What is the measure of the base of the rectangle if the area of the triangle is 32 ft2 ?A) 8 ftB) 16 ft C) 32 ftD) 64 ft

What Is The Measure Of The Base Of The Rectangle If The Area Of The Triangle Is 32 Ft2 ?A) 8 FtB) 16

Answers

Answer 1

Answer:

B) 16 ft

Explanation:

The area of a triangle is equal to

[tex]Area\text{ =}\frac{Base\times Height}{2}[/tex]

We know that the area is 32 ft² and the height is 4 ft, so replacing these values, we get

[tex]32=\frac{\text{Base}\times4}{2}[/tex]

Now, we can solve for the base. So multiply both sides by 2

[tex]\begin{gathered} 32\times2=\frac{\text{Base }\times4}{2}\times2 \\ 64=\text{Base }\times4 \end{gathered}[/tex]

Then divide both sides by 4

[tex]\begin{gathered} \frac{64}{4}=\frac{Base\times4}{4} \\ 16=\text{Base} \end{gathered}[/tex]

Therefore, the measure of the base is 16 ft


Related Questions

Sparkles the Clown makes balloon animals for children at birthday parties. At Bridget's party, she made 5 balloon poodles and 1 balloon giraffe, which used a total of 15 balloons. For Eduardo's party, she used 7 balloons to make 1 balloon poodle and 1 balloon giraffe. How many balloons does each animal require?

Answers

Let p be the number of balloons required to make one balloon poodle and g the number of balloons required to make one balloon giraffe.

Then we have:

I) 5p + g = 15

II) p + g = 7

Subtracting equation II from equation I, we have:

5p - p + g - g = 15 - 7

4p = 8

p = 8/4

p = 2

Replacing p with 2 in equation II we have:

2 + g = 7

g = 7 - 2

g = 5

Answer: Each poodle requires 2 balloons and each giraffe requires 5 balloons.

please help me please

Answers

F (x) = (-1/20)x + 13.6

Then

Radmanovics car y -intercept is= 13.6 gallons

Mr Chin's car y-intercept is= 13.2

Then , in consecuence

Radmanovics car has a larger tank, than Mr Chin's car.

Answer is OPTION D)

Graph the function and state the domain and range.g(x)=x^2-2x-15Domain-Range-Graphed function-

Answers

Answer:

The domain: -∞ < x < ∞

The range: g(x) ≥ -16

Explanation:

The given function is:

[tex]g(x)\text{ = x}^2\text{-2x-15}[/tex]

The domain is a set of all the valid inputs that can make the function real

All real values of x will make the function g(x) to be valid

The domain: -∞ < x < ∞

The range is the set of all valid outputs

From the function g(x):

a = 1, b = -2

[tex]\begin{gathered} \frac{b}{2a}=\frac{-2}{2(1)}=-1 \\ g(-1)=(-1)^2-2(-1)-15 \\ g(-1)=1-2-15 \\ g(-1)=-16 \end{gathered}[/tex]

Since a is positive, the graph will open upwards

Therefore, the range of the function g(x) is: g(x) ≥ -16

The graph of the function g(x) = x^2 - 2x - 15 is plotted below

Which of the following is the result of using the remainder theorem to find F(-2) for the polynomial function F(x) = -2x³ + x² + 4x-3?

Answers

Solution

We have the polynomial

[tex]f(x)=-2x^3+x^2+4x-3[/tex]

Usin the remainder theorem, we find f(-2) by substituting x = -2

So we have

[tex]\begin{gathered} f(x)=-2x^{3}+x^{2}+4x-3 \\ \\ f(-2)=-2(-2)^3+(-2)^2+4(-2)-3 \\ \\ f(-2)=-2(-8)+4-8-3 \\ \\ f(-2)=16+4-8-3 \\ \\ f(-2)=20-11 \\ \\ f(-2)=9 \end{gathered}[/tex]

