Answer:
49 cm²
Step-by-step explanation:
10 mm = 1 cm
1 mm = 1/10 cm
4900 mm² = 4900 × mm × mm
4900 mm² = 4900 × 1/10 cm × 1/10 cm = 49 cm²
What is the the measure and length of arc MC
As given by the question
There are given that the measuring circle.
Now,
From the given circle, the length of the MN is 28 units, because the half of the length of the MN is 14. So just multiply by 2 into half of the given value.
Hence, the length of MN is 28 units.
Now,
For the measure of MN:
The measurement of the angle MN is 74 degrees.
Hence, a measure of arc MN is 74 degrees. and the length of segment MN is 28 units.
Mr. McFall uses 2% cups of peanuts for every 1/2 cup of chocolate chips in a mixture. Enter the number of cups of peanuts for every 1 cup of chocolate chips. Remember to reduce.
To solve this problem I'll use proportions.
2 1/8 cups ------------------------ 1/2 cup of chocolate.
x ----------------------- 1 cup od chocolate chips
x = (1*2 1/8) / 1/2
x = 17/8 / 2
x = 4 % cups of peanuts
Dave jogs 8 feet per second. Give each rate in miles per hour.
Answer:
Step-by-step explanation:
first find seconds in an hour
60(seconds in a minute) *60(minutes in an hour) = 3600 seconds in an hour
then multiply 8 by 3600 to see how many feet per hour
28,800
we need miles so there are 5280 feet in a mile
28800/5280 is 5.45454545 or 5.455 miles per hour
Help me out please I don’t understand what I’m doing
Since we have the value for selling each shirt, the earnings that came from the hats sold and the total earnings we can complete equation using a linear equation in which the cost of each shirt will represent the slope and the y-intercept will be the earnings that came from the hats, like this:
[tex]5x+40=125[/tex]then clear the equation for x in order to find how many shirts were sold
[tex]\begin{gathered} 5x=125-40 \\ 5x=85 \\ x=17 \end{gathered}[/tex]
9. ¿Cuál es el equivalente
fraccionario
de 0.2666 ...?
Answer:
4/15
Step-by-step explanation:
4/15 = 0.26666666...
Which of the following is a proportion?8/10=6/83/4=12/154/6=9/126/9=8/12
To be able to determine which among the choices is a proportion, you check if each side has the same common ratio.
A. 8/10 = 6/8
Ratio: 0.80 = 0.75 (Not Proportional)
B. 3/4 = 12/15
Ratio: 0.75 = 0.80 (Not Proportional)
C. 4/6 = 9/12
Ratio: 0.67 = 0.75 (Not Proportional)
D. 6/9 = 8/12
Ratio: 0.67 = 0.67 (Proportional)
Since the ratio of each side of letter D is equal, Letter D is the one that is in Proportion.
solve the problem by defining a variable and writing an equation
Randy and Wade started riding a bike at noon. Noon is 12 pm. Both of them are heading towards each other and 60km.
let
speed of wade = x
speed of Randy = 4 + x
They met each other at 1:30 pm. 12 pm to 1:30 pm is 1 hour 30 minutes(1.5 hours). Both of them will cover a total distance of 60km.
[tex]\begin{gathered} \text{speed}=\frac{dis\tan ce}{\text{time}} \\ \text{speed}\times time=dis\tan ce \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} 1.5x+1.5(4+x)=60 \\ 1.5x+6+1.5x=60 \\ 3x=60-6 \\ 3x=54 \\ x=\frac{54}{3} \\ x=18\text{ km/hr} \end{gathered}[/tex]speed of wade = 18km/hr
speed of Randy = 4 + 18 = 22km/hr
which statement is true and why? & why not the others?
For this problem, we have three circles with different radii. We need to determine which circles are similar and point out the reason for our statement.
Every circle has the same shape, the only thing that sets them apart is the radii. Since we can represent the relationship between the radii as fractions, then all circles are similar. Due to this, the only correct option is the second one. "Circle 1 is similar to both circle 2 and circle 3".
Describe where the function has a hole and how you found your answer.
Step 1:
Write the function
[tex]f(x)\text{ = }\frac{x^2+\text{ 7x + 10}}{x^2\text{ + 9x + 20}}\text{ }[/tex]Step 2:
Factorize both the numerator and the denominator.
[tex]\begin{gathered} f(x)\text{ = }\frac{x^2\text{ + 2x + 5x + 10}}{x^2\text{ + 4x + 5x + 20}} \\ f(x)\text{ = }\frac{x(x\text{ + 2) + 5(x + 2)}}{x(x\text{ + 4) + 5 (x + 4)}} \\ f(x)\text{ = }\frac{(x\text{ + 5)(x +2)}}{(x\text{ + 5)(x + 4)}} \end{gathered}[/tex]Step 3:
A hole is a common factor between the numerator and the denominator.
