Answer:
The large piston would rise by [tex]10\; \rm cm[/tex] (which is equal to [tex]0.1\; \rm m[/tex].)
Explanation:
Convert the unit of the area of the larger piston to [tex]\rm cm^{2}[/tex]:
[tex]0.01\; \rm m^{2} = 100\; \rm cm^{2}[/tex].
If the pipe is cylindrical, the liquid that the smaller piston pushed into the pipe would be a cylinder:
Height of the cylinder: [tex]50\; \rm cm[/tex].Area of the top of the cylinder: [tex]20\; \rm cm^{2}[/tex] (same as the area of the smaller piston.)Volume of liquid that the smaller piston pushed into the pipe:
[tex]\begin{aligned} & \text{Volume of Cylinder} \\ &= \text{Area of the Top of the Cylinder} \\ &\quad\quad \times \text{Height of Cylinder} \\ &= 20\; \rm cm^{2} \times 50\; \rm cm \\ &= 1000\; \rm cm^{3} \end{aligned}[/tex].
Unlike gas, the volume of a liquid (such as the one in this hydraulic press) at a given temperature tends to be fixed.
Therefore, when the small piston pushed [tex]1000\; \rm cm^{3}[/tex] of liquid into the pipe, liquid of the exact same volume ([tex]1000\; \rm cm^{3}\![/tex]) would appear under the larger piston and push the larger piston upwards.
Rearrange the equation to find the height by which the larger piston rises (same as the height of the [tex]1000\; \rm cm^{3}[/tex] liquid cylinder under the larger piston.)
[tex]\begin{aligned} & \text{Height of Cylinder} \\ &= \frac{\text{Volume of the Cylinder}}{\text{Area of the Top of the Cylinder}} \\ &= \frac{1000\; \rm cm^{3}}{100\; \rm cm^{2}} = 10\; \rm cm \end{aligned}[/tex].
please help me with this! i will give brainliest if you get it right! NO LINKS OR IM REPORTING
helpppppppppppppppppppppppppppp............
an object is moving with initial velocity of 5 m/s. After 10 seconds final velocity is 10 m/s. Calculate its acceleration.
Answer:
0.5 m/s 2 is the acceleration
Explanation:
hope it helped!!!
1) A speaker vibrates at a frequency of 2500 Hz. What is its period?
2) A swing has a period of 15 seconds. What is its frequency?
Please help, thank you!
It's easier for you to solve these than to try and read my solutions if I solve them.
Use this magic formula:
(period) · (frequency) = 1
If you handle the magic formula carefully and correctly, you can get these facts out of it:
-- Period = 1 / frequency
-- Frequency = 1 / period
Use the first one to solve #1.
Use the second one to solve #2.
What is the difference between center of mass and center of gravity?
Answer:
Centre of mass is the point at which the distribution of mass is equal in all directions, and does not depend on gravitational field. Centre of gravity is the point at which the distribution of weight is equal in all directions, and does depend on gravitational field.
Answer:
Centre of mass is the point at which the distribution of mass is equal in all directions, and does not depend on gravitational field.
Centre of gravity is the point at which the distribution of weight is equal in all directions, and does depend on gravitational field.
hope this helps you ☺️☺️
Which of these 23rd chromosome
combinations is likeliest to result in a
person with male and female traits?
ΧΟ
XXX
XXY
XY
Another word for kinetic energy
could be
energy.
A. Safe
B. Moving
C. Stored
D. Potential
Answer:
moving
Explanation:
hope it helped!!!
Answer:
B
Explanation:
please help with both questions I’m giving all my points :) it’s 23 and 24
Determine the angle between the directions of vector A with rightwards arrow on top = 3.00i + 1.00j and vector B with rightwards arrow on top = -3.00i + 3.00j.