Therefore, the remainder is

[tex]9[/tex]

hello I'm stuck on this question and need help thank you

Answers

Explanation

[tex]\begin{gathered} -2x+3y\ge9 \\ x\ge-5 \\ y<6 \end{gathered}[/tex]

Step 1

graph the inequality (1)

a) isolate y

[tex]\begin{gathered} -2x+3y\geqslant9 \\ add\text{ 2x in both sides} \\ -2x+3y+2x\geqslant9+2x \\ 3y\ge9+2x \\ divide\text{ both sides by 3} \\ \frac{3y}{3}\geqslant\frac{9}{3}+\frac{2x}{3} \\ y\ge\frac{2}{3}x+3 \end{gathered}[/tex]

b) now, change the symbol to make an equality and find 2 points from the line

[tex]\begin{gathered} y=\frac{2}{3}x+3 \\ i)\text{ for x=0} \\ y=\frac{2}{3}(0)+3 \\ \text{sp P1\lparen0,3\rparen} \\ \text{ii\rparen for x=3} \\ y=\frac{2}{3}(3)+3=5 \\ so\text{ P2\lparen3,5\rparen} \end{gathered}[/tex]

now, draw a solid line that passes troguth those point

(0,3) and (3,5)

[tex]y\geqslant\frac{2}{3}x+3\Rightarrow y=\frac{2}{3}x+3\text{\lparen solid line\rparen}[/tex]

as we need the values greater or equatl thatn the function, we need to shade the area over the line

Step 2

graph the inequality (2)

[tex]x\ge-5[/tex]

this inequality represents the numbers greater or equal than -5 ( for x), so to graph the inequality:

a) draw an vertical line at x=-5, and due to we are looking for the values greater or equal than -5 we need to use a solid line and shade the area to the rigth of the line

Step 3

finally, the inequality 3

[tex]y<6[/tex]

this inequality represents all the y values smaller than 6, so we need to draw a horizontal line at y=6 and shade the area below the line

Step 4

finally, the solution is the intersection of the areas

I hope this helps you

Assume that each circle shown below represents one unit. Express the sha amount as a single fraction and as a mixed number. One Fraction: Mixed Number:

Answers

The shaded portions for the first three circles are a total of 15 while for the fourth one is 1. As a fraction it is therefore,

[tex]\frac{16}{5}[/tex]

As mixed numbers it is;

[tex]3\frac{1}{5}[/tex]

Determine which is the better investment 3.99% compounded semi annually Lee 3.8% compounded quarterly round your answer 2 decimal places

Answers

Remember that

The compound interest formula is equal to

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

In the 3.99% compounded semiannually

we have

r=3.99%=0.0399

n=2

substitute

[tex]\begin{gathered} A=P(1+\frac{0.0399}{2})^{2t} \\ \\ A=P(1.01995)^{2t} \end{gathered}[/tex]

and

[tex]\begin{gathered} A=P[(1.01995)^2]^t \\ A=P(1.0403)^t \end{gathered}[/tex]

the rate is r=1.0403-1=0.0403=4.03%

In the 3.8% compounded quarterly

we have

r=3.8%=0.038

n=4

substitute

[tex]\begin{gathered} A=P(1+\frac{0.038}{4})^{2t} \\ A=P(1.0095)^{2t} \\ A=P[(1.0095)^2]^t \\ A=P(1.0191)^t \end{gathered}[/tex]

the rate is r=1.0191-1=0.0191=1.91%

therefore

the 3.99% compounded semiannually is a better investment

What are all of the x-intercepts of the continuousfunction in the table?Х-4-20246f(x)02820-20 (0,8)O (4,0)O (4,0), (4,0)O (4,0), (0, 8), (4,0)

Answers

The x-intercepts of any function f(x) occur when f(x)=0.

As a reminder, f(x) corresponds to the y coordinate for any given x.

