the sds for 1-octanol is provided here. (links to an external site.) is 1-octanol a combustible liquid?

Answers

Answer 1

True. 1-octanol is a combustible liquid with a flashpoint of 86°C and an auto-ignition temperature of 258°C, according to the provided SDS.

The SDS (Safety Data Sheet) for 1-octanol indicates that it is a combustible liquid. According to the SDS, 1-octanol has a flashpoint of 86°C (187°F) and an auto-ignition temperature of 258°C (496°F). These values suggest that 1-octanol can easily ignite in the presence of an ignition source and may burn at relatively low temperatures. Additionally, the SDS provides information on the fire and explosion hazards associated with 1-octanol and recommends appropriate handling procedures and precautions to minimize the risk of fire or explosion. Therefore, it is important to handle 1-octanol with care and follow appropriate safety protocols when working with this substance.

To learn more about combustible liquid, refer:

https://brainly.com/question/28222891

#SPJ4

The complete question is:

the SDS for 1-octanol is provided here. (links to an external site.) is 1-octanol a combustible liquid? True or False.


Related Questions

4. if 1 drop of acid is equal to 50 microliter. calculate the concentration of h ion and the ph of the solution when 1 drop of 0.25 m hcl is added to 3 ml water. does that conform to your observation in part d. if not, why?

Answers

We are given that 1 drop of 0.25 M HCl is added to 3 mL of water, and we need to find the concentration of H+ ions and the pH of the solution is  2.39

First, let's determine the volume of the HCl solution in the mixture. Since 1 drop of acid is equal to 50 microliters, we have 50 microliters = 0.05 mL

Now, let's find the total volume of the mixture (HCl + water):
0.05 mL (HCl) + 3 mL (water) = 3.05 mL

Next, we need to calculate the moles of H+ ions from the HCl solution. We know that the concentration of the HCl solution is 0.25 M, so:
moles of H+ = (0.25 mol/L) × (0.05 L/1000) = 0.0000125 mol

To find the concentration of H+ ions in the mixture, we divide the moles of H+ by the total volume of the mixture:
[H+] = (0.0000125 mol) / (3.05 L/1000) = 0.004098 mol/L

Now we can calculate the pH of the solution using the formula:
pH = -log10[H+]
pH = -log10(0.004098) ≈ 2.39

The pH of the solution is approximately 2.39 after adding 1 drop of 0.25 M HCl to 3 mL of water.

The Question was Incomplete, Find the full content below :

Please show explanation: If 1 drop of acid is equal to 50 microliter. Calculate the concentration of H+ ion and the pH of the solution when 1 drop of 0.25 M HCl is added to 3 mL water?

Know more about  concentration here:

https://brainly.com/question/17206790

#SPJ11  

calculate the engery of a photon needed to cause an electron in the 3s orbital to be excited to tthe 3p orbital

Answers

The energy of the photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital is approximately 3.04 × [tex]10^{-18}[/tex] J (or about 1.90 eV).

To calculate the energy of a photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital, we need to know the energy difference between these two orbitals.

The energy of an electron in a hydrogenic atom (an atom with one electron) can be calculated using the following formula:

[tex]E = - (Z^2 * Ry) / n^2[/tex]

where Z is the atomic number, Ry is the Rydberg constant (2.18 × [tex]10^{-18}[/tex]J), and n is the principal quantum number.

The energy difference between the 3s and 3p orbitals can be calculated by subtracting the energy of the 3s orbital from the energy of the 3p orbital.

For hydrogen, the energy of the 3s orbital is:

E(3s) = - ([tex]1^2[/tex]* 2.18 × [tex]10^{18}[/tex] J) / [tex]3^2[/tex]

E(3s) = - 0.242 ×[tex]10^{18}[/tex] J

And the energy of the 3p orbital is:

E(3p) = - ([tex]1^2[/tex] * 2.18 × [tex]10^{-18}[/tex] J) / 2^2

E(3p) = - 0.546 × [tex]10^{-18}[/tex] J

The energy difference between the two orbitals is:

ΔE = E(3p) - E(3s)

ΔE = (- 0.546 ×[tex]10^{18}[/tex]  J) - (- 0.242 ×[tex]10^{-18}[/tex] J)

ΔE = - 0.304 × [tex]10^{-18}[/tex]J

This energy difference represents the energy required to excite an electron from the 3s orbital to the 3p orbital.

To calculate the energy of the photon needed to provide this energy, we use the formula:

E = hν

where E is the energy of the photon, h is Planck's constant (6.626 × [tex]10^{-34}[/tex]J·s), and ν is the frequency of the photon.

Rearranging this formula to solve for the frequency of the photon, we get:

ν = E / h

Substituting the energy difference we calculated, we get:

ν = (- 0.304 × [tex]10^{18}[/tex] J) / (6.626 × [tex]10^{-34}[/tex] J·s)

ν = - 4.59 × [tex]10^{15}[/tex]Hz

Finally, to calculate the energy of the photon, we use the formula:

E = hν

Substituting the frequency we calculated, we get:

E = (6.626 ×[tex]10^{-34}[/tex] J·s) x (- 4.59 × [tex]10^{15}[/tex] Hz)

E = - 3.04 × [tex]10^{-18}[/tex]J

Therefore, the energy of the photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital is approximately 3.04 × 10^-18 J (or about 1.90 eV).

Learn more about photon

https://brainly.com/question/20912241

#SPJ4

what happened to the cell potential when you added aqueous ammonia to the half-cell containing 0.001 m cuso4? how does ammonia react with copper ions in aqueous solution? (think back to coordination complexes in exp

Answers

When aqueous ammonia is added to the half-cell containing 0.001 M CuSO4, the cell potential is likely to change. The reason for this is that ammonia can form coordination complexes with copper ions, which can affect the concentration of copper ions in the solution, and hence the concentration gradient that drives the redox reaction in the cell.

Ammonia can react with copper ions in aqueous solution to form a series of coordination complexes. The most common complex is Cu(NH3)42+, which is a tetraamminecopper(II) complex. The formation of this complex reduces the concentration of free Cu2+ ions in solution, which can shift the equilibrium of the redox reaction in the cell.

If the reduction half-reaction is Cu2+ + 2e- → Cu, the addition of ammonia can reduce the concentration of Cu2+ ions in the solution and shift the equilibrium to the left, decreasing the cell potential. On the other hand, if the oxidation half-reaction is Cu → Cu2+ + 2e-, the addition of ammonia can increase the concentration of Cu2+ ions and shift the equilibrium to the right, increasing the cell potential.

