what law(s) in physics can be used to explain the behaviors of the carts, in this interactive, whether or not the collision was elastic or inelastic?

Answers

Answer 1

The laws of physics that can be used to explain the behaviors of the carts in this interactive, whether or not the collision was elastic or inelastic, are the laws of conservation of momentum and conservation of energy.

The law of conservation of momentum states that the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.

The law of conservation of energy states that the total energy of the system remains constant, regardless of the type of collision that takes place.

If the collision is elastic, then the total kinetic energy of the objects before and after the collision is equal. If the collision is inelastic, then the total kinetic energy of the objects after the collision is less than before the collision.

This law applies to both elastic and inelastic collisions. Conservation of energy also applies to both elastic and inelastic collisions. In elastic collisions, the kinetic energy is conserved.

Learn more about the Laws of conservation of momentum here:

https://brainly.com/question/7538238

#SPJ11


Related Questions

5. does it take the same amount of work to speed your car up from 25 m/s to 30 m/s as it does to speed it up from 30 m/s to 35 m/s? if not, which situation requires more work? why? use the cer framework to answer the question.

Answers

The same amount of work to speed up a car from 25 m/s to 30 m/s as it does from 30 m/s to 35 m/s is different because it requires more work to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s.

Thus, the correct answer is "No, it doesn't".

The CER framework is a tool that can be used to answer questions that involve scientific principles. CER stands for Claim, Evidence, and Reasoning.

1. Claim: It does not take the same amount of work to speed up a car from 25 m/s to 30 m/s as it does to speed it up from 30 m/s to 35 m/s.

2. Evidence: Work is equal to force times distance, which means that the amount of work required to accelerate an object depends on the distance over which the force is applied. If the distance is shorter, less work will be done.

The distance over which the force is applied to speed up a car from 30 m/s to 35 m/s is shorter than the distance over which the force is applied to speed it up from 25 m/s to 30 m/s. This implies that more work is required to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s. The equation for calculating work is W = F x D, where W is work, F is force, and D is distance.

3. Reasoning: Therefore, it requires more work to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s. This is because the distance over which the force is applied to speed up a car from 30 m/s to 35 m/s is shorter than the distance over which the force is applied to speed it up from 25 m/s to 30 m/s. The work done on an object is a measure of the energy transferred to it. When more work is done on an object, more energy is transferred to it.

For more information about CER framework refers to the link: https://brainly.com/question/11661619

#SPJ11

a 5-kg shark swimming at 1 m/s swallows an absent-minded 1-kg fish swimming toward it at 4 m/s. the speed of the shark after his meal is

Answers

The speed of the shark after it swallows the fish is calculated using the conservation of momentum principle. The total momentum before the collision is 5 kg * 1 m/s + 1 kg * 4 m/s = 9 kg * m/s. The total momentum after the collision is 5 kg * v, where v is the speed of the shark after the collision. Therefore, v = 9/5 m/s = 1.8 m/s. Thus, the speed of the shark after it swallows the fish is 1.8 m/s.

The speed of the shark after it has swallowed the 1-kg fish swimming toward it at 4 m/s is 3 m/s. This can be determined by conservation of momentum. Momentum is a vector quantity, meaning that the direction of the momentum must also be taken into account.

In this situation, the momentum of the shark before it swallows the fish is 5 kg⋅m/s due to its velocity of 1 m/s. After the shark has eaten the fish, the momentum is 6 kg⋅m/s due to the addition of the fish's momentum of 4 kg⋅m/s. Since momentum is conserved, the momentum of the shark after eating the fish is the same as the momentum of the shark before eating the fish. Since the mass of the shark does not change, the velocity must change to balance out the difference in momentum. This means that the velocity of the shark after eating the fish is 3 m/s.

For more equations related to momentum.

https://brainly.com/question/30677308

#SPJ11

I have no clue what im doing..

If work = 100J and time = 20 seconds, what is power

Answers

Answer:

5 J/s or 5 watt

Explanation:

Given,

Work (W) = 100 J

Time (t) = 20 s

To find : Power (P)

Formula :

P = W/t

P = 100/20

P = 5 J/s

P = 5 watt

Note : -

J/s and watt are units are power.

mass than air) at the same temperature. how does this affect the normal-mode frequencies of the pipe?

Answers

When a pipe is filled with a liquid of higher density than air, the frequency of the normal modes of the pipe decreases.

This is due to the fact that the speed of sound is proportional to the square root of the ratio of the bulk modulus to the density of the medium in which it travels.

When the density of the medium inside the pipe increases, the velocity of sound decreases, causing the frequency of the normal modes to decrease.

he wavelength of the sound waves inside the pipe is shortened due to the increase in density, resulting in a lower frequency of the normal modes.

The frequency of the normal modes of a pipe is influenced by a variety of factors, including the diameter and length of the pipe, as well as the speed of sound in the medium inside the pipe. T

he frequency of the normal modes is inversely proportional to the length of the pipe, with longer pipes producing lower frequencies.

