By using the vertex and the given point, we conclude that the quadratic equation is:
y = 4*(x - 3)^2 + 2
How to find the equation of the parabola?A quadratic equation with a vertex (h, k) and a leading coefficient A can be written as:
y = A*(x - h)^2 + k
In this case, we know that the vertex is (3, 2), replacing that in the general equation we get:
y = A*(x - 3)^2 + 2
We also know that the curve passes through (4, 6), so when x = 4, the value of y must be 6, replacing that in the quadratic equation we can find the value of A.
6 = A*(4 - 3)^2 + 2
6 = A*(1)^2 + 2
6 - 2 = A*1
4 = A
So we conclude that the quadratic equation is:
y = 4*(x - 3)^2 + 2
Learn more about quadratic equations:
https://brainly.com/question/1214333
#SPJ1
Suppose that $6000 is placed in an account that pays 19% interest compounded each year. Assume that no withdrawals are made from the account.
We are going to use the formula for the compound interest, which is
[tex]A=P\cdot(1+\frac{r}{n})^{nt}[/tex]A = the future value of the investment
P = the principal investment amount (the initial deposit or loan amount)
r = the annual interest rate (decimal)
n = the number of times that interest is compounded per unit t
t = the time the money is invested or borrowed for
Replacing the values in the first question we have:
[tex]\begin{gathered} A=P\cdot(1+\frac{r}{n})^{nt} \\ A=6000,r=0.19,n=1,t=1 \\ A=6000\cdot(1+\frac{0.19}{1})^1=7140 \end{gathered}[/tex]Answer for the first question is : $7140
Then, replacing the values in the second question we have:
[tex]\begin{gathered} A=P\cdot(1+\frac{r}{n})^{nt} \\ A=6000,r=0.19,n=1,t=2 \\ A=6000\cdot(1+\frac{0.19}{1})^2=8497 \end{gathered}[/tex]Answer for the second question is : $8497
13(10+2) could be used to simplify which of the following problems?A 013/20)B O13(12)C 0130(26)
Explanation:
The expression is given below as
csc 0 (sin2 0 + cos2 0 tan 0)=sin 0 + cos 0= 1
Okay, here we have this:
Considering the provided expression, we are going to prove the identity, so we obtain the following:
[tex]\frac{csc\theta(sin^2\theta+cos^2\theta tan\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{\frac{1}{sin\vartheta}(sin^2\theta+cos^2\theta\frac{sin\theta}{cos\theta})}{sin\theta+cos\theta}=1[/tex][tex]\frac{\frac{1}{sin\vartheta}(sin^2\theta+cos\text{ }\theta sin\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{(\frac{sin^2\theta}{sin\theta}+\frac{cos\text{ }\theta sin\theta}{sin\theta})}{sin\theta+cos\theta}=1[/tex][tex]\frac{(sin\text{ }\theta+cos\text{ }\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{1}{1}=1[/tex][tex]1=1[/tex]If the price of bananas goes from $0.39 per pound to $1.06 per pound, what is the likely effect of quantity demanded?
When the price of bananas goes from $0.39 per pound to $1.06 per pound, the likely effect of quantity demanded is that it will reduce.
What is demand?The quantity of a commodity or service that consumers are willing and able to acquire at a particular price within a specific time period is referred to as demand. The quantity required is the amount of an item or service that customers will purchase at a certain price and period.
Quantity desired in economics refers to the total amount of an item or service that consumers demand over a given time period. It is decided by the market price of an item or service, regardless of whether or not the market is in equilibrium.
A price increase nearly invariably leads to an increase in the quantity supplied of that commodity or service, whereas a price decrease leads to a decrease in the quantity supplied. When the price of good rises, so does the quantity requested for that good. When the price of a thing declines, the demand for that good rises.
Learn more about demand on:
https://brainly.com/question/1245771
#SPJ1
A system of equations is shown below:Equation A: 3c = d − 8Equation B: c = 4d + 8Which of the following steps should be performed to eliminate variable d first?Multiply equation A by −4.Multiply equation B by 3.Multiply equation A by 3.Multiply equation B by 4.