A) 117°
B) 88.1°
C) 26.6°
D) 30.0°
E) 45.2°
Answer:
C) 26.6
Explanation:
I don't know how to calculate vector
The angle between the two vectors is 117⁰
The given parameters;
vector A = 3.00i + 1.00j
vector B = -3.00i + 3.00j
The angle between the two vectors is calculated as follows;
[tex]cos \ \theta = \frac{A\ . \ B}{|A| \ . \ |B|}[/tex]
The dot product of vector A and B is calculated as;
[tex]A \ . \ B = (3i \ + j) \ . \ (-3i \ + 3j) = (3\times -3) + (1 \times 3) = -9 + 3 =- 6[/tex]
The magnitude of vector A and B is calculated as;
[tex]|A| = \sqrt{3^2 + 1^2} = \sqrt{10} \\\\|B| = \sqrt{(-3)^2 + (3)^2} = \sqrt{18}[/tex]
The angle between the two vectors is calculated as;
[tex]cos \ \theta = \frac{-6}{\sqrt{10} \ . \sqrt{18} } \\\\cos \ \theta = \frac{-6}{\sqrt{180} } \\\\cos \ \theta = -0.4472\\\\\theta = cos \ ^{-1} (-0.4472) \\\\\theta = 116.6^0 \approx 117^0[/tex]
Thus, the angle between the two vectors is 117⁰
Learn more here: https://brainly.com/question/15006306
[3]2] Resistors X and Y are connected in series with a 6.0 V battery of negligible intemal
resistance.
R
X has resistance R and Y has resistance > .
A voltmeter of resistance R is connected across Y.
x
6ov |
Y
h
What is the reading on the voltmeter?
[1 mark]
A00V [Le]
B15V [e]
C 3.0V [=]
D45V fe] \
Using ohm's law and the characteristics of series and parallel circuits, we find that the correct answer is B: Voltage on the voltmeter 1.5 V
given parameters
* The element X has a resistance Rₓ = R
* Element Y with resistance R_y = R / 2
* The voltmeter with internal resistance R_v = R
* Battery voltage V = 6V
* the circuit is in the diagram
To find
The Voltmeter reading.
For this exercise we use ohm's law which establishes a linear relationship between voltage and current
V = i R
Let's solve the circuit in parts:
1 part. We reduce the part in parallel, finding its equivalent resistance
R_ {eq1}
The equivalent resistance between Y element and the voltmeter that is in parallel, therefore their equivalent resistance is
[tex]\frac{1}{R_{eq1} } = \frac{1}{R_y} + \frac{1}{R_v}[/tex]
[tex]\frac{1}{R_{eq1} }= \frac{1}{\frac{R}{2} } + \frac{1}{R} = \frac{3}{R}[/tex]
[tex]R_{eq1} = \frac{R}{3}[/tex]
Now element X and this equivalent resistance are in series ( see attached), so the equivalent resistance of the entire circuit is
R_{eq} = Rₓ + R_{eq1}
we substitute
R_{eq} = [tex]R + \frac{R}{3} = \frac{4}{3} \ R[/tex]
2 part. We look for the current of the circuit, usin the ohm's Law
V = i R_{eq}
i = [tex]\frac{V}{R_{eq} }[/tex]
i = [tex]\frac{6}{\frac{4R}{3} } = \frac{18}{4R}[/tex]
i = 4.5 / R
In a series circuit the current is constant and the total voltage is the sum voltage of each element, so the voltage in the parallel R_{eq1}
V₂ = I R_{eq1}
V₂ = [tex]\frac{4.5}{R} \ \frac{R}{3}[/tex]4.5 / R R / 3
V₂ = 1.5 V
3 part. The voltmeter and the Y element are in parallel, so the voltage in the two elects is the same, consequently the voltage of the voltmeter (V_v)
V_v = V₂ = 1.5 V
Using ohm's law and the properties of series and parellel circuits we find the voltage across the voltmeter
V_v = 1.5 V
To learn about series and parallel circuits here: brainly.com/question/11409042
The surface of the paper is phosphorescent. When light shines on it, some of the energy is absorbed and re-emitted slowly over time. The blue LED causes the surface to glow, but the green LED does not. Would a red LED to cause the surface to glow? Select the best answer from the choices provided. View Available Hint(s) Select the best answer from the choices provided. No Yes
Answer:
No
Explanation:
Recall that the hierarchy of wavelength color from minimum wavelength to maximum wavelength is:
[tex]V < I < B < G < Y < O < R;[/tex] and
[tex]E \ \alpha \ \dfrac{1}{\lambda}[/tex]
As a result, blue light has a higher energy level than green and red light.
