The reason distance has a greater effect on the force of gravity between our Earth and Moon is because the distance between them is relatively large.
The reason distance has a greater effect on the force of gravity between the Earth and the Moon is because the force of gravity between two objects decreases with the square of the distance between them. This is known as the inverse square law of gravity.
The force of gravity between two objects is proportional to the product of their masses, and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as,
F = G * (m1 * m2) / r^2
where F is the force of gravity, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them.
In the case of the Earth and the Moon, their masses are fixed, so the only variable that affects the force of gravity between them is the distance. As the distance between the Earth and the Moon increases, the force of gravity between them decreases rapidly, according to the inverse square law.
To know more about moon, here
brainly.com/question/2337043
#SPJ4
--The complete question is, Fill in the blank, the reason distance has a greater effect on the force of gravity between our earth and moon is because the distance between them is ________________.--
a heat pump with a cop of 4.0 supplies heat to a building at a rate of 100 kw. determine the power input to the heat pump.
The power input to the heat pump is 25 kW.
The COP (coefficient of performance) of the heat pump is 4.0. This means that for every unit of power consumed by the heat pump, it supplies four units of heat to the building.
The rate at which the heat pump supplies heat to the building is 100 kW.
Therefore, the power input to the heat pump can be calculated as:
Power input = Power output / COP
Power input = 100 kW / 4.0
Power input = 25 kW
Hence, the power input to the heat pump is 25 kW.
To know more about power input click here:
https://brainly.com/question/1141300
#SPJ11
find the force between charges of +10.0 x 10*C and -50.0 x 10*C located 20>0cm apart
20 cm apart, the charges of +1.0 x 10⁻⁶ C and –1.0 x 10⁻⁶ C exert a force of 449.5 N on one another. This force is directed from the negative charge to the positive charge.
How can the force between two charges be determined?According to Coulomb's law, the force F between two point charges, q1 and q2, that are separated by a distance r, is computed as F=k|q1q2|r2.
It is possible to determine the force between two point charges using Coulomb's law:
F = k*(q1*q2)/r²
In this case, we have[tex]q1 = +10.0 x 10^-6 C, q2 = -50.0 x 10^-6 C, and r = 20 cm = 0.2 m.[/tex]
Plugging in these values, we get:
[tex]F = (8.99 x 10^9 N m^2/C^2) * [(+10.0 x 10^-6 C) * (-50.0 x 10^-6 C)] / (0.2 m)^2[/tex]
Simplifying, we get:
F = -449.5 N.
To know more about Charge visit:-
https://brainly.com/question/9194793
#SPJ1
while the general equations for the first and second law are written in terms of how the universe changes, dr. laude's preference is that we quickly rewrite them to reflect changes in what?
This is due to the fact that the first and second laws of thermodynamics are universally applicable fundamental principles that can be utilised to examine particular systems and processes.
How do chemical processes relate to the first and second laws of thermodynamics?The part of thermodynamics that deals with chemical reactions is called chemical thermodynamics. The first law states that energy is conserved and cannot be created or destroyed. Second law: When natural processes in a closed system result in a rise in entropy, they are spontaneous.
The second law of thermodynamics is what?According to the second rule of thermodynamics, an isolated system that is out of equilibrium over time must increase in entropy until it reaches the ultimate equilibrium value.
To know more about thermodynamics visit:-
https://brainly.com/question/15591590
#SPJ1
an asteroid orbits the sun in a highly elliptical orbit. as the asteroid gets closer to the sun, how are the total mechanical energy and gravitational potential energy of the asteroid-sun system changing, if at all?
The total mechanical energy and gravitational potential energy of the asteroid-sun system will change.
Asteroid-sun systemAs the asteroid gets closer to the sun in its highly elliptical orbit, both the total mechanical energy and gravitational potential energy of the asteroid-sun system will change.
The total mechanical energy of the asteroid-sun system is the sum of its kinetic energy and gravitational potential energy. As the asteroid moves closer to the sun, its kinetic energy will increase due to the increase in speed, but its gravitational potential energy will decrease due to the decrease in distance from the sun. Therefore, the total mechanical energy of the asteroid-sun system will remain constant, according to the law of conservation of energy.