Learn more about aqueous ammonia

https://brainly.com/question/14672082

#SPJ4

how many atmospheres of pressure would there be if you started at 5.75 atm and changed the volume from 5 l to 1 l ?

Answers

The pressure would be 28.75 atm if the volume is changed from 5 L to 1 L, starting from an initial pressure of 5.75 atm.

To solve this problem, we can use the combined gas law equation, which relates the pressure, volume, and temperature of a gas:

P1V1/T1 = P2V2/T2

where P1 and V1 are the initial pressure and volume, T1 is the initial temperature, P2 and V2 are the final pressure and volume, and T2 is the final temperature. Since the temperature is constant in this problem, we can simplify the equation to:

P1V1 = P2V2

Substituting the given values, we get:

5.75 atm × 5 L = P2 × 1 L

Solving for P2, we get:

P2 = (5.75 atm × 5 L) / 1 L = 28.75 atm.

For such more questions on Pressure:

https://brainly.com/question/24719118

#SPJ11

which of the following is true about the absorption and metabolism of alcohol? alcohol is metabolized by most tissue and organs in the body. the majority of alcohol is absorbed in the stomach. men and women do not metabolize alcohol at significantly different rates. acetaldehyde produced during alcohol metabolism is highly toxic.

Answers

The statement "acetaldehyde produced during alcohol metabolism is highly toxic" is true about absorption and metabolism of alcohol. Option 4 is correct.

Acetaldehyde is a byproduct of alcohol metabolism, and it is a toxic substance that can cause various symptoms such as facial flushing, nausea, and headache. Acetaldehyde is rapidly converted to acetate by the enzyme aldehyde dehydrogenase, which is then metabolized further to carbon dioxide and water.

However, if alcohol is consumed at a high rate, the liver may not be able to metabolize all of the acetaldehyde, leading to a buildup of this toxic substance in the body. This can result in more severe symptoms such as vomiting, rapid heartbeat, and difficulty breathing. Therefore, it is important to consume alcohol in moderation and allow enough time for the liver to metabolize the alcohol and its byproducts. Hence Option 4 is correct.

To learn more about absorption and metabolism of alcohol, here

https://brainly.com/question/14310421

#SPJ4

which category of amino acid contains r groups that are hydrophobic? which category of amino acid contains r groups that are hydrophobic? polar acidic basic non-polar basic and acidic

Answers

The amino acid that contains the R groups that are hydrophobic are the non - polar.

The Amino acids are the building blocks of the molecules of the  proteins. These contains the one hydrogen atom and the one amine group, the one carboxylic acid group and the one side chain that is the R group will be attached to the central carbon atom.

The side chains of the non polar amino acids includes the long carbon chains or the carbon rings, which makes them bulky. These are the hydrophobic, that means they repel the water. Therefore the non-polar amino acids are the hydrophobic.

To learn more about amino acid here

https://brainly.com/question/12788134

#SPJ4

the molar solubility of pbi 2 is 1.5 × 10 −3 m. calculate the value of ksp for pbi 2 .4.5 x 10 -6

Answers

The value of Ksp for PbI2 is 4.05 × 10^-8 if the molar solubility of PBI 2 is 1.5 × 10 −3 m.

The molar solubility of PBI 2 = 1.5 × 10 −3 m

The solubility product constant  = 2 .4.5 x 10 -6

The solubility product constant (Ksp) for PbI2 can be estimated using the molar solubility of PbI2, the stoichiometry of the equilibrium equation is:

[tex]PbI2(s) = Pb2+(aq) + 2I-(aq)[/tex]

The equation for Ksp is:

Ksp = [tex][Pb2+][I-]^2[/tex]

[Pb2+] = S = 1.5 × 10−3 M,

[I-] = 2S = 3 × 10−3 M

The stoichiometric coefficient of I- is 2. Substituting these values into the Ksp equation we get:

Ksp =[tex](1.5 × 10^-3) × (3 × 10^-3)^2[/tex]

Ksp = 4.05 × 10^-8

Therefore, we can conclude that the value of Ksp for PbI2 is 4.05 × 10^-8.

To learn more about Molar Solubility

https://brainly.com/question/31479331

#SPJ4

The value of Ksp for PbI2 is 3.375 × 10^-9 or 4.5 x 10 -6. The expression for the solubility product constant (Ksp) of a sparingly soluble salt such as PbI2 is: Ksp = [Pb2+][I-]^2

where [Pb2+] and [I-] are the molar concentrations of the lead ion and iodide ion, respectively, in a saturated solution of PbI2.

Given that the molar solubility of PbI2 is 1.5 × 10^-3 M, we can assume that [Pb2+] and [I-] in the saturated solution are also equal to 1.5 × 10^-3 M. Therefore, we can substitute these values into the Ksp expression and solve for Ksp:

Ksp = (1.5 × 10^-3 M)(1.5 × 10^-3 M)^2
Ksp = 3.375 × 10^-9

So the value of Ksp for PbI2 is 3.375 × 10^-9 or 4.5 x 10 -6 (if that was a typo in the question).

Learn more about soluble salt here: brainly.com/question/9537918

#SPJ11

how many moles of naf must be dissolved in 1.00 liter of a saturated solution of pbf2 at 25˚c to reduce the [pb2 ] to 1 x 10–6 molar? (ksp pbf2 at 25˚c = 4.0 x 10–8)

Answers

The moles of NaF that must be dissolved in 1.00 liter of a saturated solution of PbF₂ at 25˚C to reduce the [Pb²⁺] to 1 x 10⁻⁶ molar is 2.0 x 10⁻⁵.

The solubility product expression for PbF₂ is given by:

Ksp = [Pb²⁻][F-]²

At equilibrium, the product of the ion concentrations must be equal to the solubility product constant. We are given that the [Pb²⁺] in the saturated solution is 1 x 10⁻⁶ M. Therefore, we can use the Ksp expression to calculate the concentration of F- in the solution:

Ksp = [Pb²⁺][F⁻]²4.0 x 10⁻⁸ = (1 x 10⁻⁶)([F⁻]²)[F⁻]² = 4.0 x 10⁻²[F⁻] = 2.0 x 10⁻¹

Now, we can calculate the amount of NaF needed to reduce the [F⁻] concentration to 2.0 x 10⁻¹ M. Since NaF is a 1:1 electrolyte, the concentration of F- will be equal to the concentration of NaF added.

Number of moles of NaF = (2.0 x 10⁻¹) mol/L x 1.00 L = 2.0 x 10⁻¹ moles

However, we need to dissolve this amount of NaF in a saturated solution of PbF₂. Therefore, we need to check that the amount of NaF we added will not exceed the maximum amount that can dissolve in the solution at 25˚C.