As a result, the surface glows due to the blue LED. The green LED, on the other hand, would not allow the surface to glow as much as the red LED, which has a lower energy level when compared to the green light. As a result, the red LED would not allow the surface to glow as well.
A transparent oil with index of refraction 1.15 spills on the surface of water (index of refraction 1.33), producing a maximum of reflection with normally incident violet light (wavelength 400 nm in air). Assuming the maximum occurs in the first order, determine the thickness of the oil slick.
Answer:
The thickness of the oil slick. t = 173.91 nm
Explanation:
Oil film thickness t is given by the equation
[tex]t = \frac{\lambda}{2n}[/tex]
where λ = wavelength of incident light in air = 400 nm
and n = index of refraction of oil
therefore,
[tex]t =\frac{400}{2\times 1.15}\\t= 173.91 nm[/tex]
The thickness of the oil slick. t = 173.91 nm
An airplane flew from San Francisco to Washington, D.C. Approximately
halfway through the flight, the plane had traveled 2,000 km in 2.5 hours.
What was the speed during this period?
Another airplane is flying in the opposite direction. It covers the same distance in exactly 2 hours. What was its speed and direction during this period?
Answer:
The solution is given below:
Explanation:
The computation of the speed is shown below
As we know that
Speed = distance ÷ time
where
distance is 2000 km
And, the time is 2.5 hours
SO, the speed is
= 2,000 ÷ 2.5
= 800 km/h
Now the distance would be the same i.e. 2,000 km
but the time is 2 hours
So, the speed is
= 2,000 km ÷ 2 hours
= 1,000 km/hr
The direction should be opposite to the first airplane
In this equation, what shows that transmutation has taken place?
242 Cm – 328 Pu + He
A. There is conservation of both nucleons and atoms.
B. The nucleus of an atom changes
C. It involves more than one element
D. The number of atoms is conserved,but the number of nucleons is not
X-rays are electromagnetic waves used to obtain images of bones. An x-ray machine produces x-ray waves with a frequency of 1.25 x 10^18 Hz.
(a) Calculate the time period of these x-rays.
Answer:
[tex]T=8\times 10^{-19}\ s[/tex]
Explanation:
Given that,
The frequency of x-ray is, [tex]f=1.25\times 10^{18}\ Hz[/tex]
We need to find the time period of these x-rays. Let it is be T. We know that, the relation between f and T is given by :
T = 1/f
So,
[tex]T=\dfrac{1}{1.25\times 10^{18}}\\\\=8\times 10^{-19}\ s[/tex]
So, the time period of these x-rays is equal to [tex]8\times 10^{-19}\ s[/tex].
The time period of the electromagnetic wave is 8.0 × 10⁻¹⁹ seconds.
Given the data in the question;
Frequency; [tex]f =1.25 * 10^{18}Hz[/tex]
Time period; [tex]T =\ ?[/tex]
Time period is simply the time taken for one complete cycle of vibration to pass a given point.
It is expressed as:
[tex]T = \frac{1}{f}[/tex]
We substitute our value into the equation
[tex]T = \frac{1}{1.25 * 10^{18}Hz} \\\\T = \frac{1}{1.25 * 10^{18}s^{-1}}\\\\T = 8.0 * 10^{-19}s[/tex]
Therefore, the time period of the electromagnetic wave is 8.0 × 10⁻¹⁹ seconds.
Learn more: https://brainly.com/question/24094163
what happen when you take off your clothes very quickly
Answer:
Nothing
Explain
Nothing happenes when you take off your cloths quickly.
Scientificly nothing really happnes.