However, if the asteroid encounters any gravitational forces or other external forces, such as a collision with another object or a thrust from a spacecraft, its mechanical energy can change.
More on asteroids can be found here: https://brainly.com/question/19161842
#SPJ1
a 6 mf capacitor, a 10 mf capacitor, and a 16 mf capacitor are connected in parallel. what is their equivalent capacitance?
The equivalent capacitance of a 6 mF capacitor, a 10 mF capacitor, and a 16 mF capacitor connected in parallel is: 32 mF
This is because when capacitors are connected in parallel, their total capacitance is equal to the sum of their individual capacitances. The formula for calculating the equivalent capacitance (C) of capacitors connected in parallel is: C = C1 + C2 + C3 + ... In this example, C = 6 mF + 10 mF + 16 mF = 32 mF.
Capacitors are electrical components that store energy in the form of an electric field between two conductors (plates). When capacitors are connected in parallel, the electric field between the plates of each capacitor is the same, but the overall capacitance is increased due to the combined plate area of all the capacitors.
This increase in plate area is why the equivalent capacitance of the three capacitors in this example is 32 mF, which is larger than any of the individual capacitances.
To know more about capacitors refer here:
https://brainly.com/question/17176550#
#SPJ11
5. does it take the same amount of work to speed your car up from 25 m/s to 30 m/s as it does to speed it up from 30 m/s to 35 m/s? if not, which situation requires more work? why? use the cer framework to answer the question.
The same amount of work to speed up a car from 25 m/s to 30 m/s as it does from 30 m/s to 35 m/s is different because it requires more work to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s.
Thus, the correct answer is "No, it doesn't".
The CER framework is a tool that can be used to answer questions that involve scientific principles. CER stands for Claim, Evidence, and Reasoning.
1. Claim: It does not take the same amount of work to speed up a car from 25 m/s to 30 m/s as it does to speed it up from 30 m/s to 35 m/s.
2. Evidence: Work is equal to force times distance, which means that the amount of work required to accelerate an object depends on the distance over which the force is applied. If the distance is shorter, less work will be done.
The distance over which the force is applied to speed up a car from 30 m/s to 35 m/s is shorter than the distance over which the force is applied to speed it up from 25 m/s to 30 m/s. This implies that more work is required to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s. The equation for calculating work is W = F x D, where W is work, F is force, and D is distance.
3. Reasoning: Therefore, it requires more work to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s. This is because the distance over which the force is applied to speed up a car from 30 m/s to 35 m/s is shorter than the distance over which the force is applied to speed it up from 25 m/s to 30 m/s. The work done on an object is a measure of the energy transferred to it. When more work is done on an object, more energy is transferred to it.
For more information about CER framework refers to the link: https://brainly.com/question/11661619
#SPJ11
A 23.3 kg boy is moving along a circular path with the constant speed of 2.7 m/s. What is the magnitude of the centripetal force acting on the boy if the radius of the circle is 12.9 m. Note : Calculate the answer to 3 (three) significant figures by presenting it in normal ( decimal) form. Don't forget to include the unit.
The centripetal force for the given question would be 16.3 N.
Explanation:
The magnitude of the centripetal force acting on a 23.3 kg boy moving along a circular path with a constant speed of 2.7 m/s and the radius of the circle is 12.9 m is 16.3 N (newton).
What is centripetal force?
Centripetal force is the net force acting on an object moving in a circular path toward the center of the circle. It always points towards the center of the circle, hence the name "center-seeking force".
What is the formula for centripetal force?
The formula for centripetal force is Fc = (mv²)/r, where Fc is the centripetal force, m is mass, v is velocity or speed and r is the radius of the circular path.
In the given question: Mass, m = 23.3 kgVelocity, v = 2.7 m/s, Radius, r = 12.9. To calculate centripetal force,
F = (m x v^2)/r
Putting the given values in the above formula: F = (23.3 kg x (2.7 m/s)^2)/12.9 m= 16.3 N (newton)
Therefore, the magnitude of the centripetal force acting on the boy is 16.3 N (newton).