We have the following: system of equations:
A: 3c=d-8
B: c=4d+8
To eliminate variable d first, if we want to use elimination method, we need to have variable d in both equations with the same coefficient but with different signs.
As in equation B, the coefficient of d is 4, then we need to have in equation A a coefficient of -4 for variable d.
Then the answer is we need to multiply equation A by -4.
Find the volume of the solid. Round your answer to the nearest hundredth. I keep getting the wrong answer. Need help!
Volume is area * height
area of pentagon is 1/4 * root(5(5 + 2root(5))) a^2
a being length of 1 side
if a =2, area is 6.88
6.88 * 4 = 27.52 yards^3
What is the value of y in the solution set of the system of linear equations shown below?y = -x + 124x - 2y = 36A.10B. 8C. 6D. 2
y = 2 (option D)
Explanation:y = -x + 12
4x - 2y = 36
rewriting the equations:
y + x = 12 ....equation 1
-2y + 4x = 36 ....equation 2
Using elimination method:
we will be eliminating y. So we need to make the coefficient of y to be the same in both equation. We will be multiplying the first equation by 2.
2y + 2x = 24 ....equation 1
-2y + 4x = 36 ....equation 2
Add both equations:
2y + (-2y) + 2x + 4x = 24 + 36
2y-2y + 6x = 60
6x = 60
x = 60/6 = 10
Insert the value of x in any of the equation. Using equation 2:
4(10) - 2y = 36
40 -2y = 36
-2y = 36 - 40
-2y = -4
y = -4/-2
y = 2 (option D)
(C3) In how many distinct ways can theletters of the word LILLYPILLY bearranged?A. 3.628.800B. 480C. 7.560D. 120.960.
We have:
L = 5 L's
I = 2 I's
P = 1 P
Y = 2 Y's
so:
[tex]\frac{10!}{5!2!2!}=7560[/tex]May I please get help finding the length to this. I tried many times.m but I couldn’t find answer for it
Both triangles are similar, so:
[tex]\frac{x}{3}=\frac{6}{4.5}[/tex]Solving for x:
4.5x = 3(6)
4.5x = 18
x = 4
what is the slope of a line perpendicular to this linewhat is the slope of a line parallel to this line
Answer:
• Slope perpendicular to the line: 8/5
,• Slope parallel to the line: –5/8
Explanation
Given
[tex]5x+8y=7[/tex]To know the result, it is better if we work with the slope-intercept form:
[tex]y=mx+b[/tex]Then, to get this kind of form we have to isolate y from the given equation:
[tex]8y=7-5x[/tex][tex]y=\frac{7-5x}{8}[/tex][tex]y=-\frac{5}{8}x+\frac{7}{8}[/tex]Thus, in this case, m = –5/8 and b = 7/8.
Perpendicular lines have negative reciprocal lines:
[tex]m_2=-\frac{1}{m_1}[/tex]where m₁ is the slope of line 1 and m₂ is the line perpendicular to line 1.
Then, replacing the values:
[tex]m_2=-\frac{1}{-\frac{5}{8}}[/tex][tex]m_2=\frac{8}{5}[/tex]Finally, the slopes of parallel lines are the same, meaning:
[tex]m_2=m_1[/tex]where m₁ is the slope of line 1 and m₂ is the line parallel to line 1.
Ary is writing thank you cards to everyone who came to her wedding. It takes her of an hour to write one thank you card. If it took her 8 hours to finish writing all of the cards, how many thank you cards did she write?
From the question, It takes Ary an hour to write one thank you card.
So, the rate at which she writes the thank you card is;
[tex]\text{Rate R}=1\text{ card/hour}[/tex]To determine the number N of thank you card she would write in 8 hours.
[tex]N=R\times T[/tex]Where;
R is the rate = 1 card/hour
T is the time taken = 8 hours
Substituting the values we have;
[tex]\begin{gathered} N=1\text{ card/hour}\times8\text{ hours} \\ N=8\text{ cards} \end{gathered}[/tex]The number of thank you cards she write is 8 cards
You are taking 2 shirts(white and red) and 3 pairs of pants (black, blue, and gray) on a trip. How many different choices of outfits do you have?