To learn more about solubility, here

https://brainly.com/question/29661360

#SPJ4

2 NO(g)+Cl2(g)⇌2 NOCl(g) Kc=2000
A mixture of NO(g) and Cl
2
(g) is placed in a previously evacuated container and allowed to reach equilibrium according to the chemical equation shown above When the system reaches equilibrium, the reactants and products have the concentrations listed in the following table:
Species Concentration (M)
NO(g) 0.050
C12(g) 0.050
NOCl(g) 0.50
Which of the following is true if the volume of the container is decreased by one-half?
A. Q = 100, and the reaction will proceed toward reactants.
B. Q = 100, and the reaction will proceed toward products.
C. Q = 1000, and the reaction will proceed toward reactants.
D. Q = 1000, and the reaction will proceed toward products.

Answers

Neither A, B, C nor D. The equilibrium position will not be affected by the change in volume.

To determine how the equilibrium of the reaction 2 NO(g) + Cl₂(g) ⇌ 2 NOCl(g) will shift if the volume of the container is decreased by one-half, we first need to calculate the reaction quotient Q.

The balanced chemical equation for the reaction is:

2 NO(g) + Cl₂(g) ⇌ 2 NOCl(g)

At equilibrium, the concentrations of the species are:

[NO] = 0.050 M

[Cl2] = 0.050 M

[NOCl] = 0.50 M

Using these values, we can calculate the value of the reaction quotient Q:

Q [tex]= [NOCl]^2 / ([NO]^2[Cl2])[/tex]= [tex](0.50)^2 / ((0.050)^2 x 0.050)[/tex] = 1000

Now we compare the value of Q to the equilibrium constant Kc:

Kc =[tex][NOCl]^2 / ([NO]^2[Cl2])[/tex] = 2000

Since Q < Kc, we can conclude that the reaction has not yet reached equilibrium and that the forward reaction will proceed to reach equilibrium.

When the volume of the container is decreased by one-half, the concentration of all species will increase due to the decrease in volume. According to Le Chatelier's principle, the reaction will shift in the direction that reduces the total number of moles of gas.

In this case, the reaction produces two moles of gas on the left-hand side and two moles of gas on the right-hand side, so the total number of moles of gas does not change. Therefore, the volume change will not have an effect on the equilibrium position.

Learn more about  equilibrium here:

https://brainly.com/question/30807709

v

#SPJ11

The correct answer is: C. Q = 1000, and the reaction will proceed toward reactants.

How to determine the reactions at equilibrium?



To determine which statement is true if the volume of the container is decreased by one-half, we need to calculate the reaction quotient (Q) for the new conditions.

When the volume is decreased by half, the concentrations of all species will double:

NO(g): 0.050 * 2 = 0.100 M
Cl2(g): 0.050 * 2 = 0.100 M
NOCl(g): 0.50 * 2 = 1.00 M

Now, calculate Q using the new concentrations:

Q = [NOCl]^2 / ([NO]^2 * [Cl2])
Q = (1.00)^2 / ((0.100)^2 * (0.100))
Q = 1 / 0.001
Q = 1000

So, Q = 1000. Now, compare Q to Kc:

Q > Kc, meaning the reaction will proceed toward the reactants to reach equilibrium.

To know more about Reaction Quotient:

https://brainly.com/question/24202150

#SPJ11

Please show all work:
1. Two standard deviations is the acceptable limit of error in the clinical lab. If you run the normal control 100 times, how many values would be out of control due to random error?
2. A mean value of 100 and a standard deviation of 1.8 mg/dL were obtained from a set of measurements for a control. The 95% confidence interval in mg/dL would be:
3. How many milliliters of a 3% solution can be made if 6 g of solute are available?

Answers

200 milliliters of a 3% solution can be made if 6 grams of solute are available.

1. To calculate the number of values that would be out of control due to random error, we can use the formula for the probability of a value falling outside of a certain number of standard deviations from the mean in a normal distribution. For two standard deviations, this probability is approximately 0.05, or 5%. So, out of 100 normal control values, we would expect around 5 of them to fall outside of the acceptable limit of error due to random deviation.
2. To find the 95% confidence interval, we can use the formula:
95% confidence interval = mean ± (1.96 x standard deviation / square root of sample size)
Plugging in the values given, we get:
95% confidence interval = 100 ± (1.96 x 1.8 / square root of sample size)
We don't know the sample size, so we can't solve for the exact confidence interval. However, we can say that as the sample size increases, the margin of error (the part in parentheses) will decrease, resulting in a narrower confidence interval.
3. To calculate the amount of solute needed to make a 3% solution, we need to know the concentration in grams per milliliter (g/mL). Assuming that the solute is dissolved in water (which has a density of 1 g/mL), we can use the formula:
concentration = mass of solute / volume of solution
Rearranging, we get:
volume of solution = mass of solute / concentration
Plugging in the values given, we get:
volume of solution = 6 g / 0.03 g/mL
Simplifying, we get:
volume of solution = 200 mL
Therefore, 200 milliliters of a 3% solution can be made if 6 grams of solute are available.

learn more about solutions here

https://brainly.com/question/30665317

#SPJ11

Help what's the answer?

Answers

The mass of the P4 that is reacted is 37.2 g

How does stoichiometry work?

Stoichiometry works by using a balanced chemical equation to determine the mole ratio between reactants and products. This mole ratio is then used to convert the amount of one substance into the amount of another substance, using the mole concept and molar mass.

Using

PV = nRT

n = PV/RT

n = 1 * 39.6/0.082 * 298

n = 1.6 moles

From the reaction equation;

P4 + 6Cl2 → 4PCl3

1 mole of P4 reacts with 6 moles of Cl2

x moles of P4 reacts with 1.6 moles of Cl2

x = 1.6 * 1/6

= 0.3 moles

Mass of P4 = 0.3 * 124 g/mol

= 37.2 g

Learn more about stoichiometry:https://brainly.com/question/30215297

#SPJ1

which observation best describes the physical appearance of a compound when the end of its melting point range is reached? the compound begins to convert to a liquid. the compound completely converts to a liquid. the compound begins to evaporate.

Answers

A compound turns completely into a liquid this observation best describes the physical appearance of a compound when it reaches the end of its melting point range. Here option B is the correct answer.

When a solid compound is heated, it undergoes a process called melting in which it transforms into a liquid state. The melting point of a compound is the temperature at which it changes from a solid to a liquid state. The melting process is characterized by a range of temperatures over which the compound is observed to be partially or fully melted.