Hole: x + 5 = 0
x = -5
Final answer
Hole is -5
In the circle below, if AB is a diameter, find the measure of arc AB.
A circle has 360°
since the diameter cuts in half the circle
The measure of the arc of half the circle (semicircle) measure arcAB is
[tex]AB=\frac{360}{2}[/tex][tex]AB=180[/tex]AB=180°
Then correct answer is
option a
Dylan invested $93,000 in an account paying an interest rate of 3% compoundedquarterly. Assuming no deposits or withdrawals are made, how much money, to thenearest cent, would be in the account after 17 years?
The formula to calculate compound interest is given to be:
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]where:
[tex]\begin{gathered} A=\text{ final amount} \\ P=\text{ initial amount (principal)} \\ r=\text{ interest rate} \\ n=\text{ number of times interest applied per time period} \\ t=\text{ number of time period elapsed} \end{gathered}[/tex]The following parameters are given in the question:
[tex]\begin{gathered} P=93000 \\ r=\frac{3}{100}=0.03 \\ n=4(quarterly) \\ t=17\text{ years} \end{gathered}[/tex]We can substitute these values into the formula to calculate the final amount as follows:
[tex]A=93000(1+\frac{0.03}{4})^{4\times17}[/tex]Solving, we get:
[tex]\begin{gathered} A=93000\times1.0075^{68} \\ A=154,577.64 \end{gathered}[/tex]The amount after 17 years is $154,577.64
1 ptsQuestion 7Mike reads 5 pages an hour. The independent variable is time. What is the dependentvariable?O the number of pagesthe number of hoursO the number of books
We are given that Mike reads 5 pages an hour. This is the quotient of pages with respect to time. In this case, the time is the independent variable and the number of pages is the dependent variable since the number of pages depends on the time interval that is considered.
What is the distance between A(5,-2) and B(-2,4)?
Answer:
[tex]\sqrt{85}[/tex]
Step-by-step explanation:
Let's use the distance formula to solve for the distance between the two given points!
d = [tex]\sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 }[/tex]
Now, we input the points:
(5-(-2) + (-2-4)
(which will equal...)
(7) + (-6)
Now we input the solutions we got here to the distance formula:
[tex]d =\sqrt{(7)^2 + (-6)^2[/tex]
(we simplify....)
[tex]7^2 = 49\\(-6)^2 = 36[/tex]
input these solutions into the distance formula again...
[tex]\sqrt{49 + 36} = \sqrt{85}[/tex]
85 is not a number that can be square rooted properly, nor does it have any perfect squares available to divide equally.
Therefore, we conclude that the distance between A(5, -2) and B(-2,4) is [tex]\sqrt{85}[/tex].
I need answers to 6a and 6b. This is for my homework :,)
The system of equations has 3 cases
1. y = ax + b, y = ax + c
Since the coefficient of x and y are the same, and the y-intercepts are different, then
The two lines are parallel
2. y = ax + b, y = dx + c
Since the 2 lines have different coefficients of x, then
The two lines are intersected
3. y = ax + b, y = ax + b
Since the two lines have equal coefficients of x and equal y-intercepted, then
The two lines are coincide (same line)
6. a)
Since the system of equations is
[tex]\begin{gathered} y=2x+3 \\ y=12x-2 \end{gathered}[/tex]The coefficients of x not equal
Then from case 2 above
The two lines are intersected
6.b
Since the system of equations is
[tex]\begin{gathered} y=13x+2 \\ y=13x-2 \end{gathered}[/tex]The coefficients of x are equal
The y-interceptes not equal
Then from case 1 above
The two lines are parallel
what is the minimum surface area that such a box can have
Given a rectangular box with an open top and square base, the dimensions of the box are:
[tex]a\times a\times b[/tex]The volume can be calculated as:
[tex]V=a\cdot a\cdot b=a^2\cdot b[/tex]The area of the sides is:
[tex]A_L=a\cdot b[/tex]The area of the base:
[tex]A_B=a^2[/tex]There are 4 lateral sides and 1 base (the top is open), so the total surface area is:
[tex]A_{\text{total}}=4\cdot A_L+A_B=4\cdot a\cdot b+a^2[/tex]We have a fixed volume of 2048 in³, then:
[tex]\begin{gathered} a^2\cdot b=2048 \\ b=\frac{2048}{a^2} \end{gathered}[/tex]Using this result on A_total:
[tex]A_{\text{total}}=4\cdot a\cdot\frac{2048}{a^2}+a^2=\frac{8192}{a}+a^2[/tex]To find the minimum surface area, we take the derivative:
[tex]\begin{gathered} \frac{dA_{total}}{da}=-\frac{8192}{a^2}+2a=0 \\ a^3=4096 \\ a=16 \end{gathered}[/tex]Now, we calculate the minimum total area using a:
[tex]A_{\text{total}}=\frac{8192}{16}+16^2=768in^2[/tex]What is the name of the decimal number?7.1seventy-one seven and one hundredthsseven and one tenth seventeen
Answer:
seven and one-tenth.