Find the slope and y intercept of the line 5x - 3y =12
Answer:
slope = 5/3
y-intercept = -4
Step-by-step explanation:
First, move the x to the other side of the equation:
-3y=-5x+12
Then, divide BOTH sides by -3, so that there is no coefficient next to y:
y=5/3x-4
Then, just look at the constant and coefficient next to x (m). The slope is 5/3 and the y-intercept is -4.
Hope this helps!
Answer:
[tex]y = \frac{5}{3}x - 4[/tex]
Step-by-step explanation:
move the 5x to a -5x
-3y= -5x+12
-3/-3= -5x÷ -3 12÷ -3
5. Monty compared the minimum of the function f(x) = 2x2 - x + 6 to theminimum of the quadratic function that fits the values in the table below.X-3-2-101g(x)0-5-6-34What is the horizontal distance between the minimums of the twofunctions?A 0.25B. 1C. 1.5D. 12
The function f is given by:
[tex]\begin{gathered} f(x)=2x^2-x+6 \\ \text{ Rewrite the quadratic function in vertex form} \\ f(x)=2(x^2-\frac{1}{2}x)+6 \\ =2((x-\frac{1}{4})^2-(-\frac{1}{4})^2)+6 \\ =2(x-\frac{1}{4})^2-2(\frac{1}{16})+6 \\ =2(x-\frac{1}{4})^2+\frac{47}{8} \end{gathered}[/tex]If a quadratic function is written in the form:
[tex]\begin{gathered} a(x-h)^2+k \\ where: \\ a>0 \end{gathered}[/tex]Then the function has a minimum point at (h,k)
And the minimum is k
In this case,
[tex]\begin{gathered} a=2\gt0 \\ h=\frac{1}{4}=0.25 \\ k=\frac{47}{8}=5.875 \end{gathered}[/tex]Therefore, the minimum of the function f is at (0.25, 5.875)
The minimum of the function given by the table is at (-1, -6).
Therefore, the required horizontal distance is given by:
[tex]0.25-(-1)=1.25[/tex]Therefore, the horizontal distance is 1.25
Can anybody help me out with this? I would really appreciate it! I don't need a huge explanation just the answer and a BRIEF explanation on how you got it.
The range of the following function is
[tex]\mleft\lbrace y>1\mright\rbrace[/tex]We can also call the range of a function an image, the range or image of a function is a set, we can see this set looking at the graph and see which values of y the function have, remember that we can have the same y value for different x value, looking at our graph we can see that this function comes from high y values, have a vertex on (3,1), in other words, it stops at y = 1 and then start growing again, and go on repeated values of y, then we can say that the image (values of y that the function assumes) is all values bigger than 1, therefore {y > 1}.
Find the limit. (If an answer does not exist, enter DNE.)
Given:
[tex]\lim _{\Delta x\to0}\frac{6(x+\Delta x)-6x_{}}{\Delta x}[/tex]Solve as:
[tex]\begin{gathered} \lim _{\Delta x\to0}\frac{6x+6\Delta x-6x}{\Delta x}=\lim _{\Delta x\to0}\frac{6\Delta x}{\Delta x} \\ =6 \end{gathered}[/tex]Hence, the required answer is 6.
f (x) = 4x^2+2x+6find the value of the discriminate of f and how many distinct real number zeros f has.
The Solution:
Given:
Required:
To find the discriminant of f.
By formula, the discriminant (D) is:
[tex]D=b^2-4ac[/tex]Where:
[tex]\begin{gathered} a=4 \\ b=2 \\ c=6 \end{gathered}[/tex]Substitute:
[tex]\begin{gathered} D=2^2-4(4)(6)=4-96=-92 \\ No\text{ real root since D}<0 \end{gathered}[/tex]Therefore, the correct answers are:
Discriminant = -92
No distinct real root.
the line that passes through point (-1,4) and point (6,y) has a slope of 5/7. find y.
Question: the line that passes through the point (-1,4) and point (6,y) has a slope of 5/7. find y.