To know more about centripetal force, visit:
https://brainly.com/question/11324711
#SPJ11
a 1-kg rock that weighs 10 n is thrown straight upward at 20 m/s. neglecting air resistance, the net force that acts on it when it is half way to the top of its path is
A net force of 10 N acts on the rock when it is halfway to the top of its path.
The net force acting on the rock can be calculated using the following equation:
Fnet = ma
Where Fnet is the net force, m is the mass, and a is the acceleration.
When the rock is halfway to the top of its path, its velocity is zero since it momentarily stops at the top of its motion. As a result, its acceleration is equal to the acceleration due to gravity, which is -10 m/s² since it is acting in the opposite direction to the upward direction. This is the gravitational force acting on the rock.
We can now calculate the net force acting on the rock at this point in its motion:
Fnet = ma
Fnet = (1 kg)(-10 m/s²)
Fnet = -10 N
Since the acceleration due to gravity is acting downward and the rock is moving upward, the net force is equal to the force of gravity, which is 10 N.
Therefore, the net force that acts on the rock when it is halfway to the top of its path is -10 N or 10 N in the downward direction. This net force is equal in magnitude to the weight of the rock.
Learn more about gravity:
https://brainly.com/question/940770
#SPJ11
g what is the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit?
To calculate the ideal banking angle for a gentle turn
The ideal banking angle for a gentle turn of radius R, with velocity v, and coefficient of friction µ between the road and the tires can be calculated by the formula:
Tan(θ) = (v^2) / (gR)
where g is the acceleration due to gravity = 9.81 m/s²
θ is the banking angleIn this problem,
the radius of the gentle turn is R = 1.40 km = 1400 m
The speed limit is v = 105 km/h = 29.1667 m/s
Applying the formula,
Tan(θ) = (29.1667 m/s)^2 / (9.81 m/s² x 1400 m)
= Tan(θ) = 0.41435θ
= Tan^-1(0.41435)θ = 21.25°
Therefore, the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit is 21.25 degrees.
Learn more about ideal banking angle and speed at : https://brainly.com/question/4931057
#SPJ11
in an alternating current circuit that contains a resistor a inductor and a capacitor with 120v how do you find current
In an alternating current circuit that contains a resistor, an inductor, and a capacitor with 120V, you can find the current by using Ohm's Law.
Ohm's Law states that the current is equal to the voltage divided by the resistance.
To calculate the resistance in an alternating current circuit, you must take into account the resistor, inductor, and capacitor.
For example, if the resistor has a resistance of 10 ohms, the inductor has a resistance of 5 ohms, and the capacitor has a resistance of 20 ohms, then the total resistance would be 35 ohms.
Therefore, the current in the circuit would be 120V/35 ohms = 3.43A.
To know more about Ohm's Law, refer here:
https://brainly.com/question/1247379#
#SPJ11
a value of mass is given as 14.6 g to 15.2 g. a value of volume is given as 2.4 to 2.8 m3. state the density using reasonable outer limits.
The density using reasonable outer limits is the density of an object can be determined by dividing its mass (measured in grams, g) by its volume (measured in cubic metres, m3). To calculate the density using the given values of mass and volume, we can use the following formula: Density = Mass/Volume.
Therefore, the density of the given object can be calculated using the outer limits of mass and volume, which are 14.6 g to 15.2 g and 2.4 m3 to 2.8 m3, respectively. The calculated density of the given object is in the range of 5.75 g/m3 to 5.45 g/m3.
To calculate the density, the mass and volume of the object must be known. Mass is a measure of how much matter an object has, and is calculated in grams (g). Volume, on the other hand, is a measure of the amount of space an object takes up, and is calculated in cubic metres (m3).
When these two values are known, the density can be calculated using the formula: Density = Mass/Volume. In this case, the given values of mass and volume are 14.6 g to 15.2 g and 2.4 m3 to 2.8 m3, respectively. By substituting these values into the formula, the density of the object can be calculated as follows:
Density = Mass/Volume
Density = 14.6 g/2.4 m3 = 5.75 g/m3
Density = 15.2 g/2.8 m3 = 5.45 g/m3
Therefore, the density of the given object is in the range of 5.75 g/m3 to 5.45 g/m3.