In the case of a pipe filled with a liquid of higher density than air, the frequency of the normal modes would be lower than if it were filled with air.

This is because the speed of sound in the liquid would be lower than in air, resulting in a decrease in the frequency of the normal modes.

When a pipe is filled with a liquid of higher density than air, the frequency of the normal modes of the pipe decreases.

This is due to the fact that the speed of sound in the liquid is lower than in air, resulting in a decrease in the frequency of the normal modes.

to know more about frequency refer here:

https://brainly.com/question/14316711#

#SPJ11

a 100 kg shot-putter pushes on a 4 kg shot with a force of 500 n forward and a force of 866 n upward. how large is the resultant force acting on the shot?

Answers

The magnitude of the resultant force acting on the shot is 1000 N, and its direction is approximately 59.5 degrees above the horizontal.

The resultant force acting on the shot can be found using vector addition of the two forces applied on the shot.

The two forces can be represented as vectors in the xy-plane, with the horizontal force of 500 N pointing in the positive x-direction and the vertical force of 866 N pointing in the positive y-direction. We can use the Pythagorean theorem and trigonometry to find the magnitude and direction of the resultant force vector.

The magnitude of the resultant force vector F is given by:

|F| = [tex]\sqrt{(500 N)^2 + (866 N)^2)}[/tex]

|F| = 1000 N

The direction of the resultant force vector is given by the angle θ it makes with the positive x-axis:

tan θ = (866 N) / (500 N)

θ = tan⁻¹(866/500)

θ ≈ 59.5 degrees

Therefore, the magnitude of the resultant is 1000 N, and its direction is approximately 59.5 degrees.

Learn more about The Force: https://brainly.com/question/30526425

#SPJ11

a value of mass is given as 14.6 g to 15.2 g. a value of volume is given as 2.4 to 2.8 m3. state the density using reasonable outer limits.

Answers

The density using reasonable outer limits is the density of an object can be determined by dividing its mass (measured in grams, g) by its volume (measured in cubic metres, m3). To calculate the density using the given values of mass and volume, we can use the following formula: Density = Mass/Volume.

Therefore, the density of the given object can be calculated using the outer limits of mass and volume, which are 14.6 g to 15.2 g and 2.4 m3 to 2.8 m3, respectively. The calculated density of the given object is in the range of 5.75 g/m3 to 5.45 g/m3.

To calculate the density, the mass and volume of the object must be known. Mass is a measure of how much matter an object has, and is calculated in grams (g). Volume, on the other hand, is a measure of the amount of space an object takes up, and is calculated in cubic metres (m3).

When these two values are known, the density can be calculated using the formula: Density = Mass/Volume. In this case, the given values of mass and volume are 14.6 g to 15.2 g and 2.4 m3 to 2.8 m3, respectively. By substituting these values into the formula, the density of the object can be calculated as follows:

Density = Mass/Volume

Density = 14.6 g/2.4 m3 = 5.75 g/m3

Density = 15.2 g/2.8 m3 = 5.45 g/m3


Therefore, the density of the given object is in the range of 5.75 g/m3 to 5.45 g/m3.

To know more about density refer here:

https://brainly.com/question/15164682#

#SPJ11

a 2.0 m tall man is 10 m in front of a camera with a 25 mm focal length lens. how tall is his image on the detector?

Answers

A 2.0 m tall man is 10 m in front of a camera with a 25 mm focal length lens, the height of the image on the detector is approximately 5.01 mm.

To determine the height of the image of a 2.0 m tall man who is 10 m in front of a camera with a 25 mm focal length lens, we will use the lens formula and magnification formula.

First, let's use the lens formula: 1/f = 1/u + 1/v

Here, f is the focal length, u is the object distance, and v is the image distance. We have f = 25 mm, and u = 10 m (which we need to convert to millimeters, so u = 10,000 mm).

We can now solve for v: 1/25 = 1/10,000 + 1/v

To isolate v, let's first subtract 1/10,000 from both sides: 1/25 - 1/10,000 = 1/v Now,

find the least common denominator (LCD) and subtract: (400 - 1)/10,000 = 1/v 399/10,000 = 1/v

Now, take the reciprocal of both sides to solve for v: v = 10,000/399

Now that we have the image distance (v), we can use the magnification formula to find the height of the image: magnification (m) = image height (h') / object height (h) = v / u

We want to find h', so we can rearrange the formula: h' = h * (v / u)

Plug in the known values (h = 2.0 m, u = 10,000 mm, and v = 10,000/399 mm), and convert h to mm (2.0 m = 2,000 mm): h' = 2,000 * (10,000 / 399) / 10,000 Simplify the expression: h' = 2,000 / 399

So, the height of the image on the detector when the man is 2.0m tall, 10 m in front of a camera with a 25 mm focal length lens is approximately 5.01 mm.

