Answer:
B) 16 ft
Explanation:
The area of a triangle is equal to
[tex]Area\text{ =}\frac{Base\times Height}{2}[/tex]We know that the area is 32 ft² and the height is 4 ft, so replacing these values, we get
[tex]32=\frac{\text{Base}\times4}{2}[/tex]Now, we can solve for the base. So multiply both sides by 2
[tex]\begin{gathered} 32\times2=\frac{\text{Base }\times4}{2}\times2 \\ 64=\text{Base }\times4 \end{gathered}[/tex]Then divide both sides by 4
[tex]\begin{gathered} \frac{64}{4}=\frac{Base\times4}{4} \\ 16=\text{Base} \end{gathered}[/tex]Therefore, the measure of the base is 16 ft
Sparkles the Clown makes balloon animals for children at birthday parties. At Bridget's party, she made 5 balloon poodles and 1 balloon giraffe, which used a total of 15 balloons. For Eduardo's party, she used 7 balloons to make 1 balloon poodle and 1 balloon giraffe. How many balloons does each animal require?
Let p be the number of balloons required to make one balloon poodle and g the number of balloons required to make one balloon giraffe.
Then we have:
I) 5p + g = 15
II) p + g = 7
Subtracting equation II from equation I, we have:
5p - p + g - g = 15 - 7
4p = 8
p = 8/4
p = 2
Replacing p with 2 in equation II we have:
2 + g = 7
g = 7 - 2
g = 5
Answer: Each poodle requires 2 balloons and each giraffe requires 5 balloons.
please help me please
F (x) = (-1/20)x + 13.6
Then
Radmanovics car y -intercept is= 13.6 gallons
Mr Chin's car y-intercept is= 13.2
Then , in consecuence
Radmanovics car has a larger tank, than Mr Chin's car.
Answer is OPTION D)
Graph the function and state the domain and range.g(x)=x^2-2x-15Domain-Range-Graphed function-
The domain: -∞ < x < ∞
The range: g(x) ≥ -16
Explanation:The given function is:
[tex]g(x)\text{ = x}^2\text{-2x-15}[/tex]The domain is a set of all the valid inputs that can make the function real
All real values of x will make the function g(x) to be valid
The domain: -∞ < x < ∞
The range is the set of all valid outputs
From the function g(x):
a = 1, b = -2
[tex]\begin{gathered} \frac{b}{2a}=\frac{-2}{2(1)}=-1 \\ g(-1)=(-1)^2-2(-1)-15 \\ g(-1)=1-2-15 \\ g(-1)=-16 \end{gathered}[/tex]Since a is positive, the graph will open upwards
Therefore, the range of the function g(x) is: g(x) ≥ -16
The graph of the function g(x) = x^2 - 2x - 15 is plotted below
Which of the following is the result of using the remainder theorem to find F(-2) for the polynomial function F(x) = -2x³ + x² + 4x-3?
Solution
We have the polynomial
[tex]f(x)=-2x^3+x^2+4x-3[/tex]Usin the remainder theorem, we find f(-2) by substituting x = -2
So we have
[tex]\begin{gathered} f(x)=-2x^{3}+x^{2}+4x-3 \\ \\ f(-2)=-2(-2)^3+(-2)^2+4(-2)-3 \\ \\ f(-2)=-2(-8)+4-8-3 \\ \\ f(-2)=16+4-8-3 \\ \\ f(-2)=20-11 \\ \\ f(-2)=9 \end{gathered}[/tex]Therefore, the remainder is
[tex]9[/tex]hello I'm stuck on this question and need help thank you
Explanation
[tex]\begin{gathered} -2x+3y\ge9 \\ x\ge-5 \\ y<6 \end{gathered}[/tex]Step 1
graph the inequality (1)
a) isolate y
[tex]\begin{gathered} -2x+3y\geqslant9 \\ add\text{ 2x in both sides} \\ -2x+3y+2x\geqslant9+2x \\ 3y\ge9+2x \\ divide\text{ both sides by 3} \\ \frac{3y}{3}\geqslant\frac{9}{3}+\frac{2x}{3} \\ y\ge\frac{2}{3}x+3 \end{gathered}[/tex]b) now, change the symbol to make an equality and find 2 points from the line
[tex]\begin{gathered} y=\frac{2}{3}x+3 \\ i)\text{ for x=0} \\ y=\frac{2}{3}(0)+3 \\ \text{sp P1\lparen0,3\rparen} \\ \text{ii\rparen for x=3} \\ y=\frac{2}{3}(3)+3=5 \\ so\text{ P2\lparen3,5\rparen} \end{gathered}[/tex]now, draw a solid line that passes troguth those point
(0,3) and (3,5)
[tex]y\geqslant\frac{2}{3}x+3\Rightarrow y=\frac{2}{3}x+3\text{\lparen solid line\rparen}[/tex]as we need the values greater or equatl thatn the function, we need to shade the area over the line
Step 2
graph the inequality (2)
[tex]x\ge-5[/tex]this inequality represents the numbers greater or equal than -5 ( for x), so to graph the inequality:
a) draw an vertical line at x=-5, and due to we are looking for the values greater or equal than -5 we need to use a solid line and shade the area to the rigth of the line
Step 3
finally, the inequality 3
[tex]y<6[/tex]this inequality represents all the y values smaller than 6, so we need to draw a horizontal line at y=6 and shade the area below the line
Step 4
finally, the solution is the intersection of the areas
I hope this helps you
Assume that each circle shown below represents one unit. Express the sha amount as a single fraction and as a mixed number. One Fraction: Mixed Number:
The shaded portions for the first three circles are a total of 15 while for the fourth one is 1. As a fraction it is therefore,
[tex]\frac{16}{5}[/tex]As mixed numbers it is;
[tex]3\frac{1}{5}[/tex]Determine which is the better investment 3.99% compounded semi annually Lee 3.8% compounded quarterly round your answer 2 decimal places
Remember that
The compound interest formula is equal to
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]In the 3.99% compounded semiannually
we have
r=3.99%=0.0399
n=2
substitute
[tex]\begin{gathered} A=P(1+\frac{0.0399}{2})^{2t} \\ \\ A=P(1.01995)^{2t} \end{gathered}[/tex]and
[tex]\begin{gathered} A=P[(1.01995)^2]^t \\ A=P(1.0403)^t \end{gathered}[/tex]the rate is r=1.0403-1=0.0403=4.03%
In the 3.8% compounded quarterly
we have
r=3.8%=0.038
n=4
substitute
[tex]\begin{gathered} A=P(1+\frac{0.038}{4})^{2t} \\ A=P(1.0095)^{2t} \\ A=P[(1.0095)^2]^t \\ A=P(1.0191)^t \end{gathered}[/tex]the rate is r=1.0191-1=0.0191=1.91%
therefore
the 3.99% compounded semiannually is a better investmentWhat are all of the x-intercepts of the continuousfunction in the table?Х-4-20246f(x)02820-20 (0,8)O (4,0)O (4,0), (4,0)O (4,0), (0, 8), (4,0)
The x-intercepts of any function f(x) occur when f(x)=0.
As a reminder, f(x) corresponds to the y coordinate for any given x.
So, we need to focus on the parts of the table where f(x)=0 and look at the x value, that will give us the coordinates of the x-intercepts.
We can see the first entry in the table has f(x)=0 and x= -4.
The only other entry in the table where f(x)=0 has x=4.
As such, the x-intercepts of the given function are (-4,0) and (4,0), which are the coordinates presented in the third option.
Consider the angle shown below that has a radian measure of 2.9. A circle with a radius of 2.6 cm is centered at the angle's vertex, and the terminal point is shown.What is the terminal point's distance to the right of the center of the circle measured in radius lengths? ______radii What is the terminal point's distance to the right of the center of the circle measured in cm?_______ cm What is the terminal point's distance above the center of the circle measured in radius lengths?_____ radii What is the terminal point's distance above the center of the circle measured in cm? _____cm
Remember that we can use some trigonometric identities to find relations between distances in a circle when the central angle is provided:
If we measure each distance in radius lengths, it is equivalent to take r=1 on those formulas.
A)
The terminal point's distance to the right of the center of the circle, measured in radius lengths, would be:
[tex]\cos (2.9\text{rad})=-0.9709581651\ldots[/tex]This distance is signed since it indicates an orientation, but we can ignore the sign if we are only interested on the value of the distance.
Then, such distance would be approximately 0.97 radii,
B)
Multiply the distance measured in radius lengths by the length of the radius to find the distance measured in cm:
[tex]0.97\times2.6cm=2.52\operatorname{cm}[/tex]C)
The terminal point's distance above the center of the circle can be calculated using the sine function:
[tex]\sin (2.9\text{rad})=0.2392493292\ldots[/tex]Therefore, such distance is approximately 0.24 radii.