A student is giving a presentation to a class describing magnetic and electric fields in a region of space. First, the student describes what happens when there is a constant magnetic field in the region of space. Then, the student describes what happens when there is a time-dependent magnetic field in the region of space. Which of the following a correct description by the student abo what occurs when the magnetic field changes from being constant to being time dependent?
a. When the magnetic field is constant, there is only a magnetic field in the region of space. When the magnetic field is time dependent, there will be both a magnetic field and an electric field in the region of space.
b. When the magnetic field is constant, there will be both a magnetic field and an electric field in the region of space. When the magnetic field is time dependent, there is only a magnetic field in the region of space.
с. In both situations, there will be both a magnetic field and an electric field in the region of space. In both situations, there will only be a magnetic field in the region of space. If the magnetic field is not constant over the region, then there will be both a magnetic field and an electric field in the region of space
d. In both situations there will only be a magnetic field in the region of space. If the magnetic field is not constant over the region, there will still be only a magnetic field in the region of space.
Answer:
a. When the magnetic field is constant, there is only a magnetic field in the region of space. When the magnetic field is time dependent, there will be both a magnetic field and an electric field in the region of space.
Explanation:
This is true because according to Maxwell's equation, a time dependent magnetic field produces an electric field.
When the magnetic field is constant, there is no electric field in that region of space. But, when it begins to vary, an electric field is then generated by Maxwell's equation which is given by
CurlE = -dB/dt
So, there is initially no electric field when the magnetic field is constant, but it exists when the magnetic field becomes time dependent.
So when dB/dt = 0
CurlE = 0 ⇒ E = 0
So when dB/dt ≠ 0
CurlE ≠ 0 ⇒ E ≠ 0
What makes astronomers think that impact rates for the Moon must have been higher earlier than 3.8 billion years ago?
Answer: See explanation
Explanation:
The reason why astronomers think that the rates of impact for the Moon must have been higher earlier than 3.8 billion years ago is because on the older highlands, there are ten times more craters than on the younger maria.
It is believed that the impact rate was higher earlier and thus can be seen when the numbers of the craters that can be seen on the lunar highlands is being compared to that on the maria. It should be noted that there are about 10 times more craters that can be found on the highlands than those on the maria.
If there was a constant rate of impact throughout the history of the Moon, then the highlands be about 10 times older and therefore will have been formed about 38 billion years ago.
Light travels through a vacuum at a speed of 3 x 10 m/s. What is the speed of
light in water if the index of refraction is 1.333?
Answer:
v = c / n (n = 1 for air)
v = c / 1.33 = 3 * 10E8 m/s / 1.33 = 2.25 * 10E8 m/s
please answer this im not sure
Answer:
the answer is B
In an NMR experiment, the RF source oscillates at 34 MHz and magnetic resonance of the hydrogen atoms in the sample being in- vestigated occurs when the external field Bext has magnitude 0.78 T. Assume that Bint and Bext are in the same direction and take the pro- ton magnetic moment component u, to be 1.41 X 10-26 J/T. What is the magnitude of Bint?
Answer:
[tex]B_{int}=-0.015T[/tex]
Explanation:
From the question we are told that:
RF source oscillation speed [tex]\sigma= 34 MHz[/tex]
The external field [tex]Bext =0.78 T[/tex].
Pro- ton magnetic moment component [tex]\mu=1.41 X 10-26 J/T[/tex]
Generally the equation for magnitude of [tex]B_{int}[/tex] is mathematically given by
[tex]B_{int}=B_{ext}-\frac{h\triangle \sigma}{2 \mu}[/tex]
[tex]B_{int}=0.78-\frac{6.6*10^{-34}*34*10^6}{2*1.41*10^{26}}[/tex]
[tex]B_{int}=0.78-0.7957[/tex]
[tex]B_{int}=-0.015T[/tex]
A student with a mass of 52 kg, starts from rest and travels down a 2 m slide. What is
the KE of the student at the bottom of the slide?