So, we need to focus on the parts of the table where f(x)=0 and look at the x value, that will give us the coordinates of the x-intercepts.

We can see the first entry in the table has f(x)=0 and x= -4.

The only other entry in the table where f(x)=0 has x=4.

As such, the x-intercepts of the given function are (-4,0) and (4,0), which are the coordinates presented in the third option.

Consider the angle shown below that has a radian measure of 2.9. A circle with a radius of 2.6 cm is centered at the angle's vertex, and the terminal point is shown.What is the terminal point's distance to the right of the center of the circle measured in radius lengths? ______radii   What is the terminal point's distance to the right of the center of the circle measured in cm?_______ cm   What is the terminal point's distance above the center of the circle measured in radius lengths?_____ radii   What is the terminal point's distance above the center of the circle measured in cm? _____cm   

Answers

Remember that we can use some trigonometric identities to find relations between distances in a circle when the central angle is provided:

If we measure each distance in radius lengths, it is equivalent to take r=1 on those formulas.

A)

The terminal point's distance to the right of the center of the circle, measured in radius lengths, would be:

[tex]\cos (2.9\text{rad})=-0.9709581651\ldots[/tex]

This distance is signed since it indicates an orientation, but we can ignore the sign if we are only interested on the value of the distance.

Then, such distance would be approximately 0.97 radii,

B)

Multiply the distance measured in radius lengths by the length of the radius to find the distance measured in cm:

[tex]0.97\times2.6cm=2.52\operatorname{cm}[/tex]

C)

The terminal point's distance above the center of the circle can be calculated using the sine function:

[tex]\sin (2.9\text{rad})=0.2392493292\ldots[/tex]

Therefore, such distance is approximately 0.24 radii.

D)

Multiply the distance measured in radius length times the length of the radius to find the distance measured in cm:

[tex]0.24\times2.6\operatorname{cm}=0.62\operatorname{cm}[/tex]

"Solve for x. Enter as a decimal not as a fraction. Round to the nearest hundredth if necessary."

Answers

Answer:

x =

5

Explanation

From the given diagram, it can be infered that WY = 2QR

From the diagram

WY = x+9

QR = 2x-3

substitute into the expression

x+9 = 2(2x-3)

x+9 = 4x - 6

Collect the like terms

x-4x = -6-9

-3x = -15

x = -15/-3

x = 5

Hence the value of x is 5

For 5 years, Gavin has had a checking account at Truth Bank. He uses a bank ATM 2 times per month and a nonbank ATM once a month. He checks his account statement online. How much money would Gavin save per month if he switched to Old River Bank?

Answers

EXPLANATION

Let's see the facts:

Number of years: 5

Account period = 2 times/month

Nonbank ATM -------> once/ month

If he switch the account to Old River Bank he would save:

$6 - $4.95 = $1.05

Transaction cost_Trust Bank = $1/transaction * 2 = $2

Nonbank_Trust Bank = $2/transaction = $2

Trust Bank Cost = 2 + 2 + 6 = $10

The account in the Old River Bank would be:

Account Services = $4.95

Bank ATM Cost = $0.00

Nonbank ATM Cost = $2.5/transactions * 1 = $2.5

----------------------

$7.45

The total cost at Old River would be = $7.45

The difference between Truth Bank and Old River would be $10-$7.45 = $2.55

Gavin would save $2.55 per month.

suppose that z varies jointly with x and y. When x=2, y=2, z=7 write the equation that models the relationship

Answers

[tex]\begin{gathered} z=\text{ x + y + b} \\ 7\text{ = 2+2+b} \\ 7\text{ = 4+b} \\ 7-4=b \\ b=\text{ 3} \\ z=\text{ x + y +3} \end{gathered}[/tex]

38. A right rectangular prism has a volume of 5 cubic meters. The length ofthe rectangular prism is 8 meters, and the width of the rectangular prismis a meter.What is the height, in meters, of the prism?Niu4© 30 10

Answers

It's important to know that the volume formula for a rectangular prism is

[tex]V=l\cdot w\cdot h[/tex]

Where V = 5, l = 8, and w = 1. Let's use these values and find h

[tex]\begin{gathered} 5m^3=8m\cdot1m\cdot h \\ h=\frac{5m^3}{8m^2} \\ h=0.625m \end{gathered}[/tex]Hence, the height of the prism is 0.625 meters.