To know more about focal length refer here:

https://brainly.com/question/16188698#

#SPJ11

The Force F with rightwards harpoon with barb upwards on top (2,1,−4)N(2,1,−4)N is acting on the body of mass m=3kgm=3kg while causing it to change the postion from point A(2,8,0)mA(2,8,0)m to point B(28,75,68)mB(28,75,68)m.a) Find work done by the force (in one hundredth of Joule) on the distance ABAB.b) Find the total work done by the forces acting on the body over the distance ABAB.c) Find the magnitude of the acceleration of the body (answer to nearest hundredth of m/s2m/s2) as it moves from point AA to point BB.

Answers

The work done by the force (in one-hundredth of Joule) on the distance AB is -15300×J/100. The total work done by the forces acting on the body over the distance AB is -153 J. The magnitude of the acceleration of the body is 1.53 m/s².


a) To find the work done by the force on the distance AB, we first need to find the displacement vector from point A to point B:

Displacement vector, AB = B - A

= (28-2, 75-8, 68-0) = (26, 67, 68)

Now, we calculate the dot product of the force vector and the displacement vector:

F • AB = (2,1,-4) • (26,67,68)

= 2(26) + 1(67) - 4(68)

= 52 + 67 - 272

= -153
The work done by the force on the distance AB in one-hundredth of Joule is given by:
Work = F • AB

=-15300×J/100.

b) Since there is only one force acting on the body, the total work done by the forces acting on the body over the distance AB is the same as the work done by the force F:
Total work = -153 J

c) The acceleration of the body is given by Newton's Second Law of Motion:

F = ma

=> a = F/m

where F is the force and m is the mass of the body.

a = F/m

= (2, 1, -4)/3

= (0.67, 0.33, -1.33) m/s²

Therefore, the magnitude of the acceleration of the body is

|a| = √(0.67² + 0.33² + (-1.33)²) ≈ 1.53 m/s² (corrected to the nearest hundredth of m/s²).

Learn more about acceleration:

https://brainly.com/question/605631

#SPJ11

compare violet and red light from the visible spectrum. you are currently in a labeling module. turn off browse mode or quick nav, tab to items, space or enter to pick up, tab to move, space or enter to drop. which has the longer wavelength? which has the greater frequency? which has the greater energy? answer bank

Answers

In the following question, among the various parts to solve on visible spectrum.- A. Red light has a longer wavelength than violet light. B. Violet light has a higher frequency than red light. C. Violet light has greater energy than red light.

Violet and red light from the visible spectrum can be compared based on their wavelengths, frequencies, and energies. Violet light has a shorter wavelength, higher frequency, and greater energy than red light. The answers to the specific questions are: Which has the longer wavelength? Red light has a longer wavelength than violet light. Which has the greater frequency? Violet light has a higher frequency than red light. Which has the greater energy? Violet light has greater energy than red light. An HTML-formatted answer would look like this:

Violet and red light from the visible spectrum can be compared based on their wavelengths, frequencies, and energies. Violet light has a shorter wavelength, higher frequency, and greater energy than red light. The answers to the specific questions are:

Which has the longer wavelength? Red light has a longer wavelength than violet light.Which has the greater frequency? Violet light has a higher frequency than red light.Which has the greater energy? Violet light has greater energy than red light.

For more such questions on visible spectrum.

https://brainly.com/question/30138070

#SPJ11

a 12.0 meter length of copper wire has a resistance of 1.50 ohms. how long must an aluinum wire with the same cross-sectional area be to hsae the damr resistance

Answers

The length of the nichrome wire that has the same resistance as the 12.0-meter copper wire is approximately [tex]\( 0.13 \, \text{m} \)[/tex].

To find the length of the nichrome wire that has the same resistance as the 12.0-meter copper wire, we can use the formula for resistance:

[tex]\[ R = \frac{{\rho \cdot L}}{{A}} \][/tex]

where [tex]\( R \)[/tex] is the resistance, [tex]\( \rho \)[/tex] is the resistivity, [tex]\( L \)[/tex] is the length of the wire, and [tex]\( A \)[/tex] is the cross-sectional area.

Given:

Length of the copper wire, [tex]\( L_c = 12.0 \, \text{m} \)[/tex]

Resistance of the copper wire, [tex]\( R_c = 1.50 \, \Omega \)[/tex]

Resistivity of copper, [tex]\( \rho_c = 1.7 \times 10^{-8} \, \Omega \cdot \text{m} \)[/tex]

Resistivity of nichrome, [tex]\( \rho_n = 1.5 \times 10^{-6} \, \Omega \cdot \text{m} \)[/tex]

Let's calculate the cross-sectional area of the copper wire using the resistance formula:

[tex]\[ A_c = \frac{{\rho_c \cdot L_c}}{{R_c}} \]\\\\\ A_c = \frac{{1.7 \times 10^{-8} \cdot 12.0}}{{1.50}} \\\\= 1.36 \times 10^{-7} \, \text{m}^2 \][/tex]