Answer:
https://www.ux1.eiu.edu/~cfadd/1350/Hmwk/Ch08/Ch8.html
Explanation:
When jumping straight down, you can be seriously injured if you land stiff-legged. One way to avoid injury is to bend your knees upon landing to reduce the force of the impact. A 75-kg man just before contact with the ground has a speed of 5.5 m/s.
(a) In a stiff-legged landing he comes to a halt in 1.5 ms. Find the average net force that acts on him during this time.
275735 N
(b) When he bends his knees, he comes to a halt in 0.08 s. Find the average force now.
? N
(c) During the landing, the force of the ground on the man points upward, while the force due to gravity points downward. The average net force acting on the man includes both of these forces. Taking into account the directions of these forces, find the force of the ground on the man in parts (a) and (b).
stiff legged landing 275735 N
bent legged landing ??? N
Answer:
a)[tex]F_{net} =275000N[/tex]
b)[tex]F_{net}'= 386718.75N[/tex]
Explanation:
From the question we are told that:
Man's Mass [tex]M=75kg[/tex]
Speed of man [tex]V_m=5.5m/s[/tex]
a)
Landing time [tex]t_l=1.5ms[/tex]
Generally the equation for average net force F_{ net} is mathematically given by
[tex]F_{net} = 75 *5.5 /(0.0015) N[/tex]
[tex]F_{net} =275000N[/tex]
b)
Landing time [tex]t=0.08s[/tex]
Generally the equation for average net force[tex]F_{ net}[/tex] is mathematically given by
[tex]F_{net}' = impulse /time \\ F_{net}'= \frac{m * u}{t}[/tex]
[tex]F_{net}'= \frac{75 * 5.5}{0.08}[/tex]
[tex]F_{net}'= 386718.75N[/tex]
Which type of diffraction occurs when the point source and the screen are at finite distances from the obstacle forming the diffraction pattern?
A. fraunhofer
B. fresnel
C. far-field
D. single slit
9.
The refractive index of water will change with its temperature due to the change in
density of its molecules.
a. True
b. False
Can someone make a list of 10 simple things people can do to maintain fitness ? Or don’t list a lot
Answer:
1. sleep well
2. drink water
3. eat healthy
4. less sugar and salt
5. exercise 30 minutes daily
6. eat whole grains
7. eat fruits and vegetables
8. practice mental health
9. stay motivated
10. eat a variety of foods
Which of the following best describes Earth's crust, according to the theory of plate tectonics?
Answer:
the Earth's crust is broken into about 12 plates that float on hotter, softer rocks in the underlying mantle
Explanation:
PLS HELP.
A rope breaks when the speed of a 0.309 kg mass moving in a circle of radius of 0.429 m reaches 12.9 m/s
how much tension is in the strings when it breaks?
unti=n
120 works for acellus
Answer: 119.9
Explanation:
F = (mv^2)/r
Here we know m (0.309kg), v (12.9m/s) and r (0.429m)
So F = (0.309*12.9^2)/0.429 = 119.861748
Types of telescope
for Space
observation
Answer:The three main types are reflecting telescopes, refracting telescopes, and catadioptric telescopes. Radio telescopes collect and focus radio waves from distant objects. Space telescopes orbit Earth, collecting wavelengths of light that are normally blocked by the atmosphere.
Answer:
oii me manda mensagem fofo vc tem namorada fofo
The environment of Ecology is made up of how many levels?
Answer:
There are 5 general layers; organism, population, community, ecosystem, and biosphere.
Explanation:
Hope this helps!
The speed of sound is about 343 m/s . The wavelengths humans can hear range from .0017 m/cycle to 17m/cycle . What is the range of frequencies we can hear? Please help me !
Answer:
Explanation:
wavespeed = wavelength * frequency
wavespeed / wavelength = frequency
343 / 17 = 20.17 Hz
343 / 0.017 = 201764 Hz
So range of frequencies we can hear is between 20Hz and 20,000 Hz ( or 20.17 to 201764 if you dont round up/down)