the discount factor 1 stands for 100% and 25% =0.25

2) So we can calculate it then this way:

[tex]\begin{gathered} 260.99(1-0.25)= \\ 260.99\text{ (0.75)=}195.74 \\ \end{gathered}[/tex]

Note that we have rounded it off to the nearest cent 195.7425 to 195.74 since the last digit "4" is lesser than 5, we round it down.

3) So the price of that mixer, with a discount of 25% (off) is $195.74

Alternatively, we can find that price by setting a proportion:

0.25 = 1/4

Writing out the ratios we have:

260.99 --------- 1

x ---------------- 1/4

Cross multiplying it we have:

260.99 x 1/4 = x

x=65.2475

Subtracting that value 25% (65.2475) from 260.99 we have:

260.99 - 65.2475 =195.7425 ≈ 195.74

hi i dont understand this question, can u do it step by step?

Answers

Problem #2

Given the diagram of the statement, we have:

From the diagram, we see that we have two triangles:

Triangle 1 or △ADP, with:

• angle ,θ,,

,

• hypotenuse ,h = AP,,

,

• adjacent cathetus, ac = AD = x cm.

,

• opposite cathetus ,oc = DP,.

Triangle 2 or △OZP, with:

• angle θ,

,

• hypotenuse, h = OP = 4 cm,,

,

• adjacent cathetus, ac = ZP = AP/2,.

(a) △ADP: sides and area

Formula 1) From geometry, we know that for right triangles Pitagoras Theorem states:

[tex]h^2=ac^2+oc^2.[/tex]

Where h is the hypotenuse, ac is the adjacent cathetus and oc is the opposite cathetus.

Formula 2) From trigonometry, we have the following trigonometric relation for right triangles:

[tex]\cos \theta=\frac{ac}{h}.[/tex]

Where:

• θ is the angle,

,

• h is the hypotenuse,

,

• ac is the adjacent cathetus.

(1) Replacing the data of Triangle 1 in Formulas 1 and 2, we have:

[tex]\begin{gathered} AP^2=AD^2+DP^2\Rightarrow DP=\sqrt[]{AP^2-AD^2}=\sqrt[]{AP^2-x^2\cdot cm^2}\text{.} \\ \cos \theta=\frac{AD}{AP}=\frac{x\cdot cm}{AP}\text{.} \end{gathered}[/tex]

(2) Replacing the data of Triangle 2 in Formula 2, we have:

[tex]\cos \theta=\frac{ZP}{OP}=\frac{AP/2}{4cm}.[/tex]

(3) Equalling the right side of the equations with cos θ in (1) and (2), we get:

[tex]\frac{x\cdot cm}{AP}=\frac{AP/2}{4cm}.[/tex]

Solving for AP², we get:

[tex]\begin{gathered} x\cdot cm=\frac{AP^2}{8cm}, \\ AP^2=8x\cdot cm^2\text{.} \end{gathered}[/tex]

(4) Replacing the expression of AP² in the equation for DP in (1), we have the equation for side DP in terms of x:

[tex]DP^{}=\sqrt[]{8x\cdot cm^2-x^2\cdot cm^2}=\sqrt[]{x\cdot(8-x)}\cdot cm\text{.}[/tex]

(ii) The area of a triangle is given by:

[tex]S=\frac{1}{2}\cdot base\cdot height.[/tex]

In the case of triangle △ADP, we have:

• base = DP,

,

• height = AD.

Replacing the values of DP and AD in the formula for S, we get:

[tex]S=\frac{1}{2}\cdot DP\cdot AD=\frac{1}{2}\cdot(\sqrt[]{x\cdot(8-x)}\cdot cm)\cdot(x\cdot cm)=\frac{x}{2}\cdot\sqrt[]{x\cdot(8-x)}\cdot cm^2.[/tex]

(b) Maximum value of S

We must find the maximum value of S in terms of x. To do that, we compute the first derivative of S(x):

[tex]\begin{gathered} S^{\prime}(x)=\frac{dS}{dx}=\frac{1}{2}\cdot\sqrt[]{x\cdot(8-x)}\cdot cm^2+\frac{x}{2}\cdot\frac{1}{2}\cdot\frac{8-2x}{\sqrt{x\cdot(8-x)}}\cdot cm^2 \\ =\frac{1}{2}\cdot\sqrt[]{x\cdot(8-x)}\cdot cm^2+\frac{x}{2}\cdot\frac{(4-x^{})}{\cdot\sqrt[]{x\cdot(8-x)}}\cdot cm^2 \\ =\frac{1}{2}\cdot\frac{x\cdot(8-x)+x\cdot(4-x)}{\sqrt[]{x\cdot(8-x)}}\cdot cm^2 \\ =\frac{x\cdot(6-x)}{\sqrt[]{x\cdot(8-x)}}\cdot cm^2\text{.} \end{gathered}[/tex]