Explanation:
To name decimal number, we first name the values before the decimal point, in this case, seven
Then, we add an and that corresponds to the decimal point
Finally, we say the number after the decimal point and the place of this number, in this case, one-tenth.
Therefore, the name of the decimal number 7.1 is:
seven and one-tenth.
As people are living longer and the world's population is increasing, there are more and more people ages 65 or older. In 2000, approximately 419 million people were 65 or older. By 2017, that number increased to 656 million. On the two questions below, round to the nearest tenth when relevant a. What was the absolute change in the number of people 65 or older from 2000 to 2017? b. What was the relative change in the number of people 65 or older from 2000 to 2017?
In 2000 there were 419 million people 65 or older
In 2017 there were 656 million people 65 or older
a)
To calculate the absolute change in the number of people 65 and older you have to subtract the initial number (on year 2000) from the final number (in year 2017)
[tex]656000000-419000000=240000000[/tex]The absolute change is 240millions
b)
The relative change is the percentage of change. To calculate it you have to calculate the difference between the final number and the initial number, divide the result by the initial number and multiply it by 100
[tex]\frac{240000000}{419000000}\cdot100=57.279\cong57.30[/tex]The relative change is 57.30%
Which of the following correctly represents the movement on the number line for the calculation 21 - (- 15) + (- 30) ?
a- left right left
b-right left left
c- right left right
d-right right left
It is the movement on the number line is right right left
The option (d) is correct .
Given,
The movement on the number line for the calculation
21 - (- 15) + (- 30)
To find the which of the following correctly represents the movement of calculation?
Now, According to the question:
21 - (- 15) + (- 30)
21 + 15 - 30 = 6
right right left
Hence, It is the movement on the number line is right right left
The option (d) is correct.
Learn more about Number line at:
https://brainly.com/question/13425491
#SPJ1
5|x +1| + 7 = 38
Solve for x
Answer: No solutions
Step-by-step explanation:
[tex]5|x+1|+7=-38\\\\5|x+1|=-45\\\\|x+1|=-9[/tex]
However, as absolute value is non-negative, there are no solutions.
Write the equation for a parabola with a focus at (1,-4) and a directrix at x= 2.x=?
The basic form of the equation is;
4p (x- h)= (y - k)²
where (h, k) is the vertex and p is the distance from the vertex to either of its directrix or the focus
But, focus is = (1, -4) adn directrix = 2
So, the perpendicular point is :
(1.5 , -4)
p = -0.5
Putting all the values into the formula
4p (x- h)= (y - k)²
4(-0.5)(x - 1.5) = (y - (-4)²
simplify
-2(x - 1.5) = (y + 4)²
-2(x - 1.5) = y² + 8y + 16
Divide through the equation by -2
x - 1.5 = (-1/2) y² - 4y - 8
Add 1.5 to both-side of the equation
[tex]x\text{ = -}\frac{1}{2}y^2-4y\text{ - 8 + 1.5}[/tex][tex]x=-\frac{1}{2}y^2-4y\text{ - 6.5}[/tex]Given m//n find the value of x and y (5x+1)° (6x-10)° (y°)
To find the value of x, use the vertical angle theorem.
Vertical angles are congruent.
Thus we have:
6x - 10 = 5x + 1
Solve for x.
6x - 10 = 5x + 1
Add 10 to both sides:
6x - 10 + 10 = 5x + 1 + 10
6x = 5x + 11
Subtract 5x from both sides:
6x - 5x = 5x - 5x + 11
x = 11
To find the value of y, use corresponding angles thoerem.
When two parallel lines are crossed by a transversal, the angles in matching corners are correponding angles.
Corresponding angles are congruent.
Thus, we have:
y = 6x - 10
Substitiute x for 11:
y = 6(11) - 10
y = 66 - 10
y = 56°
ANSWER:
x = 11, y = 56°
Kareem wants to attend a college that will cost $13.800 for the first year. His uncle gave him a special gift of 3000 to use toward the cost. Kareem plans to attend the college in 3 years. How much must Kareem save each month to have enough for the year cost?
Kareem needs to save $13,800 in total
He already got $3000 from his uncle.
Thus, he needs $13,800 - $3000 = $10,800 more
He will need to save up $10,800 in 3 years, that is 3 x 12 = 36 months
To find the amount he must save each month, we will divide $10,800 by 36:
[tex]\frac{10,800}{36}=\$300[/tex]Answer$300A movie aspect ratio of 2.15:1 is shown as a letterboxed image on a TV with a width of 62.72in and a height of 35.28in what is the % of image shown on the TV
You have that the movie aspect ratio is 2.15 : 1, that is, you have following relation between width and height:
2.15/1 = 2.15 = 215%
that is, the widht is 2.15 times the height, or the width is 215% longer than height.