How much of the wall does the mirror cover? Use the π button in your calculations and round your answer to the nearest hundredths. Include units.

Answers

Since the diameter of the mirror is given, calculate the area of the mirror using the formula

[tex]A=\frac{1}{4}\pi\cdot(D)^2[/tex]

replace with the information given

[tex]\begin{gathered} A=\frac{1}{4}\pi\cdot24^2 \\ A=144\pi\approx452.39in^2 \end{gathered}[/tex]

The mirror covers 452.39 square inches.

An arctic village maintains a circular cross-country ski trail that has a radius of 2.9 kilometers. A skier started skiing from the position (-1.464, 2.503), measured in kilometers, and skied counter-clockwise for 2.61 kilometers, where he paused for a brief rest. (Consider the circle to be centered at the origin). Determine the ordered pair (in both kilometers and radii) on the coordinate axes that identifies the location where the skier rested. (Hint: Start by drawing a diagram to represent this situation.)(x,y)= (  ,  ) radii(x,y)= ( ,  ) kilometers

Answers

The solution to the question is given below.

[tex]\begin{gathered} The\text{ 2.6km is some fraction of the entire Circumference which is: C= 2}\pi r\text{ = 2}\times\text{ }\pi\text{ }\times2.9 \\ \text{ = 5.8}\pi cm \\ \text{ The fraction becomes: }\frac{2.61}{5.8\pi}\text{ = }\frac{0.45}{\pi} \\ \text{The entire circle is: 2 }\pi\text{ radian} \\ \text{ = }\frac{0.45}{\pi}\text{ }\times2\text{ }\times\pi\text{ = 0.9} \\ The\text{ skier has gone 0.9 radian from (-.1.464, 2.503)} \\ \text{The x- cordinate become: =-1.}464\text{ cos}(0.9)\text{ = -1.4625} \\ while\text{ the Y-cordinate becomes: =-1.}464\text{ sin}(0.9)\text{ = -}0.0229 \\ \text{The skier rested at: (-1.4625, -0.0229)} \\ \end{gathered}[/tex]

What is a solution of a system of linear equations in three variables?

Answers

Hello!

When we have a system with the same number of variables and equations, we can obtain the value for all variables.

Knowing it, the right alternative will be:

Alternative B.

Write the first 4 terms of the sequence defined by the given rule. f(1)=7 f(n)=-4xf(n-1)-50

Answers

The first 4 terms of the sequence defined by the rule f(n) = -4 x f(n - 1) - 50 are 7,

Sequence:

A sequence is an enumerated collection of objects in which repetitions are allowed and order matters.

Given,

The rule of the sequence is  f(n) = -4 x f(n - 1) - 50

Value of the first term = f(1) = 7

Now we need to find the other 4 others in the sequence.

To find the value of the sequence we have to apply the value of n.

Here we have to take the value of n as 1, 2, 3, and 4.

We already know that the value of f(1) is 7.

So, now we need to find the value of f(2), that is calculated by apply the value on the given rule,

f(2) = -4 x f(2 - 1) - 50

f(2) = -4 x f(1) - 50

f(2) = -4 x 7 - 50

f(2) = -28 - 50

f(2) = -78

Similarly, the value of n as 3, then the value of f(3) is,

f(3) = -4 x f(3 - 1) - 50

f(3) = -4 x f(2) - 50

f(3) = -4 x - 78 - 50

f(3) = 312 - 50

f(3) =  262

Finally, when we take the value of n as 4 then the value of f(4) is,

f(4) = -4 x f(4 - 1) - 50

f(4) = -4 x f(3) - 50

f(4) = -4 x 262 - 50

f(4) = -1048 - 50

f(4) =  -1099

Therefore, the first 4 sequence are 7, - 78, 262 and -1099.