Next, we can use the resistance formula to find the length of the nichrome wire:

[tex]\[ R_n = \frac{{\rho_n \cdot L_n}}{{A_c}} \][/tex]

We need to solve for [tex]\( L_n \)[/tex]:

[tex]\[ L_n = \frac{{R_n \cdot A_c}}{{\rho_n}} \][/tex]

Substituting the given values:

[tex]\[ L_n = \frac{{1.50 \cdot 1.36 \times 10^{-7}}}{{1.5 \times 10^{-6}}} \\\\= 0.13 \, \text{m} \][/tex]

Therefore, the length of the nichrome wire that has the same resistance as the 12.0-meter copper wire is approximately [tex]\( 0.13 \, \text{m} \)[/tex].

Know more about nichrome wire:

https://brainly.com/question/31111150

#SPJ12

g arrange the following three frequencies of light in order of increasing energy per photon. a. 100 mhz b. 10 mhz c. 100 ghz

Answers

In order of increasing energy per photon, the following three frequencies of light must be arranged:

b. 10 MHz  a.100 MHz  c.100 GHz

When light is absorbed or emitted by an atom, the energy of the atom changes. The light behaves both as a particle (called a photon) and as a wave.

This dual behavior is referred to as wave-particle duality. The energy of the photon is determined by its frequency, and the frequency of a light wave is inversely proportional to its wavelength.

The energy per photon is directly proportional to the frequency of the light.

The following three frequencies of light should be arranged in order of increasing energy per photon:

10 MHz   100 MHz    100 GHz

The frequency of 10 MHz has the lowest energy per photon since it has the lowest frequency of the three. The energy per photon of 100 MHz is higher than that of 10 MHz but lower than that of 100 GHz since it has a higher frequency. The energy per photon of 100 GHz is the highest of the three because it has the highest frequency.

For similar question frequencies of light

https://brainly.com/question/10728818

#SPJ11

a negatively charged point particle is placed initially at rest in a uniform electric field as a result of being placed in the electric field which direction will it move

Answers

When a negatively charged point particle is placed initially at rest in a uniform electric field, it will move towards the direction of the electric field.

An electric field is a vector field that represents the force exerted by charged particles over each other. It is generated by charges, and it affects other charged particles that are in the space around it. The direction of the electric field is given by the direction of the force that is experienced by a small positive test charge placed in that field. If the force on the test charge is towards the positive charge that creates the field, the electric field will point towards the positive charge. If the force on the test charge is towards the negative charge that creates the field, the electric field will point towards the negative charge.

When a negatively charged particle is placed in the electric field, it experiences a force in the direction opposite to the direction of the electric field,  this is because the negatively charged particle is attracted towards the positively charged particles that generate the field, and so it moves towards them. Therefore, the negatively charged particle moves towards the direction of the electric field. When a positively charged particle is placed in the electric field, it experiences a force in the direction of the electric field. This is because the positively charged particle is attracted towards the negatively charged particles that generate the field, and so it moves towards them. Therefore, the positively charged particle moves towards the direction opposite to the direction of the electric field.

Learn more about electric field at:

https://brainly.com/question/4440057

#SPJ11

Compared to a landscape that develops in a cool, dry climate, a landscape that develops in a warm, rainy climate will most likely weather and erode a. Slower, so the landforms are more angular b. Slower, so the landforms are more rounded c. Faster, so the landforms are more angular d. Faster, so the landforms are more rounded

Answers

A landscape that develops in a warm, rainy climate will most likely weather and erode faster, so the landforms are more rounded.

This is because in a warm, rainy climate, there is more water available to weather and erode the landforms. The water can penetrate cracks and crevices in the rocks, dissolve minerals, and carry away sediments. Over time, this can lead to the rounding of edges and the smoothing of surfaces, resulting in more rounded landforms.

In contrast, in a cool, dry climate, there is less water available to weather and erode the landforms. This can result in slower rates of erosion and less rounding of the landforms.

Learn more about A landscape

https://brainly.com/question/840314

#SPJ4

we want to lift a load of 200 lb with an overhead system using pulleys that have an efficiency of 0.9. if we can provide a maximum input force of 103 lb, what is the minimum number of pulleys that we need?

Answers

We need at least one pulley to lift the load of 200 lb with an overhead system using pulleys that have an efficiency of 0.9, given that we can provide a maximum input force of 103 lb.

Assuming that the weight of the pulleys and the rope is negligible, we can use the formula,

Load = (Input Force / Efficiencies) ^ Number of Pulleys

where Load is the weight of the load we want to lift, Input Force is the force we apply to the system, Efficiency is the efficiency of each pulley, and Number of Pulleys is the number of pulleys we need.