D)
Multiply the distance measured in radius length times the length of the radius to find the distance measured in cm:
[tex]0.24\times2.6\operatorname{cm}=0.62\operatorname{cm}[/tex]"Solve for x. Enter as a decimal not as a fraction. Round to the nearest hundredth if necessary."
Answer:
x =
5
Explanation
From the given diagram, it can be infered that WY = 2QR
From the diagram
WY = x+9
QR = 2x-3
substitute into the expression
x+9 = 2(2x-3)
x+9 = 4x - 6
Collect the like terms
x-4x = -6-9
-3x = -15
x = -15/-3
x = 5
Hence the value of x is 5
For 5 years, Gavin has had a checking account at Truth Bank. He uses a bank ATM 2 times per month and a nonbank ATM once a month. He checks his account statement online. How much money would Gavin save per month if he switched to Old River Bank?
EXPLANATION
Let's see the facts:
Number of years: 5
Account period = 2 times/month
Nonbank ATM -------> once/ month
If he switch the account to Old River Bank he would save:
$6 - $4.95 = $1.05
Transaction cost_Trust Bank = $1/transaction * 2 = $2
Nonbank_Trust Bank = $2/transaction = $2
Trust Bank Cost = 2 + 2 + 6 = $10
The account in the Old River Bank would be:
Account Services = $4.95
Bank ATM Cost = $0.00
Nonbank ATM Cost = $2.5/transactions * 1 = $2.5
----------------------
$7.45
The total cost at Old River would be = $7.45
The difference between Truth Bank and Old River would be $10-$7.45 = $2.55
Gavin would save $2.55 per month.
suppose that z varies jointly with x and y. When x=2, y=2, z=7 write the equation that models the relationship
38. A right rectangular prism has a volume of 5 cubic meters. The length ofthe rectangular prism is 8 meters, and the width of the rectangular prismis a meter.What is the height, in meters, of the prism?Niu4© 30 10
It's important to know that the volume formula for a rectangular prism is
[tex]V=l\cdot w\cdot h[/tex]Where V = 5, l = 8, and w = 1. Let's use these values and find h
[tex]\begin{gathered} 5m^3=8m\cdot1m\cdot h \\ h=\frac{5m^3}{8m^2} \\ h=0.625m \end{gathered}[/tex]Hence, the height of the prism is 0.625 meters.How much of the wall does the mirror cover? Use the π button in your calculations and round your answer to the nearest hundredths. Include units.
Since the diameter of the mirror is given, calculate the area of the mirror using the formula
[tex]A=\frac{1}{4}\pi\cdot(D)^2[/tex]replace with the information given
[tex]\begin{gathered} A=\frac{1}{4}\pi\cdot24^2 \\ A=144\pi\approx452.39in^2 \end{gathered}[/tex]The mirror covers 452.39 square inches.
An arctic village maintains a circular cross-country ski trail that has a radius of 2.9 kilometers. A skier started skiing from the position (-1.464, 2.503), measured in kilometers, and skied counter-clockwise for 2.61 kilometers, where he paused for a brief rest. (Consider the circle to be centered at the origin). Determine the ordered pair (in both kilometers and radii) on the coordinate axes that identifies the location where the skier rested. (Hint: Start by drawing a diagram to represent this situation.)(x,y)= ( , ) radii(x,y)= ( , ) kilometers
The solution to the question is given below.
[tex]\begin{gathered} The\text{ 2.6km is some fraction of the entire Circumference which is: C= 2}\pi r\text{ = 2}\times\text{ }\pi\text{ }\times2.9 \\ \text{ = 5.8}\pi cm \\ \text{ The fraction becomes: }\frac{2.61}{5.8\pi}\text{ = }\frac{0.45}{\pi} \\ \text{The entire circle is: 2 }\pi\text{ radian} \\ \text{ = }\frac{0.45}{\pi}\text{ }\times2\text{ }\times\pi\text{ = 0.9} \\ The\text{ skier has gone 0.9 radian from (-.1.464, 2.503)} \\ \text{The x- cordinate become: =-1.}464\text{ cos}(0.9)\text{ = -1.4625} \\ while\text{ the Y-cordinate becomes: =-1.}464\text{ sin}(0.9)\text{ = -}0.0229 \\ \text{The skier rested at: (-1.4625, -0.0229)} \\ \end{gathered}[/tex]What is a solution of a system of linear equations in three variables?