Now, we equal to zero the last equation and solve for x, we get:

[tex]S^{\prime}(x)=\frac{x\cdot(6-x)}{\sqrt[]{x\cdot(8-x)}}\cdot cm^2=0\Rightarrow x=6.[/tex]

We have found that the value x = 6 maximizes the area S(x). Replacing x = 6 in S(x), we get the maximum area:

[tex]S(6)=\frac{6}{2}\cdot\sqrt[]{6\cdot(8-6)}\cdot cm^2=3\cdot\sqrt[]{12}\cdot cm^2=6\cdot\sqrt[]{3}\cdot cm^2.[/tex]

(c) Rate of change

We know that the length AD = x cm decreases at a rate of 1/√3 cm/s, so we have:

[tex]\frac{d(AD)}{dt}=\frac{d(x\cdot cm)}{dt}=\frac{dx}{dt}\cdot cm=-\frac{1}{\sqrt[]{3}}\cdot\frac{cm}{s}\Rightarrow\frac{dx}{dt}=-\frac{1}{\sqrt[]{3}}\cdot\frac{1}{s}\text{.}[/tex]

The rate of change of the area S(x) is given by:

[tex]\frac{dS}{dt}=\frac{dS}{dx}\cdot\frac{dx}{dt}\text{.}[/tex]

Where we have applied the chain rule for differentiation.

Replacing the expression obtained in (b) for dS/dx and the result obtained for dx/dt, we get:

[tex]\frac{dS}{dt}(x)=(\frac{x\cdot(6-x)}{\sqrt[]{x\cdot(8-x)}}\cdot cm^2\text{)}\cdot(-\frac{1}{\sqrt[]{3}}\cdot\frac{1}{s}\text{)}[/tex]

Finally, we evaluate the last expression for x = 2, we get:

[tex]\frac{dS}{dt}(2)=(\frac{2\cdot(6-2)}{\sqrt[]{2\cdot(8-2)}}\cdot cm^2\text{)}\cdot(-\frac{1}{\sqrt[]{3}}\cdot\frac{1}{s})=-\frac{8}{\sqrt[]{12}}\cdot\frac{1}{\sqrt[]{3}}\cdot\frac{cm^2}{s}=-\frac{8}{\sqrt[]{36}}\cdot\frac{cm^2}{s}=-\frac{8}{6}\cdot\frac{cm^2}{s}=-\frac{4}{3}\cdot\frac{cm^2}{s}.[/tex]

So the rate of change of the area of △ADP is -4/3 cm²/s.

Answers

(a)

• (i), Side DP in terms of x:

[tex]DP(x)=\sqrt[]{x\cdot(8-x)}\cdot cm\text{.}[/tex]

• (ii), Area of ADP in terms of x:

[tex]S(x)=\frac{x}{2}\cdot\sqrt[]{x\cdot(8-x)}\cdot cm^2.[/tex]

(b) The maximum value of S is 6√3 cm².

(c) The rate of change of the area of △ADP is -4/3 cm²/s when x = 2.

i inserted a picture of the questioncan you state whether the answer is A, B, C OR D

Answers

Looking at the triangles, they are both right triangles. They have congruent legs = 12. They have congruent acute angles of 45 degerees. Thus, they are congruent triangles. The answer is True

Evaluate the function: g(x)=-x+4Find: g(b-3)

Answers

The given function is:

[tex]g(x)=-x+4[/tex]

Value of :

[tex]g(b-3)=?[/tex][tex]\begin{gathered} g(x)=-x+4 \\ x=b-3 \\ g(b-3)=-(b-3)+4 \\ g(b-3)=-b+3+4 \\ g(b-3)=7-b \end{gathered}[/tex]

so the g(b-3) is 7-b.

which expression could be substituted for x in the second equation to find the value of y?

Answers

Substitution

We have the system of equations:

x + 2y = 20

2x - 3y = -1

To solve it with the substitution method, we need to solve the first equation for x and substitute it in the second equation.

Subtracting 2y to the first equation:

x = -2y + 20

This expression corresponds to choice B.

Do they have the same value? Is +3 equal to -3 and -10 equal to +10? Why?