The observation that best describes the physical appearance of a compound when the end of its melting point range is reached is B - the compound completely converts to a liquid. At the end of the melting point range, the compound has absorbed enough heat energy to fully overcome the intermolecular forces that hold its constituent particles together in a solid state, resulting in the complete transformation of the compound into a liquid.

This state is characterized by the loss of a crystalline structure, where the particles are free to move about and slide past each other, leading to an increased fluidity and mobility of the compound. At this stage, the compound is fully melted and can be poured or transferred into a new container in its liquid form.

To learn more about melting points

https://brainly.com/question/28902417

#SPJ4

Complete question:

Which observation best describes the physical appearance of a compound when the end of its melting point range is reached?

A - the compound begins to convert to a liquid.

B - the compound completely converts to a liquid.

C - the compound begins to evaporate.

the gain or loss of electrons from an atom results in the formation of a (an)

Answers

The formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Atoms are composed of protons, neutrons, and electrons. The number of protons in an atom determines its atomic number and the element it represents. The electrons in an atom occupy different energy levels or shells, and these electrons participate in chemical reactions. The outermost shell of electrons, called the valence shell, is particularly important in chemical reactions because it determines the chemical properties of the atom.

When an atom gains or loses electrons, it becomes charged and is called an ion. The process of gaining or losing electrons is called ionization. When an atom loses one or more electrons, it becomes a positively charged ion called a cation. Cations have a smaller number of electrons than protons and have a net positive charge. For example, when the element sodium (Na) loses one electron, it becomes a sodium ion (Na+).

On the other hand, when an atom gains one or more electrons, it becomes a negatively charged ion called an anion. Anions have a larger number of electrons than protons and have a net negative charge. For example, when the element chlorine (Cl) gains one electron, it becomes a chloride ion (Cl-).

The formation of ions is a fundamental process in many chemical reactions. Ions can combine with each other to form ionic compounds, which are compounds composed of ions held together by electrostatic forces. For example, sodium ions (Na+) and chloride ions (Cl-) can combine to form sodium chloride (NaCl), which is common table salt.

Overall, the formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Visit to know more about Compound:-

brainly.com/question/26487468

#SPJ11

if 124 ml of a 1.2 m glucose solution is diluted to 550.0 ml , what is the molarity of the diluted solution?

Answers

the molarity of the diluted solution is 0.27 M.if 124 ml of a 1.2 m glucose solution is diluted to 550.0 ml

To solve the problem, we can use the formula:

M1V1 = M2V

where M1 is the initial molarity, V1 is the initial volume, M2 is the final molarity, and V2 is the final volume.

Plugging in the values we have:

M1 = 1.2 M

V1 = 124 ml = 0.124 L

V2 = 550.0 ml = 0.550 L

Solving for M2:

M2 = (M1V1)/V2

= (1.2 M * 0.124 L)/0.550 L

= 0.27 M

A solution is a homogeneous mixture of two or more substances. In a solution, the solute is uniformly dispersed in the solvent. The solute is the substance that is being dissolved, and the solvent is the substance in which the solute is being dissolved. For example, in saltwater, salt is the solute and water is the solvent.

Learn more about solution here:

https://brainly.com/question/30665317

#SPJ12

The molarity of the diluted glucose solution is approximately 0.2705 M.

How to find the molarity of solution?

To find the molarity of the diluted glucose solution after 124 mL of a 1.2 M solution is diluted to 550.0 mL, you can use the dilution formula:
M1V1 = M2V2

where M1 is the initial molarity (1.2 M), V1 is the initial volume (124 mL), M2 is the final molarity, and V2 is the final volume (550.0 mL).

Rearrange the formula to solve for M2:

M2 = (M1*V1) / V2

Now, plug in the given values:
M2 = (1.2 M * 124 mL) / 550.0 mL
M2 = 148.8 mL / 550.0 mL
M2 = 0.2705 M

To know more about Molarity:

https://brainly.com/question/14581742

#SPJ11

phenacetin can be prepared from p-acetamidophenol, which has a molar mass of 151.16 g/mol, and bromoethane, which has a molar mass of 108.97 g/mol. the density of bromoethane is 1.47 g/ml. what is the yield in grams of phenacetin, which has a molar mass of 179.22 g/mol, possible when reacting 0.151 g of p-acetamidophenol with 0.12 ml of bromoethane?

Answers

The theoretical yield of phenacetin is 0.17922 g. However, the actual yield may be lower due to factors such as incomplete reaction, loss during purification, or experimental error.

To calculate the theoretical yield of phenacetin, we need to first determine the limiting reagent. The limiting reagent is the reactant that will be completely consumed in the reaction, thus limiting the amount of product that can be produced.

First, we need to convert the volume of bromoethane given in milliliters to grams, using its density:

0.12 ml x 1.47 g/ml = 0.1764 g bromoethane

Next, we can use the molar masses of p-acetamidophenol and bromoethane to determine the number of moles of each:

moles p-acetamidophenol = 0.151 g / 151.16 g/mol = 0.001 mol

moles bromoethane = 0.1764 g / 108.97 g/mol = 0.00162 mol

Since the reaction requires a 1:1 molar ratio of p-acetamidophenol to bromoethane, and the number of moles of p-acetamidophenol is smaller than the number of moles of bromoethane, p-acetamidophenol is the limiting reagent.

The theoretical yield of phenacetin can be calculated using the molar mass of phenacetin and the number of moles of p-acetamidophenol:

moles phenacetin = 0.001 mol p-acetamidophenol

mass phenacetin = 0.001 mol x 179.22 g/mol = 0.17922 g

For such more questions on Phenacetin:

https://brainly.com/question/29460577

#SPJ11

a sample of nobr was placed on a 1.00l flask containing no no or br 2 at equilibrium the flask contained

Answers

At equilibrium, the concentrations of NO, Br2, and NOBr in the flask will remain constant. However, without specific values for the initial concentration of NOBr or the equilibrium constant (Kc), it's not possible to determine.

.Based on the provided information, it seems that a sample of NOBr was placed in a 1.00 L flask at equilibrium, which means that the NOBr has decomposed into NO and Br2.

At equilibrium, the concentrations of NO, Br2, and NOBr in the flask will remain constant. However, without specific values for the initial concentration of NOBr or the equilibrium constant (Kc), it's not possible to determine the exact concentrations of these substances in the flask.