Hello!
When we have a system with the same number of variables and equations, we can obtain the value for all variables.
Knowing it, the right alternative will be:
Alternative B.
Write the first 4 terms of the sequence defined by the given rule. f(1)=7 f(n)=-4xf(n-1)-50
The first 4 terms of the sequence defined by the rule f(n) = -4 x f(n - 1) - 50 are 7,
Sequence:
A sequence is an enumerated collection of objects in which repetitions are allowed and order matters.
Given,
The rule of the sequence is f(n) = -4 x f(n - 1) - 50
Value of the first term = f(1) = 7
Now we need to find the other 4 others in the sequence.
To find the value of the sequence we have to apply the value of n.
Here we have to take the value of n as 1, 2, 3, and 4.
We already know that the value of f(1) is 7.
So, now we need to find the value of f(2), that is calculated by apply the value on the given rule,
f(2) = -4 x f(2 - 1) - 50
f(2) = -4 x f(1) - 50
f(2) = -4 x 7 - 50
f(2) = -28 - 50
f(2) = -78
Similarly, the value of n as 3, then the value of f(3) is,
f(3) = -4 x f(3 - 1) - 50
f(3) = -4 x f(2) - 50
f(3) = -4 x - 78 - 50
f(3) = 312 - 50
f(3) = 262
Finally, when we take the value of n as 4 then the value of f(4) is,
f(4) = -4 x f(4 - 1) - 50
f(4) = -4 x f(3) - 50
f(4) = -4 x 262 - 50
f(4) = -1048 - 50
f(4) = -1099
Therefore, the first 4 sequence are 7, - 78, 262 and -1099.
To know more about Sequence here.
https://brainly.com/question/21961097
#SPJ1
Anna weighs 132 lb. Determine her mass in kilograms using the conversion 1 kg equal 2.2 lb. Use this mass to answer this question. calculate Anna's weight on Jupiter. (G= 25.9 m/ S2) must include a unit with your answer
Input data
132 lb
132 lb * 1kg / 2.2lb = 60 kg
Anna's weight on Jupiter
w = 60 kg * 25.9 m/S2
w = 1554 N
4 5 3 7 89 65Each time, you pick one card randomly and then put it back.What is the probability that the number on the card you pickfirst time is odd and the number on the second card you take isa multiple of 2? Keep your answers in simplified improperfraction form.Enter the answer
We have a total of 8 cards, where 3 of them are a multiple of 2, and 5 is an odd number. Consider that event A represents the probability of picking an odd number and event B is picking a multiple of 2. We know that the events are independent (because we put the cards back), therefore the probability of A and B can be expressed as
[tex]P(A\text{ and }B)=P(A)\cdot P(B)[/tex]Where
[tex]\begin{gathered} P(A)=\frac{5}{8} \\ \\ P(B)=\frac{3}{8} \end{gathered}[/tex]Therefore
[tex]P(A\text{ and }B)=\frac{5}{8}\cdot\frac{3}{8}=\frac{15}{64}[/tex]The final answer is
[tex]P(A\text{ and }B)=\frac{15}{64}[/tex]Given the functions, f(x) = 6x+ 2 and g(x)=x-7, perform the indicated operation. When applicable, state the domain
restriction.
The domain restriction for (f/g)(x) is x=7
What are the functions in mathematics?a mathematical phrase, rule, or law that establishes the link between an independent variable and a dependent variable.
What does a domain math example mean?The collection of all potential inputs for a function is its domain. For instance, the domain of f(x)=x2 and g(x)=1/x are all real integers with the exception of x=0.