To know more about Sequence here.

https://brainly.com/question/21961097

#SPJ1

Anna weighs 132 lb. Determine her mass in kilograms using the conversion 1 kg equal 2.2 lb. Use this mass to answer this question. calculate Anna's weight on Jupiter. (G= 25.9 m/ S2) must include a unit with your answer

Answers

Input data

132 lb

132 lb * 1kg / 2.2lb = 60 kg

Anna's weight on Jupiter

w = 60 kg * 25.9 m/S2

w = 1554 N

4 5 3 7 89 65Each time, you pick one card randomly and then put it back.What is the probability that the number on the card you pickfirst time is odd and the number on the second card you take isa multiple of 2? Keep your answers in simplified improperfraction form.Enter the answer

Answers

We have a total of 8 cards, where 3 of them are a multiple of 2, and 5 is an odd number. Consider that event A represents the probability of picking an odd number and event B is picking a multiple of 2. We know that the events are independent (because we put the cards back), therefore the probability of A and B can be expressed as

[tex]P(A\text{ and }B)=P(A)\cdot P(B)[/tex]

Where

[tex]\begin{gathered} P(A)=\frac{5}{8} \\ \\ P(B)=\frac{3}{8} \end{gathered}[/tex]

Therefore

[tex]P(A\text{ and }B)=\frac{5}{8}\cdot\frac{3}{8}=\frac{15}{64}[/tex]

The final answer is

[tex]P(A\text{ and }B)=\frac{15}{64}[/tex]

Given the functions, f(x) = 6x+ 2 and g(x)=x-7, perform the indicated operation. When applicable, state the domain
restriction.

Answers

The domain restriction for (f/g)(x) is x=7

What are the functions in mathematics?

a mathematical phrase, rule, or law that establishes the link between an independent variable and a dependent variable.

What does a domain math example mean?

The collection of all potential inputs for a function is its domain. For instance, the domain of f(x)=x2 and g(x)=1/x are all real integers with the exception of x=0.

Given,

f(x) = 6x+2

g(x) = x-7

So,

(f/g)(x) = 6x+2/x-7

Remember that the denominator can not be equal to zero

Find the domain restriction

x-7=0

x=7

Therefore, the domain is all real numbers except the number 7

(-∞,7)∪(7,∞)

To know more about functions visit:

https://brainly.com/question/12431044

#SPJ13

Which of the following ordered pairs is a solution to the equation 2x+y=2? Select all that apply.(11,0)(−4,10)(−13,4)(−11,−1)(0,2)

Answers

You have the following equation:

2x + y = 2

In order to determine which of the given pairs is a solution, replace the values of x and y of such pairs and verify the equation, as follow:

(11,0)

2(11) + 0 = 22 ≠ 2 it's not a solution

(-4,10)

2(-4) + 10 = -8 + 10 = 2 it's a solution

(-13,4)

2(-13) + 4 = -26 + 4 ≠ 2 it's not a solution

(-11,-1)

2(-11) + (-1) = -22 - 1 ≠ 2 it's not a solution

(0,2)

2(0) + 2 = 2 it's a solution

A trapezoid has a height of 16 miles. The lengths of the bases are 20 miles and 35miles. What is the area, in square miles, of the trapezoid?

Answers

Given:

A trapezoid has a height of 16 miles.

The lengths of the bases are 20 miles and 35 miles.

To find:

The area of the trapezoid.

Explanation:

Using the area formula of the trapezoid,

[tex]A=\frac{1}{2}(b_1+b_2)h[/tex]

On substitution we get,

[tex]\begin{gathered} A=\frac{1}{2}(20+35)\times16 \\ =\frac{1}{2}\times55\times16 \\ =440\text{ square miles} \end{gathered}[/tex]

Therefore the area of the trapezoid is 440 square miles.