To know more about density refer here:
https://brainly.com/question/15164682#
#SPJ11
a system releases 690 kj of heat and does 110 kj of work on the surroundings. part a what is the change in internal energy of the system?
A system releases 690 kj of heat and does 110 kj of work on the surroundings then part a what i the change in internal energy of the system -800 kJ.
The change in internal energy of the system can be calculated using the formula
ΔU = Q - W,
where ΔU is the change in internal energy, Q is the heat exchanged, and W is the work done.
In this case, the system releases 690 kJ of heat (Q = -690 kJ) and does 110 kJ of work on the surroundings (W = 110 kJ).
So, ΔU = -690 kJ - 110 kJ = -800 kJ.
The change in internal energy of the system is -800 kJ.
Know more about internal energy here:
https://brainly.com/question/30207866
#SPJ11
I have no clue what im doing..
If work = 100J and time = 20 seconds, what is power
Answer:
5 J/s or 5 watt
Explanation:
Given,
Work (W) = 100 J
Time (t) = 20 s
To find : Power (P)
Formula :
P = W/t
P = 100/20
P = 5 J/s
P = 5 watt
Note : -
J/s and watt are units are power.
A 750-kg roller coaster car drops from rest at a height of 90.0 m along a frictionless track. If the coefficient of kinetic friction due to braking along a horizontal track at the end of the ride is 0.720, over what distance does the car need to brake to come to a complete stop?
a rising parcel of unstable air a rising parcel of unstable air can rise well into the mesosphere. cannot rise very far above the tropopause. can eventually escape into space. will not be slowed by entrainment.
A rising parcel of unstable air is an air mass that is warmer than the surrounding air and is therefore buoyant. It can rise until it reaches an area where its temperature is the same as the surrounding air, the tropopause.
The tropopause is the boundary between the troposphere (the lowest part of the atmosphere) and the stratosphere (the next layer of the atmosphere).
At this level, the air is very stable and so the air parcel cannot rise any further.
The air parcel may eventually escape into space, however it will not be slowed by entrainment, the process by which the parcel loses energy and slows down due to friction.
As the parcel rises, the atmospheric pressure decreases and the temperature increases due to the decrease in air density.
As it rises further, the air pressure decreases until it reaches the tropopause, where it then plateaus.
Once the air reaches the tropopause, it has reached a level of equilibrium and can no longer rise further as the temperature and pressure remain constant.
The tropopause also acts as a barrier to air moving from the stratosphere to the troposphere.
This is due to the temperature inversion that occurs when the temperature in the troposphere decreases with altitude while the temperature in the stratosphere increases with altitude.
This inversion creates a strong stratospheric temperature gradient, making it difficult for air to move between the two layers.
A rising parcel of unstable air can rise well into the mesosphere but cannot rise very far above the tropopause.
The tropopause acts as a barrier to air moving between the troposphere and the stratosphere due to its temperature inversion, and the air parcel may eventually escape into space without being slowed by entrainment.
to know more about buoyant refer here:
https://brainly.com/question/21990136#
#SPJ11
an electric eel can generate a 278-v, 0.8-a shock for stunning its prey. what is the eel's power output?
The electric eel's power output is 222.4 Watts
Given voltage (V) = 278 V
Current (I) = 0.8 A
To find the electric eel's power output, we have to use the formula
P = IV,
Where P is the power output, I is current, and V is the voltage.
So, we can calculate the electric eel's power output as follows:
Power Output (P) = IVP
⇒278 × 0.8
Power Output (P) = 222.4 Watts
Hence, The power output of the electric eel is 222.4 Watts.
To know more about "power output": https://brainly.com/question/866077
#SPJ11
explain the use of air bags and seat belts in terms of momentum and impulse. please provide examples (and calculations) to elaborate your concepts.
