The acceleration of the two blocks is[tex]2.14 m/s^{2[/tex]} and the distance does block M2 move in 2.00 s is 4.27 m.
Now we need to find the acceleration of the two blocks and the distance does block M2 move in 2.00 s.
We know that: mass of M1, m1 = 5.00 kg mass of M2, m2 = 19.0 kgθ = 25.0°Taking upward direction as positive for block M1 and downwards as positive for block M2.
Therefore, we can write the following equation of motion for the two blocks:
For M2: m2g - T = m2a ...(1)
For M1: T - m1g = m1a ...(2)
We can see from the figure that M2 is on an inclined plane making an angle θ with the horizontal.
We can resolve the weight of M2 into two components:
Perpendicular to the plane = m2gcosθParallel to the plane = m2gsinθ
The component parallel to the plane will tend to make the block move downwards.
Therefore, the effective weight will be:
mg = m2gsinθ ...(3)
From equation (1) we can write:
T = m2g - m2a ...(4)
Substituting equation (4) in equation (2), we get:
m2g - m2a - m1g = m1a ...(5)
On solving equation (5), we get the acceleration as:
a = g(m2sinθ - m1) / (m1 + m2)
On substituting the given values, we get:
[tex]a = 2.14 m/s^{2}[/tex]
The distance moved by M2 in 2 seconds can be found out using the formula:[tex]s = ut + \frac{1}{2} at^{2}[/tex]
Here, initial velocity, u = 0m/s Time, t = 2s Acceleration, [tex]a = 2.14 m/s^{2}[/tex]
On substituting these values, we get the distance travelled by M2 as: s = 4.27 m
Therefore, the acceleration of the two blocks is [tex]2.14 m/s^{2}[/tex]. And the distance does block M2 move in 2.00 s is 4.27 m.
For more questions on acceleration
https://brainly.com/question/460763
#SPJ8
Question 1 of 10
What is the slope of the line plotted below?
B. 2
5
10
C. 1
O A. 0.5
о
9
OD. -0.5
5
Look at this graphic organizer of requirements to apply to become an astronaut.
Requirements for Astronauts
What does the graphic organizer most suggest about the job of an astronaut?
It is technical and potentially tedious.
It is detailed and potentially exhausting.
It is confidential and potentially exciting.
○ It is complex, demanding, and involves flight.
Save and Exit
Next
The graphic organizer suggests that the job of an astronaut is complex, demanding, and involves flight.
This conclusion can be drawn by examining the nature of the requirements listed in the graphic organizer. Firstly, the requirements listed in the organizer are numerous and encompass various aspects. They include educational qualifications, such as having a bachelor's degree in a relevant field, as well as specific experience, like piloting an aircraft.
These requirements highlight the complexity of the job and indicate that astronauts need to possess a diverse set of skills and knowledge. Additionally, the requirements for physical fitness and health demonstrate the demanding nature of the job.
Astronauts are expected to undergo rigorous physical training to ensure they can handle the physical stresses associated with space travel and the conditions they will encounter in space. This indicates that the job can be physically exhausting and requires individuals to be in excellent health.
Lastly, the inclusion of flight-related requirements, such as the need to pass a long-duration spaceflight physical and participate in aircraft flights, implies that the job of an astronaut involves actual flight experiences. This indicates that astronauts are directly involved in piloting spacecraft and are expected to have practical experience in flying.
know more about astronaut here:
https://brainly.com/question/30733605
#SPJ8
Explain the function of power supply, readout, peripheral, microcomputer, transducer and processor
The function of the power supply is to provide electrical energy to the device or system that needs it. The power supply converts the incoming voltage from the power source into a form that is usable by the device, such as DC voltage.
The readout is a device or component that displays data or information to the user. The readout could be a simple LED display or a complex graphical display.
A peripheral is a device or component that connects to a computer or other electronic device to provide additional functionality. Examples of peripherals include printers, scanners, and external hard drives.
A microcomputer is a type of computer that is designed to fit on a single microchip. Microcomputers are found in a wide range of devices, including smart phones, tablets, and embedded systems.
A transducer is a device that converts one form of energy to another. In electronics, transducers are commonly used to convert electrical energy into mechanical energy, or vice versa.
The processor is the central component of a computer or electronic device. The processor is responsible for executing instructions and controlling the other components of the system. The performance and capabilities of a device are largely determined by the speed and power of the processor.