Final answer:

The area of the trapezoid is 440 square miles.

Find equation of a parallel line and the given points. Write the equation in slope-intercept form Line y=3x+4 point (2,5)

Answers

Given the equation:

y = 3x + 4

Given the point:

(x, y ) ==> (2, 5)

Let's find the equation of a line parallel to the given equation and which passes through the point.

Apply the slope-intercept form:

y = mx + b

Where m is the slope and b is the y-intercept.

Hence, the slope of the given equation is:

m = 3

Parallel lines have equal slopes.

Therefore, the slope of the paralle line is = 3

To find the y-intercept of the parallel line, substitute 3 for m, then input the values of the point for x and y.

We have:

y = mx + b

5 = 3(2) + b

5 = 6 + b

Substitute 6 from both sides:

5 - 6 = 6 - 6 + b

-1 = b

b = -1

Therefore, the y-intercept of the parallel line is -1.

Hence, the equation of the parallel line in slope-intercept form is:

y = 3x - 1

ANSWER:

[tex]y=3x-1[/tex]

How do we determine the number of hours each family used the sprinklers?

Answers

Given:

The output rate of Martinez family's sprinkler is 25L per hour and Green family's sprinkler is 35L per hour. The combined usage of sprinkler is 40 hours. The resulting water output is 1250L.

To find:

The number of hours each family used the sprinkler.

Solution:

Let Martinez family used sprinkler for x hours and Green family used sprinkler for y hours.

Since the combined usage of sprinklers is 40 hours. So,

[tex]x+y=40...\left(i\right)[/tex]

The output rate of Martinez family's sprinkler is 25L per hour and Green family's sprinkler is 35L per hour. The resulting water output is 1250L. So,

[tex]\begin{gathered} 25x+35y=1250 \\ 5x+7y=250...\left(ii\right) \end{gathered}[/tex]

Multiply (i) by 7 and subtract from (ii), to get:

[tex]\begin{gathered} 5x+7y-7\left(x+y\right)=250-7\left(40\right) \\ 5x+7y-7x-7y=250-280 \\ -2x=-30 \\ x=\frac{-30}{-2} \\ x=15 \end{gathered}[/tex]

Now, we get x = 15, Put x = 15 in the equation (i):

[tex]\begin{gathered} 15+y=40 \\ y=40-15 \\ y=25 \end{gathered}[/tex]

Thus, x = 15, y = 25.

Be specific with your answer thank you thank you thank you bye-bye

Answers

The y-axis on the graph, that shows us the cost, goes from 2 to 2 units.

To find the cost at option one, the red line, we look in the graph where the line is when x = 80.

For x= 80, y= 58

Now, the same for option 2:

For x = 80, y= 44.

58-44 = 14

Answer: The difference is 14.

cos(alpha + beta) = cos^2 alpha - sin^2 beta

Answers

The trigonometric identity cos(α + β)cos(α - β) = cos²(α) - sin²(β) is verified in this answer.

Verifying the trigonometric identity

The identity is defined as follows:

cos(α + β)cos(α - β) = cos²(α) - sin²(β)

The cosine of the sum and the cosine of the subtraction identities are given as follows:

cos(α + β) = cos(α)cos(β) - sin(α)sin(β).cos(α - β) = cos(α)cos(β) + sin(α)sin(β).

Hence, the multiplication of these measures is given as follows:

cos(α + β)cos(α - β) = (cos(α)cos(β) - sin(α)sin(β))(cos(α)cos(β) + sin(α)sin(β))

Applying the subtraction of perfect squares, it is found that:

(cos(α)cos(β) - sin(α)sin(β))(cos(α)cos(β) + sin(α)sin(β)) = cos²(α)cos²(β) - sin²(α)sin²(β)

Then another identity is applied, as follows:

sin²(β) + cos²(β) = 1 -> cos²(β) = 1 - sin²(β).sin²(α) + cos²(α) = 1 -> sin²(α) = 1 - cos²(a).