Answer:
Explanation:
A seatbelt is designed to stretch a bit when the car decelerates rapidly. You travel forward a little while being stopped - you do not stop sharply as you would if you hit the dashboard. The seatbelt stretching increases the time over which your momentum is changed, thereby decreasing the force experienced by your body.
Airbags are made from a strong coated fabric. They are stored in a module mounted on the steering wheel and dashboard and side panels of the car. The inflation of them is initiated by crash sensors that activate upon impact at speeds of more than 10-15 miles per hour. They are mounted in several locations on the car body. In a crash, the sensor sends an electrical signal to the airbag which then causes the airbag to deploy. It ignites a chemical propellant which produces nitrogen gas, which then inflates the bag itself.
if the frequency of the incoming light is decreased, will the energy of the ejected electrons increase, decrease, or stay the same?
If the frequency of the incoming light is decreased, the energy of the ejected electrons will decrease.
The frequency of the incoming light will affect the energy of the ejected electrons. This is because the energy of the ejected electrons is proportional to the frequency of the incoming light.
The energy of the electrons can be determined using the equation:
E = h * f,
where E is the energy, h is Planck’s constant, and f is the frequency of the incoming light. This equation shows that the energy of the electrons is directly proportional to the frequency of the incoming light.
Therefore, if the frequency of the incoming light is decreased, the energy of the ejected electrons will also decrease.
To know more about frequency, refer here:
https://brainly.com/question/14316711#
#SPJ11
when rotating the platform, the hanging mass should be removed from the platform. question 2 options: true false
The given statement, while the platform is rotating, the hanging mass remains attached to the test mass and is not removed from the platform is true, if the purpose of the experiment or test is to determine the effect of the hanging mass on the rotation or stability of the platform.
In this case, the hanging mass must remain attached to the test mass during the rotation to observe the behavior of the system under the specified conditions. If the purpose of the experiment or test is to study the effect of the hanging mass on the platform's rotation or stability, the hanging mass must remain attached to the test mass during the rotation. This is because the presence of the hanging mass affects the overall weight and center of gravity of the system. Removing the hanging mass would alter the system's behavior and prevent accurate observations of the phenomenon under investigation. Therefore, if the experiment requires the hanging mass to be present, it must remain attached to the test mass while the platform is rotating.
To know more about platform, here
brainly.com/question/22850608
#SPJ4
--The complete question is, While the platform is rotating, the hanging mass remains attached to the test mass and is not removed from the platform. State true/false.--
horses that move with the fastest linear speed on a merry-go-round are located anywhere, because they all move at the same speed. near the center. near the outside.
Horses that move with the fastest linear speed on a merry-go-round are located near the outside.
A merry-go-round is an amusement park ride that comprises a rotating circular platform equipped with seats or mounts for people to ride on. When the ride is operating, the circular platform rotates around a fixed central axis at a constant velocity, while the people on it rotate with the platform. Linear speed refers to the velocity of the object in a straight line path, regardless of its direction of movement.
Therefore, the linear speed of the mounts on the merry-go-round depends on the radius of the circular path they move on. The closer the horse is to the center, the shorter the path it has to cover during one rotation of the platform, meaning it has a slower linear speed. Conversely, the farther the horse is from the center, the longer the path it has to cover, hence it has a faster linear speed. As a result, the mounts located near the outside of the merry-go-round move with the fastest linear speed.
Learn more about the linear speed at:
https://brainly.com/question/12707353
#SPJ11
To determine the location of her center of mass, a physics student lies on a lightweight plank supported by two scales 2.50m apart, as indicated in the figure . If the left scale reads 290 N, and the right scale reads 112 N. What is the student's mass and find the distance from the student's head to her center of mass.
The location of her centre of mass, a physics student lies on a lightweight plank supported by two scales 2.50m apart, as indicated in the figure. If the left scale reads 290 N and the right scale reads 112 N The student's mass is approximately 41 kg, and the distance from her head to her centre of mass is approximately 0.696 m.
To determine the student's mass, we can sum up the readings from both scales, which are measures of force (Newtons) and then convert it to mass using the gravitational acceleration (g = 9.81 m/s²).