Plugging in the given values,

200 lb = (103 lb / 0.9) ^ Number of Pulleys

Simplifying the equation,

Number of Pulleys = log (base 2) (200 / (103/0.9))

Number of Pulleys = log (base 2) (200 x 0.9 / 103)

Number of Pulleys = log (base 2) 1.983495

Number of Pulleys = 1

To know more about force, here

brainly.com/question/3854207

#SPJ4

WILL AWARD BRAINLIEST AND STARS FOR WHOEVER ANSWERS THIS

Answers

Answer: The table that would organize and summarize the class data on pH levels of the different soil types is found in the attachment below.

Explanation: As an A+ student, I love to help people on brainly in my free time! If this answer helped you, please click the heart, click the crown to give brainliest and give a 5 star rating! I'd appreciate it if you did at least one of those <3 Have a great day.

a rising parcel of unstable air a rising parcel of unstable air can rise well into the mesosphere. cannot rise very far above the tropopause. can eventually escape into space. will not be slowed by entrainment.

Answers

A rising parcel of unstable air is an air mass that is warmer than the surrounding air and is therefore buoyant. It can rise until it reaches an area where its temperature is the same as the surrounding air, the tropopause.

The tropopause is the boundary between the troposphere (the lowest part of the atmosphere) and the stratosphere (the next layer of the atmosphere).

At this level, the air is very stable and so the air parcel cannot rise any further.

The air parcel may eventually escape into space, however it will not be slowed by entrainment, the process by which the parcel loses energy and slows down due to friction.

As the parcel rises, the atmospheric pressure decreases and the temperature increases due to the decrease in air density.

As it rises further, the air pressure decreases until it reaches the tropopause, where it then plateaus.

Once the air reaches the tropopause, it has reached a level of equilibrium and can no longer rise further as the temperature and pressure remain constant.

The tropopause also acts as a barrier to air moving from the stratosphere to the troposphere.

This is due to the temperature inversion that occurs when the temperature in the troposphere decreases with altitude while the temperature in the stratosphere increases with altitude.

This inversion creates a strong stratospheric temperature gradient, making it difficult for air to move between the two layers.

A rising parcel of unstable air can rise well into the mesosphere but cannot rise very far above the tropopause.

The tropopause acts as a barrier to air moving between the troposphere and the stratosphere due to its temperature inversion, and the air parcel may eventually escape into space without being slowed by entrainment.

to know more about buoyant refer here:

https://brainly.com/question/21990136#

#SPJ11

A sound wave has a frequency of 687 Hz in air and a wavelength of 0.49 m. What is the temperature of the air? Relate the speed of sound in air to temperature in units of Kelvin, but answer in units of Celsius. Assume the velocity of sound at 0◦C is 333 m/s.
Answer in units of deg C.

Answers

The temperature of the sound air is approximately 17.57°C.

Soundwave calculation.

We can use the formula for the speed of sound in air to relate it to temperature:

v = 331.5 * sqrt(T/273.15)

where v is the velocity of sound in air, T is the temperature in Kelvin, and 273.15 K is the temperature in Kelvin at 0◦C.

We know the frequency and wavelength of the sound wave in air, and we can use the formula for the speed of sound to find the velocity of sound:

v = f * λ

where f is the frequency of the sound wave λ is the wavelength.

Plugging in the given values, we get:

v = 687 Hz * 0.49 m

v = 336.63 m/s

Now we can use the formula for the speed of sound to find the temperature:

336.63 m/s = 331.5 * sqrt(T/273.15)

Solving for T, we get:

T = (336.63/331.5)^2 * 273.15

T = 290.72 K

Converting from Kelvin to Celsius, we get:

T = 290.72 - 273.15

T ≈ 17.57°C

Therefore, the temperature of the air is approximately 17.57°C.

Learn more about soundwaves below.

https://brainly.com/question/16093793

#SPJ1

one cycle of the power dissipated by a resistor ( ) is given by this periodic signal repeats in both directions of time. what is the amplitude of the pwm voltage signal applied across the 500- resistor

Answers

The maximum amplitude of the PWM voltage signal applied across the 500-ohm resistor is: Vmax=2*I*R=500*I

The power dissipated by a resistor during one cycle is given by the periodic signal. The PWM voltage signal applied across a 500 Ω resistor is analyzed in this question. The amplitude of the signal is determined below.

Pulse Width Modulation is the PWM. It's a process for varying the pulse width of a square wave, which changes the percentage of time the signal is high to low. The pulse width can be varied to create the desired output signal level. It is frequently utilized in applications where analog signals are required, including control systems, power supplies, and audio systems. The maximum voltage Vm of the PWM voltage signal can be found by calculating the RMS value of the pulse. The root-mean-square value is the square root of the mean of the square of the signal over a given period. If we use a pulse that has a duty cycle of 50%, this formula simplifies to: Vmax=Vm+0.5Vdc where Vdc is the average value of the pulse.