Then the expression is:

cos²(α)cos²(β) - sin²(α)sin²(β) = cos²(α)(1 - sin²(β)) - (1 - cos²(a))sin²(β)

Applying the distributive property, the simplified expression is:

cos²(α) - sin²(β)

Which proves the identity.

Missing information

The complete identity is:

cos(α + β)cos(α - β) = cos²(α) - sin²(β)

More can be learned about trigonometric identities at https://brainly.com/question/7331447

#SPJ1

An insurance company offers flood insurance to customers in a certain area. Suppose they charge $500 fora given plan. Based on historical data, there is a 1% probability that a customer with this plan suffers aflood, and in those cases, the average payout from the insurance company to the customer was $10,000.Here is a table that summarizes the possible outcomes from the company's perspective:EventFloodPayout Net gain (X)$10,000 -$9,500$0$500No floodLet X represent the company's net gain from one of these plans.Calculate the expected net gain E(X).E(X) =dollars

Answers

The given is a discrete random variable.

For a discrete random variable, the expected value is calculated by summing the product of the value of the random variable and its associated probability, taken over all of the values of the random variable.

It is given that the probability of a flood is 1%=0.01.

It follows that the probability of no flood is (100-1)%=99%.

Hence, the expected net gain is:

[tex]E(X)=0.01(-9500)+0.99(500)=-95+495=400[/tex]

Hence, the expected net gain is $400.

The expected net gain is E(X) = $400.

5. Graph the system of inequalities. Then, identify a coordinate point in the solution set.2x -y > -3 4x + y < 5

Answers

We have the next inequalities

[tex]\begin{gathered} 2x-y>-3 \\ 4x+y<5​ \end{gathered}[/tex]

as we can see if we graph these inequalities we will obtain the next graph

where the red area is the first inequality and the blue area is the second inequality

and the area in purple is the solution set of the two inequalities

one coordinate point in the solution set could be (0,0)

A chef is going to use a mixture of two brands of italian dressing. the first brand contains 7% vinegar and the second brand contains 12% vinegar. the chef wants to make 280 milliliters of a dressing that is 9% vinegar. how much of each brand should she use

Answers

We know that

• The first brand contains 7% vinegar.

,

• The second brand contains 12% vinegar.

,

• The chef wants 280 milliliters with 9% vinegar.

Using the given information, we can express the following equation.

[tex]0.07x+0.12(280-x)=0.09(280)[/tex]

Notice that 0.07x represents the first brand, 0.12(280-x) represents the second brand, and 0.08(280) represents the final product the chef wants to make.

Let's solve for x.

[tex]\begin{gathered} 0.07x+33.6-0.12x=25.2 \\ -0.05x=25.2-33.6 \\ -0.05x=-8.4 \\ x=\frac{-8.4}{-0.05} \\ x=168 \end{gathered}[/tex]Therefore, the chef needs 168 of the first brand and 112 of the second brand.

Notice that 280-168 = 112.

Find the value of x that makes ADEF ~AXYZ..yE1052x – 114D11FX5x + 2Zх=

Answers

Given that the triangles are similar, we can express a proportion between their sides. DE and XY are corresponding sides. EF and YZ are corresponding sides. Let's define the following proportion.