Step 1: Calculate the total force acting on the plank:
Total Force = Force_left_scale + Force_right_scale
Total Force = 290 N + 112 N
Total Force = 402 N
Step 2: Convert the total force to mass using gravitational acceleration:
Mass = Total Force / g
Mass = 402 N / 9.81 m/s²
Mass ≈ 41 kg
Now, to find the distance from the student's head to her centre of mass, we'll use the principle of torque equilibrium.
Step 3: Set up the torque equation:
Torque_left_scale = Torque_right_scale
Force_left_scale × Distance_left_scale = Force_right_scale × Distance_right_scale
Let x be the distance from the student's head to her centre of mass. Then, the distance from the left scale to the centre of mass is x, and the distance from the right scale to the centre of mass is (2.50 - x).
Step 4: Plug in the known values and solve for x:
290 N × x = 112 N × (2.50 - x)
Step 5: Simplify the equation and solve for x:
290x = 112(2.50) - 112x
290x + 112x = 112(2.50)
402x = 280
x ≈ 0.696 m
The student's mass is approximately 41 kg, and the distance from her head to her centre of mass is approximately 0.696 m.
For more such questions on centre of mass
brainly.com/question/28021242
#SPJ11
a variable speed motor with an unbalanced is observed to have a displacement of 0.6 inches at resonance and 0.15 at a very high rpm. what is the damping ratio of the system?
The damping ratio of the system can be calculated as 0.13.
What is displacement?
Displacement at resonance, Xn = 0.6 inches
Displacement at very high RPM, Xv = 0.15 inches
Natural frequency of a system is:
f = (1/2π) * √(k/m)
where k is the stiffness of the system and m is its mass.
Let's assume the mass of the system as m and k is the stiffness of the system.
When the motor is at resonance, the frequency of the system is: n = f
where n is the frequency of the system.
When the motor is running at very high rpm, the frequency of the system is given as:v = f
where v is the frequency of the system.
Now, let's assume the damping coefficient of the system as c.
The displacement of the system:
X = [Xn * exp(-ζωnt)] * sin(ωdt)
where X is the displacement of the system, ζ is the damping ratio of the system, ωn is the natural frequency of the system and ωd is the frequency of the applied force.
The maximum value of the displacement is:
Xmax = Xn / (2ζ * √(1 - ζ²))
Here, Xmax = 0.6 inches when the motor is at resonance Xmax = 0.15 inches
when the motor is running at very high RPM, putting the given values of Xmax in the above equation, we can find the value of the damping ratio, ζ.
For resonance:0.6 = Xn / (2ζ * √(1 - ζ²))
=> 2ζ * √(1 - ζ²)
= Xn / 0.6=> 4ζ² * (1 - ζ²)
= Xn² / 0.36=> 4ζ⁴ - 4ζ² + 0.26244
= 0
Solving this quadratic equation gives us the value of ζ as 0.32.
For high RPM:
0.15 = Xn / (2ζ * √(1 - ζ²))
=> 2ζ * √(1 - ζ²)
= Xn / 0.15=> 4ζ² * (1 - ζ²)
= Xn² / 0.0225
=> 4ζ⁴ - 4ζ² + 1.728 = 0
Solving this quadratic equation gives us the value of ζ as 0.13.
To know more about displacement:
https://brainly.com/question/29769926
#SPJ11
most of the mass of the solar system is located in which of the following? responses sun sun jupiter jupiter comets comets earth
Most of the mass of the solar system is located in the Sun. The Sun accounts for over 99% of the total mass of the solar system, with the remaining mass distributed among the planets, asteroids, comets, and other objects.
The solar system is a collection of objects that orbit around the Sun. It consists of the Sun, eight planets and their natural satellites, dwarf planets, asteroids, comets, and other small bodies. The eight planets, listed in order from the Sun, are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
The Sun is at the center of the solar system and contains more than 99% of the mass of the solar system. It is a giant ball of gas, mostly hydrogen, and helium, and is the source of heat and light for the entire solar system.
Learn more about the Sun:
https://brainly.com/question/15837114
#SPJ11
determine the limit on the series resistance so the energy remaining after one hour is at least 85 percent of the initial energy.