The maximum amplitude can be determined using this formula: Vmax=I*R where I is the current and R is the resistance. The current flowing through the resistor is proportional to the voltage applied to it, and the voltage is proportional to the duty cycle of the PWM signal, which varies from 0 to 1. Thus, the voltage applied to the resistor is proportional to the duty cycle and can be expressed as: V=Vmax*D where D is the duty cycle. Thus, the amplitude of the PWM voltage signal applied across a 500-ohm resistor is: Vmax=2*I*R=500*I. Using this equation, we can determine the maximum amplitude of the PWM voltage signal applied across the 500-ohm resistor.

For more such questions on Pulse Width Modulation.

https://brainly.com/question/29358007#

#SPJ11

an electron moves at a speed of 3x10^4 m/s parallel to the uniform magnetic field of 0.4t. it experiences a force of what magnitude?

Answers

The magnitude of the force experienced by the electron is 1.92 x 10^-14 N.

The force experienced by a charged particle moving in a magnetic field is given by the formula,

F = qvB

where F is the force on the particle, q is the charge of the particle, v is the velocity of the particle, and B is the magnetic field.

In the given problem, the electron is moving parallel to the magnetic field, so the angle between the velocity vector and the magnetic field vector is 0 degrees. Therefore, the sine of the angle is 0, and the force experienced by the electron is simply,

F = qvB

where q is the charge of the electron (-1.6 x 10^-19 C), v is the speed of the electron (3 x 10^4 m/s), and B is the magnetic field (0.4 T).

Substituting the given values,

F = (-1.6 x 10^-19 C) * (3 x 10^4 m/s) * (0.4 T)

F = -1.92 x 10^-14 N

To know more about magnetic field, here

brainly.com/question/28246026

#SPJ4

if the ball is in contact with the wall for 0.0948 s, what is the magnitude of the average force exerted on the ball by the wall?

Answers

The ball is in contact with the wall for 0.0948 s and 9.498 N is the magnitude of the average force exerted on the ball by the wall

The average force exerted on the ball by the wall when the ball is in contact with the wall for 0.0948 s is given by the change in momentum of the ball in the horizontal direction divided by the time of contact.

This can be expressed mathematically as:

[tex]F_{avg}[/tex] = Δp/Δt

Where Δp is the change in momentum and

Δt is the time of contact.

Let's assume that the ball is moving to the right with a velocity [tex]v_1[/tex] before it collides with the wall.

After the collision, it moves to the left with a velocity [tex]v_2[/tex].

Since the direction of the velocity has changed, the momentum of the ball has also changed.

Therefore, Δp = [tex]p_2 - p_1[/tex]

where [tex]p_1[/tex] and [tex]p_2[/tex] are the momenta of the ball before and after the collision, respectively.

Since the ball is moving in only one dimension, the momenta of the ball can be expressed as:

[tex]p_1 = mv_1[/tex]  and

[tex]p_2 = -mv_2[/tex]

where m is the mass of the ball.

Thus,

Δp = -m([tex]v_2 - v_1[/tex])

Therefore, the average force exerted on the ball by the wall is given by:

F_avg = Δp/Δt = -m([tex]v_2 - v_1[/tex])/Δt = -0.15(2 - 6)/0.0948 = - 9.498 N

The negative sign indicates that the force exerted by the wall on the ball is in the opposite direction to the motion of the ball.

Therefore, the average force exerted on the ball by the wall when the ball is in contact with the wall for 0.0948 s is 9.498 N.

For similar question on average force

https://brainly.com/question/18652903

#SPJ11

c. what will be the charges of the spheres in fractions of after connection? how does the total charge of the two spheres after the connection compare to the initial charge of the left sphere?

Answers

The charges of the spheres after connection will be the same as the charge of the left sphere. The total charge of the two spheres after connection is equal to the initial charge of the left sphere.

To understand this, it is important to know that electric charge is a conserved quantity. This means that the net charge of a system cannot change. Therefore, if two objects with opposite charges (like the two spheres) are connected, the charges of the two objects will become equal and the total charge of the two spheres will remain the same as the initial charge of the left sphere.
To further understand this concept, consider two spheres with opposite charges. If the two spheres are not connected, then the total charge of the two spheres is equal to the sum of the charges of each sphere. However, if the two spheres are connected, the net charge of the system cannot change. Therefore, the charge of each sphere will become equal and the total charge of the two spheres after the connection will remain the same as the initial charge of the left sphere.

For more such questions on Electric charge.

https://brainly.com/question/12321627#

#SPJ11

while a car travels around a circular track at a constant speed, its a) acceleration is non-zero and along the path b) acceleration is non zero and inward toward the center c) acceleration is zero d) acceleration is non-zero and outward from the center

Answers

While a car travels around a circular track at a constant speed, its (d) acceleration is non-zero and outward from the center.

When a car travels around a circular track at a constant speed, it is constantly changing direction, and therefore, constantly accelerating. This acceleration is known as centripetal acceleration and is directed towards the center of the circle.