In order to determine what is the percentage of the image shown, you calculate the percentage that widht is more longer than height. You have a TV of 62.72 width and 35.28 in height:
62.72/35.28 = 1.77 = 177%
that is, width of TV is 1.77 times longer than height, or width is 177% longer.
Hence, on TV will be not possible to watch the complete image. And the percentage shown is of 177%.
estimate the product by rounding to the nearest ten: 28×51×76
To estimate each number by rounding it to the nearest ten, we will look at the unit digit,
If it is less than 5, then we replace it by 0 and keep the ten-digit as it
If it is 5 or more, then we will replace it by 0 and add the ten-digit by 1
Let us do that with every number
28, the unit digit is 8 which is greater than 5, then replace it by 0 and add 2 by 1
28 rounded to 30
51, the unit digit is 1 which is less than 5, then replace it by 0
51 rounded to 50
76, the unit digit is 6 which is greater than 5, then replace it by 0 and add 7 by 1
76 rounded to 80
Now let us multiply them
[tex]28\times51\times76=30\times50\times80=120,000[/tex]The product of the given numbers is 120,000
Solve these: state whether there is no solution, one solution specify it , or infinitely many Solutions.
Step 1:
Write the two systems of equations
y = 3x = 2
3x = y - 3
Step 2:
Substitute y from the first equation into the second equation
[tex]\begin{gathered} 3x\text{ = y - 3} \\ 3x\text{ = 3x + 2 - 3} \\ 3x\text{ - 3x = 2 - 3} \\ 0\text{ = 2 - 3} \\ 2\text{ = 3} \end{gathered}[/tex]Final answer
NO SOLUTION
help meeeeeeeeee pleaseee !!!!!
The values of the composition of the functions are:
(f o g)(x) = -x³ - x + 1
(g o f)(x) = -x³ - x - 1
How to Determine the Composition of a Function?To find the value of the composition of a given function, the inner function is first evaluated, then the output of the inner function is then replaced into the outer function and simplified.
Given the functions:
f(x) = x³ + x + 1g(x) = -x(f o g)(x) = f(g(x))
Substitute -x for x into the function f(x) = x³ + x + 1:
f(g(x) = (-x)³ + (-x) + 1
f(g(x) = -x³ - x + 1
(g o f)(x) = g(f(x))
Substitute x³ + x + 1 for x into the function g(x) = -x:
g(f(x)) = -(x³ + x + 1)
g(f(x)) = -x³ - x - 1
Learn more about composition of function on:
https://brainly.com/question/10687170
#SPJ1
please try to answer quickly my brainly app keeps crashing
From the figure, the radius of the sphere is:
[tex]r=1\text{ in}[/tex]The volume of the sphere is given by the formula:
[tex]V=\frac{4}{3}\pi r³[/tex]Using the value of the radius:
[tex]\begin{gathered} V=\frac{4}{3}\pi(1)³ \\ \\ \therefore V=\frac{4\pi}{3}\text{ in^^b3} \end{gathered}[/tex]Approximating to the nearest cubic inch:
[tex]\therefore V\approx4\text{ in^^b3}[/tex]ther
Evaluate theexpression belowwhen x = = 3.<54 : 2.3 - 22Enter your answer inthe box below.
The given expression is
[tex]54\frac{.}{.}2\times3-x^2[/tex]where x=3
the dot in the expression means multiplication
substitute into the expression above we have
[tex]\begin{gathered} 54\frac{.}{.}2\times3-3^2 \\ \end{gathered}[/tex]Applying BODMAS
[tex]27\times3-3^2[/tex][tex]\begin{gathered} 81-3^2 \\ 81-9 \\ 72 \end{gathered}[/tex]Therefore the value of the expression is 72
A construction crew is lengthening a road. Let y represent the total length of the road (in miles). Let x represent the number of days the crew has worked. Suppose that x and y are related by the equation y=53 + 2x. Answer the questions below. Note that a change can be increased or a decrease. For an increase, use a positive number. For a decrease, use a negative number. What was the road’s length when the crew started working?What is the change per day in the road’s length?
Given the equation:
[tex]y=53+2x[/tex]Where y represents the total length of the road (in miles), and x represents the number of days the crew has worked.
(a) What was the road’s length when the crew started working?
When the crew started working we have x = 0. Then:
[tex]\begin{gathered} y=53+2\cdot0 \\ \therefore y=53\text{ miles} \end{gathered}[/tex]The road's length is 53 miles.
(b) What is the change per day in the road’s length?
The change per day in the road's length is 2 miles/day.
help meeeeeeeeeeeeeeeeeeeeeee