[tex]\begin{gathered} \frac{XY}{DE}=\frac{YZ}{EF} \\ \frac{10}{5}=\frac{14}{2x-1} \end{gathered}[/tex]

Now, we solve for x

[tex]\begin{gathered} 2=\frac{14}{2x-1} \\ 2x-1=\frac{14}{2} \\ 2x=7+1 \\ x=\frac{8}{2} \\ x=4 \end{gathered}[/tex]Hence, the answer is x = 4.
Other Questions
Laura, a sandwich maker, produces 80 sandwiches on average per day. How many sandwiches will she produce in pdays?Number of sandwiches = Lin is traveling from Japan to several other countries. The conversion table shows exchange rates between different currencies.2,000 Yen 16 Euros40 Euros = 3,125 Indian RupeesWhat is the rate of yen per Indian rupee?0.6250.641.56251.6 jessica's sports wear has $38,100 in receivables and $523,700 in total assets. the total asset turnover rate is 1.17 and the profit margin is 7.3 percent. how long on average does it take to collect the receivables? assume a 365-day year. Consider the following algebraic expression:7s - 7Step 1 of 2: Identify the first term of the algebraic expression. Indicate whether the term is a variable term or a constant term. For avariable term, identify the variable and the coefficient of the term. Solve for 5x - 3y = -45the equations beside it are the answer choices. what's the answer?[tex] - 4 \sqrt{15 \times - \sqrt{3} } [/tex] The numerator of the sum 1+1/3+2 is (a) 1 (b) 2 (c) 5 (d) 6. write a letter to your friend telling her reason why you will not attend her birthday party What is the total amount of the monthly payments for a $6,100, two-year loan with an APR of 5%? Round to the nearest dollar. Relief sculptures from ancient Egypt, Mesopotamia, and the Roman Empire: Angel earned $70 mowing lawns, which is 140% of the amount George earned. How much money did George earn? Andrew constructed a triangle so that the measurement of 1 and 2 were congruent. if angle 3 measured 70 degrees, what is the measure of angle 1? Explore the article below and find three landscapes. In the space below, list three of them and answer the questions below for each: 4. multiple choice: as the sample size n increases, the distribution of sample means: a. becomes narrower b. remains constant c. becomes wider 5. multiple choice: according to the central limit theorem, the mean of the sample means is: a. less than the population mean b. the same as the population mean c. more than the population mean 6. multiple choice: according to the central limit theorem, the standard deviation of the sample means is: a. less than the population standard deviation b. the same as the population standard deviation c. more than the population standard deviation y - y1 = m (x - x1 ) write an equation in point slope form given point ( 4, -3 ) and m = 1 PLEASE HELP!!!!!!!!!!!!!!!!!!!!!!!Which box-and-whisker plot matches the data?5, 8, 4, 2, 5, 9, 7, 12, 4, 3 A. A box and whisker plot is shown above a number line that extends from 0 to 20 with 1 unit markings. The box extends from 4 to 8, with the median at 6. There is also a point marked at six. The whisker on the left extends from 2 to 4. The whisker on the right extends from 8 to 12. B. A box and whisker plot is shown above a number line that extends from 0 to 20 with 2-unit markings. The box extends from 4 to 8, with the median at 7. There is also a point marked at 7. The whisker on the left extends from 2 to 4. The whisker on the right extends from 8 to 12. C. A box and whisker plot is shown above a number line that extends from 0 to 20 with 1-unit markings. The box extends from 2 to 12, with the median at 5. There are points marked at 2, 5, and 12. D. A box and whisker plot is shown above a number line that extends from 0 to 20 with 1-unit markings. The box extends from 4 to 8, with the median at 5. There is also a point marked at 7. The whisker on the left extends from 2 to 4. The whisker on the right extends from 8 to 12. My friend sandy bought 3 pair of jeans and 7 shirts for $60. my friend dan bought 2 pair of jeans and 3 shirts for $30. what are the prices for jeans and shirts? if a figure has four corners then it is a quadrilateral and figure has four corners therefore it is a quadrilateral which statement illustrate this to be true the large attachment account example the law of syllogism the law contrapositive Use the graph of f to describe the transformation that results in the graph of g. Then sketch the graphs of g and f. In PQR, p=13 inches, q=18 inches and r= 12 inches. Find the area of PQR to the nearest square inch.