Visit here to learn more about  equilibrium : https://brainly.com/question/4289021
#SPJ11

A sample of NOBr being placed in a 1.00 L flask containing no NO or Br2 at equilibrium, I'll first provide the balanced chemical equation for the reaction:

[tex]2 NOBr (g) ⇌ 2 NO (g) + Br2 (g)[/tex]

At equilibrium, the concentrations of the reactants and products remain constant. To determine the concentrations of NOBr, NO, and Br2 at equilibrium, we need to follow these steps:

1. Write the expression for the equilibrium constant (Kc) based on the balanced chemical equation:
[tex]Kc = [NO]^2 [Br2] / [NOBr]^2[/tex]

2. Set up an ICE (Initial, Change, Equilibrium) table to determine the equilibrium concentrations of the species involved in the reaction. The initial concentrations of NO and Br2 are 0 since they are not initially present in the flask.

      NOBr      NO      Br2
I      C0        0        0
C     -2x        +2x      +x
E     C0-2x     2x       x

3. Substitute the equilibrium concentrations from the ICE table into the Kc expression:
[tex]Kc = (2x)^2 * x / (C0-2x)^2[/tex]


4. To solve for x, you need the value of Kc for the reaction. Look up the Kc value for this reaction in a reference or use provided information. Once you have Kc, substitute it into the equation and solve for x.

5. Calculate the equilibrium concentrations of NOBr, NO, and Br2 by substituting the value of x back into the ICE table:

[NOBr] = C0-2x
[NO] = 2x
[Br2] = x

By following these steps, you can determine the concentrations of NOBr, NO, and Br2 in the 1.00 L flask at equilibrium.

To know more about equilibrium constant (Kc):

https://brainly.com/question/29260433

#SPJ11

mercury has the widest variation in surface temperatures between night and day of any planet in the solar system.

Answers

Mercury has the widest variation in surface temperatures between night and day of any planet in the solar system.

This statement is true. Mercury experiences the greatest temperature variation between night and day due to several factors. The main reasons are its proximity to the Sun, slow rotation, and lack of atmosphere.

During the daytime, temperatures on Mercury can reach up to 800°F (430°C) due to its close proximity to the Sun. This extreme temperature difference is due to the fact that Mercury's thin atmosphere is unable to regulate temperature and its slow rotation causes one side of the planet to be constantly facing the sun while the other is in perpetual darkness.

At night, temperatures can drop as low as -290°F (-180°C) because of its slow rotation and the lack of an atmosphere to retain heat. This results in the widest variation in surface temperatures between night and day of any planet in our solar system.

To know more about Mercury Variations in surface temperature:

https://brainly.com/question/16117265

#SPJ11

Mercury indeed has the widest variation in surface temperatures between night and day of any planet in the solar system. This is primarily due to its thin atmosphere, which cannot effectively retain heat, leading to extreme temperature fluctuations.

Mercury, being the closest planet to the sun, experiences extreme variations in temperature between its day and night sides. During the day, when the sun is overhead, the surface temperature on Mercury can rise to a scorching 430°C (800°F), which is hot enough to melt lead. However, as Mercury rotates and the sun sets, the temperature drops drastically to as low as -180°C (-290°F) at night.

The main reason for this extreme temperature variation is that Mercury has no atmosphere to regulate its surface temperature. Unlike Earth, which has an atmosphere that helps to distribute heat around the planet, Mercury's surface is directly exposed to the sun's radiation. This means that when the sun is shining on Mercury's surface, it heats up quickly and intensely, causing the temperature to rise to extreme levels.

Overall, the lack of an atmosphere and Mercury's proximity to the sun are the main factors contributing to the extreme temperature variations on the planet.

Learn more about atmosphere here:

https://brainly.com/question/11192430

#SPJ11

A vinegar solution of unknown concentration was prepared by diluting 10. 00 mL of vinegar to a total volume of 50. 00 mL with deionized water. A 25. 00-mL sample of the diluted vinegar solution required 20. 24 mL of 0. 1073 M NaOH to reach the equivalence point in the titration. Calculate the concentration of acetic acid, CH3COOH, (in M) in the original vinegar solution (i. E. , before dilution)

Answers

The concentration of acetic acid in the original vinegar solution is 0.0435M.

Balanced chemical equation for the reaction between acetic acid (CH₃COOH) and sodium hydroxide (NaOH) is:

CH₃COOH + NaOH → CH₃COONa + H₂O

The number of moles of NaOH used in the titration will be calculated as;

moles NaOH = Molarity × Volume (in L)

moles NaOH = 0.1073 M × 0.02024 L

moles NaOH = 0.002174872

Therefore, the concentration of CH₃COOH in the diluted vinegar solution is;

C₁V₁ = C₂V₂

C₁ × 10.00 mL = C₂ × 50.00 mL

C₁ = (C₂ × 50.00 mL) ÷ 10.00 mL

C₁ = 5 × C₂

where C₁ is the concentration of CH₃COOH in the diluted vinegar solution, and C₂ is the concentration of CH₃COOH in the original vinegar solution.

The number of moles of CH₃COOH in the diluted vinegar solution is;

moles CH₃COOH = C₁ × V₁ (in L)

moles CH₃COOH = (5 × C₂) × 0.01000 L

moles CH₃COOH = 0.05000 × C₂

The concentration of CH₃COOH in the original vinegar solution can be calculated;

moles CH₃COOH in original vinegar = moles CH₃COOH in diluted vinegar

0.05000 × C₂ = 0.002174872

C₂ = 0.002174872 ÷ 0.05000

C₂ = 0.043

To know more about concentration here

https://brainly.com/question/10725862

#SPJ4

what is the maximum amount of heat in joules that 23 grams of water at 95oc can lose before freezing completely?

Answers

23 grams of water at 95°C can lose a maximum of 8883.64 Joules of heat before freezing completely.

To answer your question, we need to calculate the heat loss required to lower the temperature of 23 grams of water from 95 degrees Celsius to 0 degrees Celsius, which is the freezing point of water. The specific heat capacity of water is 4.184 Joules per gram per degree Celsius.

So, the initial energy of the water is:

E1 = m x c x ΔT
E1 = 23 g x 4.184 J/g°C x (95°C - 0°C)
E1 = 8883.64 J

Where E1 is the initial energy of the water, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature.

The final energy of the water at 0°C is:

E2 = m x c x ΔT
E2 = 23 g x 4.184 J/g°C x (0°C - 0°C)
E2 = 0 J

So, the maximum amount of heat in joules that 23 grams of water at 95°C can lose before freezing completely is:

ΔE = E1 - E2
ΔE = 8883.64 J - 0 J
ΔE = 8883.64 J

Learn more about joules here: brainly.com/question/25982371

#SPJ11

write the reaction in this experiment that shows the greater reactivity of an acid chloride compared to a primary alkyl chloride.