Given,
f(x) = 6x+2
g(x) = x-7
So,
(f/g)(x) = 6x+2/x-7
Remember that the denominator can not be equal to zero
Find the domain restriction
x-7=0
x=7
Therefore, the domain is all real numbers except the number 7
(-∞,7)∪(7,∞)
To know more about functions visit:
https://brainly.com/question/12431044
#SPJ13
Which of the following ordered pairs is a solution to the equation 2x+y=2? Select all that apply.(11,0)(−4,10)(−13,4)(−11,−1)(0,2)
You have the following equation:
2x + y = 2
In order to determine which of the given pairs is a solution, replace the values of x and y of such pairs and verify the equation, as follow:
(11,0)
2(11) + 0 = 22 ≠ 2 it's not a solution
(-4,10)
2(-4) + 10 = -8 + 10 = 2 it's a solution
(-13,4)
2(-13) + 4 = -26 + 4 ≠ 2 it's not a solution
(-11,-1)
2(-11) + (-1) = -22 - 1 ≠ 2 it's not a solution
(0,2)
2(0) + 2 = 2 it's a solution
A trapezoid has a height of 16 miles. The lengths of the bases are 20 miles and 35miles. What is the area, in square miles, of the trapezoid?
Given:
A trapezoid has a height of 16 miles.
The lengths of the bases are 20 miles and 35 miles.
To find:
The area of the trapezoid.
Explanation:
Using the area formula of the trapezoid,
[tex]A=\frac{1}{2}(b_1+b_2)h[/tex]On substitution we get,
[tex]\begin{gathered} A=\frac{1}{2}(20+35)\times16 \\ =\frac{1}{2}\times55\times16 \\ =440\text{ square miles} \end{gathered}[/tex]Therefore the area of the trapezoid is 440 square miles.
Final answer:
The area of the trapezoid is 440 square miles.
Find equation of a parallel line and the given points. Write the equation in slope-intercept form Line y=3x+4 point (2,5)
Given the equation:
y = 3x + 4
Given the point:
(x, y ) ==> (2, 5)
Let's find the equation of a line parallel to the given equation and which passes through the point.
Apply the slope-intercept form:
y = mx + b
Where m is the slope and b is the y-intercept.
Hence, the slope of the given equation is:
m = 3
Parallel lines have equal slopes.
Therefore, the slope of the paralle line is = 3
To find the y-intercept of the parallel line, substitute 3 for m, then input the values of the point for x and y.
We have:
y = mx + b
5 = 3(2) + b
5 = 6 + b
Substitute 6 from both sides:
5 - 6 = 6 - 6 + b
-1 = b
b = -1
Therefore, the y-intercept of the parallel line is -1.
Hence, the equation of the parallel line in slope-intercept form is:
y = 3x - 1
ANSWER:
[tex]y=3x-1[/tex]
How do we determine the number of hours each family used the sprinklers?
Given:
The output rate of Martinez family's sprinkler is 25L per hour and Green family's sprinkler is 35L per hour. The combined usage of sprinkler is 40 hours. The resulting water output is 1250L.
To find:
The number of hours each family used the sprinkler.
Solution:
Let Martinez family used sprinkler for x hours and Green family used sprinkler for y hours.
Since the combined usage of sprinklers is 40 hours. So,
[tex]x+y=40...\left(i\right)[/tex]The output rate of Martinez family's sprinkler is 25L per hour and Green family's sprinkler is 35L per hour. The resulting water output is 1250L. So,
[tex]\begin{gathered} 25x+35y=1250 \\ 5x+7y=250...\left(ii\right) \end{gathered}[/tex]Multiply (i) by 7 and subtract from (ii), to get:
[tex]\begin{gathered} 5x+7y-7\left(x+y\right)=250-7\left(40\right) \\ 5x+7y-7x-7y=250-280 \\ -2x=-30 \\ x=\frac{-30}{-2} \\ x=15 \end{gathered}[/tex]Now, we get x = 15, Put x = 15 in the equation (i):
[tex]\begin{gathered} 15+y=40 \\ y=40-15 \\ y=25 \end{gathered}[/tex]Thus, x = 15, y = 25.
Be specific with your answer thank you thank you thank you bye-bye
The y-axis on the graph, that shows us the cost, goes from 2 to 2 units.
To find the cost at option one, the red line, we look in the graph where the line is when x = 80.
For x= 80, y= 58
Now, the same for option 2:
For x = 80, y= 44.
58-44 = 14
Answer: The difference is 14.
cos(alpha + beta) = cos^2 alpha - sin^2 beta
The trigonometric identity cos(α + β)cos(α - β) = cos²(α) - sin²(β) is verified in this answer.