Solution:
By definition, the slope of a line is given by the formula:
[tex]m\text{ = }\frac{Y2-Y1}{X2-X1}[/tex]where m is the slope of the line and (X1,Y1), (X2,Y2) are any two points on the line. In this case, we have that:
(X1,Y1) = (-1,4)
(X2,Y2) = (6,y)
m = 5/7
thus, replacing the above data into the slope equation, we get:
[tex]\frac{5}{7}\text{= }\frac{y-4}{6+1}\text{ }[/tex]
this is equivalent to:
[tex]\frac{5}{7}\text{= }\frac{y-4}{7}\text{ }[/tex]By cross-multiplication, this is equivalent to:
[tex]\text{5 = y-4}[/tex]solving for y, we get:
[tex]y\text{ = 5+ 4 = 9}[/tex]then, we can conclude that the correct answer is:
[tex]y\text{ =9}[/tex]ranslateSave & Exit CertifyLesson: 10.2 Parabolas11/15Question 9 of 9, Step 1 of 1CorrectFind the equationof the parabola with the following properties. Express your answer in standard form.
Given
[tex]undefined[/tex]Solution
Standard from of a parabola
[tex](x-H-h)^2=4p(y-k)[/tex]What are the unknown angles?
A recycle bucket weighs 3.5 lb at the beginning of the school year in August. At the beginning of December it weighed 21.5 lb. Determine the weight gain per month.
Answer:
4.5 pounds
Step-by-step explanation:
21.5 - 3.5 = 18
We divide that by 4 (Aug., Sept, Oct. Nov.)
18/4 = 4.5
Answer:
6.144
Step-by-step explanation:
2x^2 +6x=-3 can you compute this?
The general formula for a quadratic equation is ax² + bx + c = 0.
To solve
[tex]2x^2+6x=-3[/tex]You can follow the steps.
Step 01: Write the equation in the general formula.
To do it, add 3 to each side of the equation.
[tex]\begin{gathered} 2x^2+6x+3=-3+3 \\ 2x^2+6x+3=0 \end{gathered}[/tex]Step 02: Use the Bhaskara formula to find the roots.
The Bhaskara formula is:
[tex]x=\frac{-b\pm\sqrt[]{\Delta}}{2\cdot a},\Delta=b^2-4\cdot a\cdot c[/tex]In this question,
a = 2
b = 6
c = 2
So, substituting the values:
[tex]\begin{gathered} \Delta=b^2-4\cdot a\cdot c \\ \Delta=6^2-4\cdot2\cdot3 \\ \Delta=36-24 \\ \Delta=12 \\ \\ x=\frac{-6\pm\sqrt[]{12}}{2\cdot2} \\ x=\frac{-6\pm\sqrt[]{2\cdot2\cdot3}}{4} \\ x=\frac{-6\pm2\cdot\sqrt[]{3}}{4} \\ x_1=\frac{-6+2\sqrt[]{3}}{4}=\frac{-3+\sqrt[]{3}}{2} \\ x_2=\frac{-6-2\sqrt[]{3}}{4}=\frac{-3-\sqrt[]{3}}{2} \end{gathered}[/tex]Answer:
Exact form:
[tex]x=\frac{-3-\sqrt[]{3}}{2},\frac{-3+\sqrt[]{3}}{2}[/tex]Decimal form:
[tex]x=-2.37,\text{ -0.63}[/tex]helpppppppppppppppppppppppppppppp
skill issue hahahahahhaahahhahaha
Given the functions f(x) = x ^ 2 + 3x - 1 and g(x) = - 2x + 3 determine the value of (f + g)(- 2)
Start by finding (f+g)(x)
[tex](f+g)(x)=(x^2+3x-1)+(-2x+3)[/tex]simplify the equation
[tex]\begin{gathered} (f+g)(x)=x^2+(3x-2x)-1+3 \\ (f+g)(x)=x^2+x+2 \end{gathered}[/tex]then, replace x by -2
[tex]\begin{gathered} (f+g)(-2)=(-2)^2+(-2)+2 \\ (f+g)(-2)=4-2+2 \\ (f+g)(-2)=4 \end{gathered}[/tex]Find the midpoint M of the line segment joining the points R = (-5. -9) and S = (1. -1).