However, according to Newton's third law, every action has an equal and opposite reaction. In this case, the car also experiences an equal and opposite acceleration, known as the centrifugal acceleration, which is directed outward from the center of the circle.

This is the non-zero acceleration experienced by the car, and it acts to counterbalance the centripetal acceleration, keeping the car moving in a circular path.

Therefore, the correct answer is (d) acceleration is non-zero and outward from the center.

For more questions like Acceleration click the link below:

https://brainly.com/question/12550364

#SPJ11

suppose you stare at a static red square for two minutes. you then move your eyes back and forth across a white wall. what do opponent-process theory and corollary discharge theory predict you will experience?

Answers

Both the opponent-process theory and the corollary discharge theory predict a complementary color aftereffect when you shift your gaze to the white wall.

Suppose you stare at a static red square for two minutes, you then move your eyes back and forth across a white wall. The Opponent-process theory and corollary discharge theory predict you will experience a complementary color aftereffect when you shift your gaze to the white wall. The opponent-process theory suggests that cells in the visual system respond to complementary color pairs such as green and red, yellow and blue, and white and black. The cells work in opposition, with one group exciting and the other inhibiting. When the cells become fatigued due to prolonged exposure to a color, the cells' firing rates adjust, causing an opponent color to become more sensitive.

Cone cells adapt to changes in visual stimuli and return to their baseline firing rates, which is known as adaptation. The visual system responds in the opposite direction after adaptation to a stimulus, causing a complementary color aftereffect. This effect causes a red afterimage when you look away from a green stimulus or a green afterimage when you look away from a red stimulus. The corollary discharge theory explains how the brain anticipates the sensory consequences of a motor act. In the human body, a motor command is given by the brain, which then sends a copy of that command to the visual system.

The visual system anticipates the motion of the object that is being tracked and removes the motion that results from the eye's movement, allowing the object's motion to remain stable on the retina even though the eye is moving. When the eye's movement is blocked, the motion's removal causes an illusion of movement in the opposite direction, known as a motion aftereffect. Thus, both the opponent-process theory and the corollary discharge theory predict a complementary color aftereffect when you shift your gaze to the white wall.

Learn more about Theory

brainly.com/question/14543764

#SPJ11

Two weights are connected by a massless wire and pulled upward with a constantspeed of 1.50 m/s by a vertical pull P. The tension in the wire is T(see figure). Whichone of the following relationships between Tand Pmust be true?A)TB)T=PC)P+T=125ND)P=T+25N

Answers

Two weights are connected by a massless wire and pulled upward with a constant speed of 1.50 m/s by a vertical pull P. The tension in the wire is T The relationship between T and P is that T = P + 125N, which is equivalent to answer choice D. The correct answer is D) P=T+25N.

This can be determined by analyzing the forces acting on the system. Since the weights are being pulled upward at a constant speed, the net force acting on them must be zero.
The forces acting on the weights are their respective weights (mg), where m is the mass of the weight and g is the acceleration due to gravity, and the tension in the wire (T). The vertical pull P also acts on the system.
Using Newton's second law (F=ma) and setting the net force equal to zero, we can write:
T - m1g - m2g - P = 0
Solving for T, we get:
T = m1g + m2g + P
Substituting in the given values of m1, m2, and g, we get:
T = 50N + 75N + P
Simplifying, we get:
T = P + 125N

For more such questions on tension

https://brainly.com/question/30592298

#SPJ11

A mass is tied to a string and swung in a horizontal circle w a constant angular speed. Speed is doubled. What happens to the tension in the string?

Answers

The tension in the string becomes four times its original value when the angular speed is doubled.

When a mass is tied to a string and swung in a horizontal circle with a constant angular speed, the tension in the string is the centripetal force that keeps the mass moving in a circular path.

Step 1: Identify the relevant forces acting on the mass.

In this case, the centripetal force is the only force that needs to be considered, and it is provided by the tension in the string.

Step 2: Understand the relationship between centripetal force (Fc),

mass (m),

radius (r),

and angular speed (ω).

The centripetal force can be calculated using the formula:
Fc = m * r * ω^2
Step 3: Analyze the effect of doubling the speed (angular speed) on the tension in the string. Since the mass and radius remain the same, we can focus on the angular speed term in the formula.

When the angular speed is doubled, we have:
New angular speed (ω') = 2 * ω
Step 4: Calculate the new centripetal force (tension) in the string.

Substituting the new angular speed into the formula, we get:
Fc' = m * r * (ω[tex]')^2[/tex] = m * r * (2 * ω[tex])^2[/tex]
Step 5: Compare the new centripetal force (tension) with the original one. By expanding the equation, we find that:
Fc' = m * r * 4 * ω^2

= 4 * (m * r * ω[tex]^2)[/tex]

= 4 * Fc

This shows that when the angular speed is doubled, the tension in the string increases by a factor of 4.