The limit on the series resistance so that the energy remaining after one hour is at least 85 percent of the initial energy, is initial energy into 85% by the voltage.
Ohm's Law states that the current in a circuit is directly proportional to the voltage and inversely proportional to the resistance.
Therefore, the total resistance in a circuit can be calculated using the formula: R = V/I
The energy remaining after one hour must be at least 85 percent of the initial energy, we can calculate the resistance by rearranging the formula.
The total resistance can be determined by multiplying the initial energy by 85 percent and dividing it by the voltage. Thus, the limit on the series resistance is [tex]R = (Initial Energy *0.85) / V[/tex].
To learn more about the series resistance:
https://brainly.in/question/28887091
#SPJ11
pry on the power steering reservoir to adjust the tension of the power steering belt. true or false?
The statement "pry on the power steering reservoir to adjust the tension of the power steering belt" is: false.
The tension of the power steering belt is adjusted by adjusting the position of the power steering pump. There is a tension adjustment bolt on the power steering pump that is used to adjust the tension of the power steering belt. The adjustment bolt should be turned clockwise or counterclockwise to adjust the tension of the belt.
A belt tension gauge may be used to ensure that the belt is properly tensioned. A pry bar should not be used on the power steering reservoir to adjust the tension of the power steering belt. This could cause damage to the reservoir or other components of the power steering system. The reservoir should be inspected for damage or leaks, but it should not be used to adjust the tension of the belt.
In summary, the tension of the power steering belt should be adjusted by adjusting the position of the power steering pump, not by prying on the power steering reservoir.
To know more about tension refer here:
https://brainly.com/question/29869473#
#SPJ11
if the rate of internal energy dissipation in a battery is 1.0 watt, and the current produced by the battery is 0.50 amps, what is the internal resistance of the battery?
If the rate of internal energy dissipation in a battery is 1.0 watt, and the current produced by the battery is 0.50 amps, the internal resistance of the battery can be calculated using Ohm's law. Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. The proportionality constant is called the resistance of the conductor, which is expressed mathematically as V = IR, where V is the voltage, I is the current, and R is the resistance.
The power dissipated by the internal resistance of a battery is given by P = I2R, where P is the power, I is the current, and R is the internal resistance. The rate of internal energy dissipation in the battery is given as 1.0 watt, and the current produced by the battery is given as 0.50 amps.
Using Ohm's law, we can calculate the voltage across the battery as V = IR = 0.50 x R. Therefore, the power dissipated by the internal resistance of the battery is P = I2R = (0.50)2 x R = 0.25R.
Equating the power dissipated by the internal resistance of the battery to the rate of internal energy dissipation, we get:
0.25R = 1.0
Solving for R, we get:
R = 1.0/0.25 = 4 ohms.
Therefore, the internal resistance of the battery is 4 ohms.
Internal energy dissipation is the energy that is lost due to friction or resistance in a system. In the case of a battery, internal energy dissipation refers to the energy that is lost due to the internal resistance of the battery. The internal resistance of a battery is a measure of how much energy is lost due to the resistance of the battery's internal components. The higher the internal resistance of the battery, the more energy is lost as heat, which reduces the battery's efficiency.
To know more about Internal energy dissipation refer here:
https://brainly.com/question/15331125#
#SPJ11
HELP ME PLEASE!!!
Which 2 statements are true about this chemical reaction that forms acid rain?
However, in general, acid rain is formed when sulphur dioxide (SO2) and nitrogen oxides (NOx) are emitted into the atmosphere by human activities, such as burning fossil fuels.
Which of the following is incorrect about the main cause of acid rain?The erroneous statement among the following is : Acid rain is largely because to oxides of nitrogen and sulphur The greenhouse effect is to blame for the world's warming. Infrared radiation from the sun cannot reach earth due to the ozone layer.
What does acid rain consist of ?Nitric and sulphuric acids are created when the gases nitrogen oxides and sulphur dioxide interact with the minute droplets of water in clouds. The rain from these clouds falls as very weak acid known as 'Acid rain'.