Answers

In a reaction between an acid chloride and a primary alkyl chloride with a nucleophile, the acid chloride is generally more reactive than the primary alkyl chloride due to the presence of the electron-withdrawing carbonyl group in the acid chloride.


For example, if we react an acid chloride like acetyl chloride (CH3COCl) with a nucleophile like water (H2O), we get the following reaction:

CH3COCl + H2O → CH3COOH + HCl

In this reaction, the acetyl chloride reacts with water to form acetic acid (CH3COOH) and hydrochloric acid (HCl) as a byproduct. This reaction is an example of an acyl substitution reaction, where the nucleophile (water) substitutes the leaving group (chloride) on the acid chloride.

On the other hand, if we react a primary alkyl chloride like ethyl chloride (CH3CH2Cl) with water (H2O), we get the following reaction:

CH3CH2Cl + H2O → CH3CH2OH + HCl

In this reaction, the ethyl chloride reacts with water to form ethanol (CH3CH2OH) and hydrochloric acid (HCl) as a byproduct. This reaction is an example of a nucleophilic substitution reaction, where the nucleophile (water) substitutes the leaving group (chloride) on the primary alkyl chloride.

The rate of reaction for the acyl substitution reaction with the acid chloride is generally faster than the rate of reaction for the nucleophilic substitution reaction with the primary alkyl chloride, indicating the greater reactivity of the acid chloride.

Visit to know more about Carbonyl group:-

brainly.com/question/13564853

#SPJ11

aldehydes and ketones prefer to fragment by ___ which produces a resonance stabilized acylium ion

Answers

Aldehydes and ketones prefer to fragment by cleavage of the C-C bond adjacent to the carbonyl group, which produces a resonance-stabilized acylium ion.

Aldehydes and ketones have a carbonyl gathering (C=O) in their sub-atomic design, which is energized because of the distinction in electronegativity among carbon and oxygen particles. The carbonyl gathering can go through different compound responses, for example, nucleophilic expansion, decrease, and fracture. Discontinuity of aldehydes and ketones includes the cleavage of the C bond neighboring the carbonyl gathering, which prompts the development of a reverberation settled acylium particle.

This response is leaned toward on the grounds that the subsequent acylium particle is settled by reverberation structures, which disperse the positive charge among various iotas in the particle. This adjustment makes the response exceptionally exothermic and expands its rate.

To learn more about aldehydes and ketones, refer:

https://brainly.com/question/12308782

#SPJ4

Aldehydes and ketones prefer to fragment by cleavage of the C-C bond adjacent to the carbonyl group, which produces a resonance-stabilized acylium ion.

Aldehydes and ketones have a carbonyl gathering (C=O) in their sub-atomic design, which is energized because of the distinction in electronegativity among carbon and oxygen particles. The carbonyl gathering can go through different compound responses, for example, nucleophilic expansion, decrease, and fracture. Discontinuity of aldehydes and ketones includes the cleavage of the C bond neighboring the carbonyl gathering, which prompts the development of a reverberation settled acylium particle.

This response is leaned toward on the grounds that the subsequent acylium particle is settled by reverberation structures, which disperse the positive charge among various iotas in the particle. This adjustment makes the response exceptionally exothermic and expands its rate.

To learn more about aldehydes and ketones, refer:

brainly.com/question/12308782

#SPJ4

determine the standard enthalpy change for the decomposition of hydrogen peroxide per mole of hydrogen peroxide.

Answers

The standard enthalpy change for the decomposition of hydrogen peroxide per mole of hydrogen peroxide is -98.2 kJ/mol.

when 1 mole of hydrogen peroxide (H2O2) ( H 2 O 2 ) undergoes decomposition, the heat evolved (ΔH) is −98.2kJ. − 98.2 k J . The molar mass of H2O2 H 2 O 2 is 34.015 g/mol. This means that the mass of 1 mole of H2O2 H 2 O 2 is 34.015 g.

This value is obtained from the standard enthalpy of formation of the products (H2 and O2) and the standard enthalpy of formation of the reactant (H2O2). Enthalpy of formation is the energy change that occurs when a compound is formed from its elements, in their standard states.

The difference between the enthalpies of formation of the products and the reactant is the enthalpy change for the reaction. In this case, the enthalpy change for the decomposition of hydrogen peroxide is -98.2 kJ/mol. This indicates that the decomposition of hydrogen peroxide is an exothermic reaction and it releases 98.2 kJ/mole of energy.

Know more about Hydrogen peroxide here

https://brainly.com/question/29102186#

#SPJ11

What is the density of hydrogen sulfide (H2S) at 0.7 atm and 322 K?

Answers

Answer:

0.9g/L.

Explanation:

To calculate the density of hydrogen sulfide (H2S) at 0.7 atm and 322 K, we can use the ideal gas law:

PV = nRT

where P is the pressure in atmospheres (atm), V is the volume in liters (L), n is the number of moles of gas, R is the universal gas constant (0.08206 L·atm/(mol·K)), and T is the temperature in Kelvin (K).

We can rearrange this equation to solve for the number of moles of gas:

n = PV / RT

Next, we can use the molar mass of H2S (34.08 g/mol) to convert the number of moles to mass:

mass = n × molar mass

Finally, we can divide the mass by the volume to obtain the density:

density = mass/volume

Let's assume a volume of 1 L (since the volume is not given in the question). Then we have:

P = 0.7 atm

T = 322 K

R = 0.08206 L·atm/(mol·K)

molar mass of H2S = 34.08 g/mol

First, we calculate the number of moles of H2S using the ideal gas law:

n = PV / RT

n = (0.7 atm) (1 L) / (0.08206 L·atm/(mol·K) × 322 K)

n = 0.0265 mol

Next, we calculate the mass of H2S using the number of moles and the molar mass:

mass = n × molar mass

mass = 0.0265 mol × 34.08 g/mol

mass = 0.9 g

Finally, we calculate the density of H2S:

density = mass/volume

density = 0.9g/1 L

density = 0.9 g/L

Therefore, the density of hydrogen sulfide (H2S) at 0.7 atm and 322 K is approximately 0.9g/L.

a normal penny has a mass of about 2.5g. if we assume the penny to be pure copper (which means the penny is very old since newer pennies are a mixture of copper and zinc), how many atoms of copper do 9 pennies contain?

Answers

9 pennies contain approximately [tex]2.13 x 10^23[/tex] atoms of copper.

To solve this problem, we need to use the following steps:

Determine the molar mass of copper.

Convert the mass of 9 pennies from grams to moles.