Answers

Answer:

+3 and -3 do not have the same value

+10 and -10 do not have the same value

Explanation:

+3 is a positive number while -3 is a negative number

+3 ≠ -3 (Since one is positive and the other is negative)

The difference between +3 and -3 = 3 - (-3) = 6

Therefore, +3 and -3 do not have the same value

+10 is a positive number while -10 is a negative number

+10 ≠ -10 (Since one is positive and the other is negative)

The difference between +10 and -10 = 10 - (-10) = 20

Therefore, +10 and -10 do not have the same value

7. Simplify(6x + y)s

Answers

Answer:

6xs + ys

Explanations:

The given expression is:

(6x + y)s

This can be simplified by simplying expanding the brackets

The equation then becomes:

6xs + ys

Answer:

6xs + ys

Step-by-step explanation:

Other Questions
A and \angle BB are complementary angles. If \text{m}\angle A=(6x+2)^{\circ}mA=(6x+2) and \text{m}\angle B=(4x+18)^{\circ}mB=(4x+18) , then find the measure of \angle AA. appropriate grade 11 speech topics Question 10 of 12, Step 1 of 29/14CorrectConsider the following quadratic equation:3.x2 - 13x + 2 = -2Step 1 of 2: Using the standard form ax2 + bx + c = 0 of the given quadratic equation, factor theleft hand side of the equation into two linear factors.AnswerKeypadKeyboard Shortcuts= 0 if a researcher were interested in the contributions of slow-wave sleep vs. rem sleep on memory performance, one viable way to study this would be for one group of participants to study something and take a test after sleeping in the early half of the night, and another group to study that same thing and take the test after sleeping in the later half of the night. group of answer choices true false The latest crime statistics in the united states suggest that eighteen-to-twenty-four-year-olds make up about percent of the population but account for percent of criminal arrests, while people sixty-five and older make up more than percent of the population but account for less than percent of arrests true or false: unlike ptsd and acute stress disorder, adjustment disorder does not have a set of specific symptoms an individual must meet for diagnosis; whatever symptoms the individual is experiencing must be related to the stressor and must be significant enough to impair social, occupational, or other important areas of functioning. linebacker co. has 7 percent coupon bonds on the market with 9 years left to maturity. the bonds make annual payments. if the bond currently sells for $1,080, what is its ytm? Tyrone randomly interviewed 558th graders at the WestwoodMall Saturday afternoon to determine their reason for going to the mall. Based on the results of his survey, he made the following claim:Two out of four middle school students visit the mall to go shopping.Explain why this claim is misleading.a. Tyrone only interviewed students in the food court.b. Tyrone did not survey enough 8th graders to draw a valid conclusion.c. Tyrone did not use a random sample of 8th graders.d. Since Tyrone surveyed only 8th graders, his sample is not representative of all middle school students. A construction crew has just built a new road. They built the road at a rate of 18.75 kilometers per week. They worked for 3 weeks. How many kilometers of road did they build? Simplify -(x+ 5) + 3x completely.A. -4x+ 5OOB. 2x + 5C. 2x - 5D. -4x - 5 I don't understand how to do this (this is a practice assessment) Help I need a example for graphing two variable inequalities Natalia and her friends held a bake sale to benefit a local charity. The friends sold 15 cakes on the first day and 22 cakes on the second day of the bake sale. They collected $60 on the first day and $88 on the second day. Write an equation to represent the amount R Natalia and her friends raised after selling c cakes. The Andes in western South America are an example of a landform that arises from the _____.collision of two continental platescollision of an oceanic and a continental platecollision of two oceanic platescollision of magma with the earths crust discuss three ways that urban life in america worsened in the gilded age, compared to the experience of previous generations, and what policies or actions were developed to alleviate these issues. nancy had 209 dollars to spend on 6 of the most mundane books.after buying them she had 17 dollars. on average, how much did each book cost simplify the following expression using the distributive property and combining like terms:3(y-4) -5(y+8) 6. How can you use different properties and changes to identify a chemical substance? Choose all that apply.Specific pure substances have their own unique properties.When separating mixtures, you can use their properties to determine what separation technique is needed.You can compare properties and changes of an unknown substance to a known one to see if they are the same or differentDifferent substances will have different properties and will change in different ways.You can create classifications of substances based on their properties and/or changes. The chinese knew how to produce silk by about 2700 b.c. is this true or false. what was Tomas Paines common sense about and how did it further inspire patriot leader to call for revolution?