Verifying the trigonometric identityThe identity is defined as follows:
cos(α + β)cos(α - β) = cos²(α) - sin²(β)
The cosine of the sum and the cosine of the subtraction identities are given as follows:
cos(α + β) = cos(α)cos(β) - sin(α)sin(β).cos(α - β) = cos(α)cos(β) + sin(α)sin(β).Hence, the multiplication of these measures is given as follows:
cos(α + β)cos(α - β) = (cos(α)cos(β) - sin(α)sin(β))(cos(α)cos(β) + sin(α)sin(β))
Applying the subtraction of perfect squares, it is found that:
(cos(α)cos(β) - sin(α)sin(β))(cos(α)cos(β) + sin(α)sin(β)) = cos²(α)cos²(β) - sin²(α)sin²(β)
Then another identity is applied, as follows:
sin²(β) + cos²(β) = 1 -> cos²(β) = 1 - sin²(β).sin²(α) + cos²(α) = 1 -> sin²(α) = 1 - cos²(a).Then the expression is:
cos²(α)cos²(β) - sin²(α)sin²(β) = cos²(α)(1 - sin²(β)) - (1 - cos²(a))sin²(β)
Applying the distributive property, the simplified expression is:
cos²(α) - sin²(β)
Which proves the identity.
Missing informationThe complete identity is:
cos(α + β)cos(α - β) = cos²(α) - sin²(β)
More can be learned about trigonometric identities at https://brainly.com/question/7331447
#SPJ1
An insurance company offers flood insurance to customers in a certain area. Suppose they charge $500 fora given plan. Based on historical data, there is a 1% probability that a customer with this plan suffers aflood, and in those cases, the average payout from the insurance company to the customer was $10,000.Here is a table that summarizes the possible outcomes from the company's perspective:EventFloodPayout Net gain (X)$10,000 -$9,500$0$500No floodLet X represent the company's net gain from one of these plans.Calculate the expected net gain E(X).E(X) =dollars
The given is a discrete random variable.
For a discrete random variable, the expected value is calculated by summing the product of the value of the random variable and its associated probability, taken over all of the values of the random variable.
It is given that the probability of a flood is 1%=0.01.
It follows that the probability of no flood is (100-1)%=99%.
Hence, the expected net gain is:
[tex]E(X)=0.01(-9500)+0.99(500)=-95+495=400[/tex]Hence, the expected net gain is $400.
The expected net gain is E(X) = $400.
5. Graph the system of inequalities. Then, identify a coordinate point in the solution set.2x -y > -3 4x + y < 5
We have the next inequalities
[tex]\begin{gathered} 2x-y>-3 \\ 4x+y<5 \end{gathered}[/tex]as we can see if we graph these inequalities we will obtain the next graph
where the red area is the first inequality and the blue area is the second inequality
and the area in purple is the solution set of the two inequalities
one coordinate point in the solution set could be (0,0)
A chef is going to use a mixture of two brands of italian dressing. the first brand contains 7% vinegar and the second brand contains 12% vinegar. the chef wants to make 280 milliliters of a dressing that is 9% vinegar. how much of each brand should she use
We know that
• The first brand contains 7% vinegar.
,• The second brand contains 12% vinegar.
,• The chef wants 280 milliliters with 9% vinegar.
Using the given information, we can express the following equation.
[tex]0.07x+0.12(280-x)=0.09(280)[/tex]Notice that 0.07x represents the first brand, 0.12(280-x) represents the second brand, and 0.08(280) represents the final product the chef wants to make.
Let's solve for x.
[tex]\begin{gathered} 0.07x+33.6-0.12x=25.2 \\ -0.05x=25.2-33.6 \\ -0.05x=-8.4 \\ x=\frac{-8.4}{-0.05} \\ x=168 \end{gathered}[/tex]Therefore, the chef needs 168 of the first brand and 112 of the second brand.Notice that 280-168 = 112.
Find the value of x that makes ADEF ~AXYZ..yE1052x – 114D11FX5x + 2Zх=
Given that the triangles are similar, we can express a proportion between their sides. DE and XY are corresponding sides. EF and YZ are corresponding sides. Let's define the following proportion.
[tex]\begin{gathered} \frac{XY}{DE}=\frac{YZ}{EF} \\ \frac{10}{5}=\frac{14}{2x-1} \end{gathered}[/tex]Now, we solve for x
[tex]\begin{gathered} 2=\frac{14}{2x-1} \\ 2x-1=\frac{14}{2} \\ 2x=7+1 \\ x=\frac{8}{2} \\ x=4 \end{gathered}[/tex]Hence, the answer is x = 4.