Answer:
(-2,-5)
Step-by-step explanation:
(-5+1÷2, -9+(-1)÷2)
=(-4÷2, -10÷2)
=(-2,-5)
What is the average rate of change of the function f(x) = 2x^2 + 4 over the interval (-4,-1] ?
The average rate of change is:
[tex]\frac{f(-1)-f(-4)}{-1+4}=\frac{f(-1)-f(-4)}{3}[/tex][tex]f(-1)=2(-1^2)+4=6[/tex][tex]f(-4)=2(-4^2)+4=2(16)+4=36[/tex]then computing the first formula, the average rate of change of f(x) is
[tex]\frac{6-36}{3}=-10[/tex]A bug is moving along a straight path with velocity v(t)= t^2-6t+8 for t ≥0. Find the total distance traveled by the bug over interval [0,6].
Answer
Explanation
Given:
A bug is moving along a straight path with velocity
[tex]V(t)=t^2-6t+8\text{ }for\text{ }t>0[/tex]What to find:
The total distance traveled by the bug over interval [0, 6].
Solution:
To find the total distance traveled by the bug over interval [0, 6], you first integrate v(t)= t² - 6t + 8
[tex]\begin{gathered} \int_0^6t^2-6t+8 \\ \\ [\frac{t^3}{3}-\frac{6t^2}{2}+8t]^6_0 \\ \\ (\frac{t^3}{3}-3t^2+8t)^6-(\frac{t^{3}}{3}-3t^2+8t)^0 \\ \\ (\frac{6^3}{3}-3(6)^2+8(6))-(\frac{0^3}{3}-3(0)^2+8(0)) \\ \\ (\frac{216}{3}-3(36)+48)-(0-0+0) \\ \\ 72-108+48-0 \\ \\ =12\text{ }units \end{gathered}[/tex]9. Solve the system of equations algebraically. Show your reasoning.2y = x -44x + 3y = 5
I) 2y = x - 4
II) 4x + 3y = 5
First, we put all the variables on the same side subtracting x from both sides of equation I:
I) 2y - x = -4
II) 3y + 4x = 5
Now, we multiply equation I by 4:
I) 8y - 4x = -16
II) 3y + 4x = 5
Then, we add equation I to equation II:
I) 8y - 4x = -16
II) 11y = -11
Therefore, we got from equation II:
y = -11/11 = -1
Applying this result on equation I, we got:
-8 - 4x = -16
4x = 8
x = 8/4 = 2
Final answer: (x,y) = (2,-1)
Which equation could be represented by the number line? A. 3 OB.-4 5=1 OC. 1+ -5)= OD. -3+4 -1
According to the given number line, we have to go back from the second point to the first point 4 spots. In other words, the equation has to include a sum with -4.
Therefore, the answer is A since it's expressing an initial number 3, then the sum with -4.10. Calculate the circumference of cylinder that is 34cm tall and has a volume of560cm#9
The Solution.
By formula, the volume of the planet (sphere) is given as below:
[tex]V=\frac{4}{3}\pi r^3[/tex]In this case,
[tex]\begin{gathered} V=5.10^{18}km^3 \\ r=\text{?} \end{gathered}[/tex]Substitting these given values into the formula above, we can solve for r, the radius of the planet.
[tex]\frac{4}{3}\pi r^3=5(10^{18})[/tex]Dividing both sides by
[tex]\frac{4}{3}\pi[/tex]We get
[tex]r^3=\frac{5\times10^{18}}{\frac{4}{3}\pi}=\frac{5\times10^{18}}{4.188790205}[/tex]Taking the cube root of both sides, we have
[tex]\begin{gathered} r=\sqrt[3]{(}\frac{5\times10^{18}}{4.188790205})=(1.060784418\times10^6)km^{} \\ Or \\ r=1060784.418\text{ km} \end{gathered}[/tex]Thus, the correct answer is 1060784.418km.