To know more about radiation visit:-
https://brainly.com/question/28202771
#SPJ1
Question:
"Which two of the following statements are true about the chemical reaction that forms acid rain?
a. Sulfur dioxide and nitrogen oxides react with water to form sulfuric acid and nitric acid.
b. Acid rain can cause damage to buildings and statues made of limestone or marble.
c. Acid rain is only a problem in areas with a high population density.
d. Acid rain has no effect on freshwater ecosystems."
a ball is dropped from a distance 5 m above the ground, and it hits the ground with a certain speed. if the same ball is dropped from a distance 10 m above the ground, its final speed will be
The final speed of the ball dropped from a distance of 10 meters will be 49 m/s.
The final speed of the ball dropped from a distance of 10 meters will be higher than the final speed of the ball dropped from a distance of 5 meters. This is because of the effect of gravity on the ball.
As the ball falls, gravity will pull it toward the ground, giving it a greater speed as it falls further. This increase in speed is known as the "acceleration due to gravity."
When the ball is dropped from 10 meters, the ball will fall faster because of the increased distance it has to travel, allowing gravity to pull it down more quickly.
By the time it reaches the ground, it will have reached a higher velocity.
The equation for this acceleration due to gravity is:
Vf = Vi + g × t
Where Vf is the final speed, Vi is the initial speed, g is the acceleration due to gravity and t is the time.
Therefore, in order to calculate the final speed of the ball dropped from 10 meters, we can use this equation. Assuming the initial speed of the ball is zero and the acceleration due to gravity is 9.8 m/s2, we get:
Vf = 0 + 9.8 × (10/2)
Vf = 49 m/s
So, the final speed of the ball dropped from a distance of 10 meters will be 49 m/s.
to know more about speed refer here:
https://brainly.com/question/28224010#
#SPJ11
logs sometimes float vertically in a lake because one end has become water-logged and denser than the other. what is the average density of a uniform-diameter log that floats with 20.0% of its length above water?
Uneven-diameter logs that float with 20.0% of their length above water have an average density of 0.8g/cm3. The density is the proportion of weight to capacity.
An item it's far less compact that liquid may be supported up liquid water, and hence it floats. More dense objects can sink when submerged in water. Less dense logs float whereas more thick logs sink. A body can change its condition of rest or motion by the application of force
Instead of obliquely reading from either the side, read the scale stick straight from of the end of both the log. → The diameter of a log is only ever calculated within the bark. Employ a log measuring rod to determine the log's small end's "diameter from within bark," also known as "d.i.b."
To know more about force click here
brainly.com/question/29044739
#SPJ4
An ice skater is spinning about a vertical axis with arms fully extended. If the arms are pulled in closer to the body, in which of the following ways are the angular momentum and kinetic energy of the skater affected?
Angular Momentum Kinetic Energy
(A) Increases Increases
(B) Increases Remains Constant
(C) Remains Constant Increases
(D) Remains Constant Remains Constant
(E) Decreases Remains Constant
An ice skater is spinning about a vertical axis with arms fully extended. If the arms are pulled closer to the body, the angular momentum of the skater will remain constant while the kinetic energy of the skater increases. The correct option is C.
The angular momentum of the skater is given by
[tex]L = I\omega[/tex],
where I is the moment of inertia of the skater and ω is the angular velocity.
When the skater pulls their arms in, their moment of inertia decreases due to the decreased distance between their body and the axis of rotation.
According to the conservation of angular momentum, the product of the moment of inertia and angular velocity must remain constant. Therefore, if the moment of inertia decreases, the angular velocity must increase to keep the angular momentum constant.
The kinetic energy of the skater is given by
[tex]K = (1/2)I\omega^2[/tex]
As the moment of inertia decreases and the angular velocity increases, the kinetic energy of the skater also increases because it is proportional to the square of the angular velocity.
Therefore, the correct answer is: (C) Remains Constant Increases. The angular momentum remains constant, while the kinetic energy increases due to the increased angular velocity.
Learn more about angular momentum:
https://brainly.com/question/4126751
#SPJ11