Use Avogadro's number to calculate the number of atoms of copper.

Step 1: The molar mass of copper (Cu) is approximately 63.55 g/mol.

Step 2: The mass of 9 pennies is:

9 pennies x 2.5 g/penny = 22.5 g

Converting this mass to moles, we get:

22.5 g / 63.55 g/mol = 0.354 moles

Step 3: Using Avogadro's number ([tex]6.022 x 10^23 atoms/mol)[/tex], we can calculate the number of atoms of copper:

Therefore, 9 pennies contain approximately[tex]2.13 x 10^23 a[/tex]toms of copper.

Learn more about molar mass

https://brainly.com/question/22997914

#SPJ4

you have 400 grams (g) of a substance with a half life of 10 years. how much is left after 100 years?

Answers

After 100 years, there will be 6.25 grams of the substance remaining.

What is half life?

Half-life is the time it takes for half of the radioactive atoms in a sample to decay or for the concentration of a substance to decrease by half.

Amount remaining = initial amount x (1/2)^(number of half-lives)

In this case,  half-life of the substance is 10 years, which means that after 10 years, half of the substance will have decayed. After another 10 years (20 years total), half of remaining substance will decay, leaving 1/4 of the original amount. After another 10 years (30 years total), half of that remaining amount will decay, leaving 1/8 of the original amount. This process continues every 10 years.

To find the amount of substance remaining after 100 years, we need to know how many half-lives have occurred in that time: 100 years / 10 years per half-life = 10 half-lives

Amount remaining = 400 g x (1/2)¹⁰= 6.25 g

Therefore, after 100 years, there will be 6.25 grams of the substance remaining.

To know more about half life, refer

https://brainly.com/question/25750315

#SPJ1

a 35.0-ml sample of 0.20 m lioh is titrated with 0.25 m hcl. what is the ph of the solution after 23.0 ml of hcl have been added to the base? group of answer choices 1.26 12.74 12.33 13.03 1.67

Answers

The pH of the solution after 23.0 mL of 0.25 M HCl have been added to the 35.0 mL of 0.20 M LiOH is 12.74.


1. Calculate the initial moles of LiOH and HCl:
  LiOH: 35.0 mL * 0.20 mol/L = 7.00 mmol
  HCl: 23.0 mL * 0.25 mol/L = 5.75 mmol

2. Determine the limiting reactant and find the moles of unreacted LiOH:
  Since HCl is the limiting reactant, subtract its moles from LiOH moles:
  7.00 mmol - 5.75 mmol = 1.25 mmol of unreacted LiOH

3. Calculate the new concentration of LiOH in the solution:
  Total volume: 35.0 mL + 23.0 mL = 58.0 mL
  New concentration: 1.25 mmol / 58.0 mL = 0.02155 mol/L

4. Calculate the pOH of the solution:
  pOH = -log10(0.02155) = 1.66

5. Find the pH of the solution:
  pH = 14 - pOH = 14 - 1.66 = 12.74

To know more about pH click on below link:

https://brainly.com/question/491373#

#SPJ11

a carving in metal that is soaked with acid, inked, and stamped on paper

Answers

The process you are referring to is called etching. Etching is a technique in which a design is carved into a metal plate using tools such as needles or acid. Once the design is carved, the plate is soaked in an acid solution, which eats away at the exposed metal to create grooves.

After the acid bath, the plate is cleaned and dried, and ink is applied to the surface. The ink is worked into the grooves created by the acid, and any excess ink is wiped away from the surface. The plate is then placed on a press, and a sheet of paper is carefully placed on top of it. Pressure is applied to the paper and the plate, which transfers the ink from the grooves onto the paper, creating a print.

Etching allows for great flexibility in creating fine art prints, as the artist can use a variety of techniques to create different line qualities, textures, and tonal effects. Additionally, multiple copies of the same image can be made from a single plate, making etching a popular printmaking technique among artists.

Learn more about etching here:

https://brainly.com/question/29808648

#SPJ11

The term for a carving in metal that is soaked with acid, inked, and stamped on paper is called etching.

What is the process of Etching?

Etchings are a type of printmaking where the artist creates a design by using acid to etch lines into a metal plate. Once the plate is inked, the ink is pushed into the etched lines, and the plate is stamped onto paper, transferring the ink and creating a print. Etchings can be highly detailed and precise and are often used in fine art prints. The acid bites into the exposed metal areas, creating recessed lines and textures on the plate. The plate is then inked and wiped, leaving ink only in the etched lines and textures. Finally, the plate is pressed onto paper to transfer the ink, creating a print. Etching is a versatile printmaking technique that allows for detailed and intricate designs to be transferred onto paper, and it has been used by artists for centuries to create a wide range of artistic prints.

To know more about Etching:

https://brainly.com/question/18064419

#SPJ11

one of the techniques used in this experiment was that of crystallization. when cooling a solution in the process of crystallization, why would an ice bath be preferable over cold water or ice alone? none of the answers shown are correct. ice is too cold and will freeze any solution. cold water would dilute the solution making it impossible for crystals to form. a mixture of ice and water will keep the temperature above freezing and will contact the entire portion of the container immersed in the ice/water mixture.

Answers

When conducting a crystallization process, it is important to cool the solution at a slow and controlled rate to encourage crystal formation.

An ice bath is preferable over cold water or ice alone because it can maintain a consistent low temperature without causing the solution to freeze solid. Ice alone is too cold and can cause the solution to freeze rapidly, preventing the formation of crystals. Cold water, on the other hand, is not able to maintain a consistent low temperature as the heat from the solution will quickly dissipate into the surrounding water, resulting in a slower cooling rate.

An ice bath, which is a mixture of ice and water, provides a more stable and uniform cooling environment for the solution, allowing for the crystals to form at a slower rate. Additionally, an ice bath can contact the entire portion of the container immersed in the mixture, ensuring that the solution is evenly cooled. Overall, an ice bath is the preferred method for cooling a solution during the process of crystallization.

know more about crystallization process here

https://brainly.com/question/29662937#

#SPJ11

complete question is:-

one of the techniques used in this experiment was that of crystallization. when cooling a solution in the process of crystallization, why would an ice bath be preferable over cold water or ice alone? none of the answers shown are correct. ice is too cold and will freeze any solution. cold water would dilute the solution making it impossible for crystals to form. a mixture of ice and water will keep the temperature above freezing and will contact the entire portion of the container immersed in the ice/water mixture.  EXPLAIN.

addictive substances, for which demand is inelastic, are products for which producers can pass higher costs on to consumers.

Answers

The statement is correct. Producers of addictive substances, for which demand is inelastic, can pass higher costs on to consumers.

Inelastic demand refers to a situation where changes in price have little effect on the quantity demanded of a product. Addictive substances, such as tobacco or drugs, often have inelastic demand because users are willing to pay high prices for the product regardless of changes in price.

Producers of addictive substances can take advantage of this inelastic demand by increasing prices without seeing a significant decrease in demand. This means that they can pass on any higher costs, such as increased taxes or production costs, to the consumers, who are likely to continue purchasing the product even at a higher price.

This is often seen in the tobacco industry, where governments may increase taxes on cigarettes as a way to discourage smoking, but the tobacco companies can simply pass on the higher costs to consumers who continue to buy the product.

Therefore, it can be concluded that producers of addictive substances, for which demand is inelastic, can pass higher costs on to consumers.

To learn more about addictive substances, here

https://brainly.com/question/15085682

#SPJ4

the primary benefit of using a collimator on a rinn bai instrument with the bisecting technique is

Answers

The primary benefit of using a collimator on a Rinn Bai instrument with the bisecting technique is that it helps to limit the size and shape of the x-ray beam, ensuring that only the area of interest is exposed to radiation.

This not only reduces the amount of radiation that the patient is exposed to, but also helps to improve the accuracy of the resulting image by reducing scatter and improving the overall contrast and clarity of the image.

In short, the collimator serves as a crucial tool for ensuring that the bisecting technique is performed safely and accurately. The collimator serves as a barrier that narrows the X-ray beam, limiting its spread and focusing it on the area of interest, thereby producing a sharper image with less scatter radiation.

To know more about radiation click here

brainly.com/question/13805452

#SPJ11

The primary benefit of using a collimator on a Rinn BAI instrument with the bisecting technique is that it helps reduce radiation exposure and improve image quality.

Using a collimator on a Rinn BAI instrument with the bisecting technique provides the following benefits:

1. Reduces radiation exposure: By limiting the X-ray beam size and shape to the area of interest, a collimator helps minimize the patient's exposure to radiation.

2. Improves image quality: A collimator helps produce sharper images by reducing scatter radiation, which can cause image blurring.

3. Enhances diagnostic accuracy: By producing high-quality images with less radiation exposure, a collimator helps dental professionals make accurate diagnoses and treatment decisions.

In summary, the primary benefit of using a collimator on a Rinn BAI instrument with the bisecting technique is the reduction of radiation exposure and improvement in image quality, leading to better patient care and more accurate diagnoses.

To know more about collimator on a Rinn BAI instrument :

https://brainly.com/question/31543222

#SPJ11

Other Questions
How were peoples attitudes towards anatomy and the science of the human body changing around the time of Frankenstein publication ? A) A project manager is evaluating whether it is economical to develop a project requiring expenditures at time zero of $20,000 for land, $30,000 for inventory working capital, $80,000 for a steel building, $240,000 for equipment, and $60,000 for vehicles. Starting in year one the manager estimates that production will generate annual end-of-year escalated revenue of $500,000 with escalated operating costs of $300,000. Operating costs and revenue will both escalate at a compound interest rate of 10% per year beginning in year two. Use straight-line depreciation over 39 years for the building cost starting in year one assuming 12 months of service when computing your allowable deduction in year one under the mid-month con- vention. Use 7-Year MACRS depreciation rates for the qualifying equipment cost starting in year one with the half-year convention and the 5-Year MACRS rates for the vehicle cost, again, starting in year one with the half-year convention. The effective combined federal and state income tax rate is 25%. No other income exists against which to utilize deductions so carry any losses forward. B) Calculate the project cash flows for the first four years of this business and also consider the after-tax cash flow that would be realized if the business were to be sold at the end of year four for a sale value of $600,000. Write off all remaining tax book values at the end of year four to deter- mine taxable gain (or loss) and treat the sale as ordinary income. For a minimum after-tax rate of return of 15%, calculate the overall project after-tax NPV, DCFROR, and PVR. what are the adjectives in the sentence? The sweet, chocolate donut was so yummy Was tragen sie? HELP PLEASE!!!!1111!1! Find the measure of the missing side. 1. 8.22. 9.93. 7.44. 10.9 t which method of calculating inventory cost is used to estimate the amount of ending inventory? a. last in, first out (lifo) b. first in, first out (fifo) c. weighted average method d. gross profit method a normal penny has a mass of about 2.5g. if we assume the penny to be pure copper (which means the penny is very old since newer pennies are a mixture of copper and zinc), how many atoms of copper do 9 pennies contain? the dess textbook suggests that the best way to minimize improper and unethical conducts is to and . group of answer choices set boundaries; constraints establish standards; guidelines develop policies; regulations design sanctions; guidelines Calculate the future value of a $5,000 annuity that you will invest at the end of each of the next 15 years, assuming you can earn a 10% compounded annual return. Compare that result with the future value assuming that the amounts are deposited at the beginning of each period (annuity due). ASAP I really need help doing a two column proof for this please. Show that by the uniqueness theorem the linear transformation,Y = aX + b, is also a normal random variable. Question:The current (in amps) in a simpleelectrical circuit varies inversely tothe resistance measured in ohms.The current is 24 amps when theresistance is 20 ohms. Find thecurrent (in amps) when theresistance is 12 ohms. I need help with this question can you help? Find the area? For this shape pleae Solve for XPlease show step by step(X - 4)^2 = 25 Please help with the answer! assume that the physical property of a business is valued at $50,000. the company's commercial property policy contains a coinsurance clause with a stated percentage of 80 percent. the company insures the property for $30,000 (75 percent of the specified minimum). the company incurs a fire loss of $20,000. how much of the loss will the insurance company pay for? I just need and outline/draft!!! Ill give brainliest!! Complete the following activities.1. Write a well-organized multi-paragraph essay (750-1,000 words) in which you analyze the relationship between some aspect of the historical, social, or cultural context in which Metamorphosis waswritten and the meaning of the work as a whole.Do not merely summarize the plot.Use the following guidelines as a checklist to make sure you include each element in your draft: an introduction that engages the reader's attention and includes your thesis statement body paragraphs that address each of your major assertions textual support for each assertionanalytical statements that connect textual support to the assertions a conclusion that explicitly states a judgment of the literary merit of the text, as informed by your analysis of the text in its historical, social, or cultural context How much must be deposited at the end of each quarter for 7.5years to accumulate to $27000.00 at 6.84% compounded monthly? how many atmospheres of pressure would there be if you started at 5.75 atm and changed the volume from 5 l to 1 l ?