For similar question on angular.

https://brainly.com/question/13014974

#SPJ11

a ball is dropped from a distance 5 m above the ground, and it hits the ground with a certain speed. if the same ball is dropped from a distance 10 m above the ground, its final speed will be

Answers

The  final speed of the ball dropped from a distance of 10 meters will be 49 m/s.

The final speed of the ball dropped from a distance of 10 meters will be higher than the final speed of the ball dropped from a distance of 5 meters. This is because of the effect of gravity on the ball.

As the ball falls, gravity will pull it toward the ground, giving it a greater speed as it falls further. This increase in speed is known as the "acceleration due to gravity."

When the ball is dropped from 10 meters, the ball will fall faster because of the increased distance it has to travel, allowing gravity to pull it down more quickly.

By the time it reaches the ground, it will have reached a higher velocity.
The equation for this acceleration due to gravity is:

Vf = Vi + g × t

Where Vf is the final speed, Vi is the initial speed, g is the acceleration due to gravity and t is the time.

Therefore, in order to calculate the final speed of the ball dropped from 10 meters, we can use this equation. Assuming the initial speed of the ball is zero and the acceleration due to gravity is 9.8 m/s2, we get:

Vf = 0 + 9.8 × (10/2)
Vf = 49 m/s

So, the final speed of the ball dropped from a distance of 10 meters will be 49 m/s.

to know more about speed refer here:

https://brainly.com/question/28224010#

#SPJ11

if you had a microscope which was capable of doing this, what would the frequency of electromagnetic radiation be, in hertz, that you would have to use?

Answers

Answer:

The electric power didn’t last very long. It lasted only as long as the chemical reaction in the battery.

Explanation:

A 23.3 kg boy is moving along a circular path with the constant speed of 2.7 m/s. What is the magnitude of the centripetal force acting on the boy if the radius of the circle is 12.9 m. Note : Calculate the answer to 3 (three) significant figures by presenting it in normal ( decimal) form. Don't forget to include the unit.

Answers

The centripetal force for the given question would be 16.3 N.

Explanation:

The magnitude of the centripetal force acting on a 23.3 kg boy moving along a circular path with a constant speed of 2.7 m/s and the radius of the circle is 12.9 m is 16.3 N (newton).

What is centripetal force?

Centripetal force is the net force acting on an object moving in a circular path toward the center of the circle. It always points towards the center of the circle, hence the name "center-seeking force".

What is the formula for centripetal force?

The formula for centripetal force is Fc = (mv²)/r, where Fc is the centripetal force, m is mass, v is velocity or speed and r is the radius of the circular path.

In the given question: Mass, m = 23.3 kgVelocity, v = 2.7 m/s, Radius, r = 12.9. To calculate centripetal force,

F = (m x v^2)/r

Putting the given values in the above formula: F = (23.3 kg x (2.7 m/s)^2)/12.9 m= 16.3 N (newton)

Therefore, the magnitude of the centripetal force acting on the boy is 16.3 N (newton).

To know more about centripetal force, visit:

https://brainly.com/question/11324711

#SPJ11

most of the mass of the solar system is located in which of the following? responses sun sun jupiter jupiter comets comets earth

Answers

Most of the mass of the solar system is located in the Sun. The Sun accounts for over 99% of the total mass of the solar system, with the remaining mass distributed among the planets, asteroids, comets, and other objects.

The solar system is a collection of objects that orbit around the Sun. It consists of the Sun, eight planets and their natural satellites, dwarf planets, asteroids, comets, and other small bodies. The eight planets, listed in order from the Sun, are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

The Sun is at the center of the solar system and contains more than 99% of the mass of the solar system. It is a giant ball of gas, mostly hydrogen, and helium, and is the source of heat and light for the entire solar system.

Learn more about the Sun:

https://brainly.com/question/15837114

#SPJ11

a stone and a block are on an incline as shown in figure. the stone is at rest. how many forces act on the stone?

Answers

These two forces act on the stone:

Force due to gravityForce of the incline

The stone in the figure shown is at rest, which means that the net force on the stone is zero. Therefore, there must be two forces acting on the stone, one in the direction of the incline and the other in the opposite direction. These two forces are:

Force due to gravity (weight): This is the force of gravity acting on the stone in the downward direction. This force is equal to the weight of the stone and opposes the force of the incline.The force of the incline: This is the force of the incline acting on the stone in the upward direction. This force is equal to the weight of the stone and is the opposite of the force due to gravity.

Learn more about the force of gravity: https://brainly.com/question/29236134

#SPJ11

Other Questions
last-resort laws: a. are rules that require general providers to accept different types of insurances. b. encourage more competition between hospitals and lower prices for care. c. mandate that hospitals treat all patients who enter their emergency rooms. d. mandate that luxury care, such as cosmetic surgery, must be covered under insurance plans. a(n) of behavior is used when a leader needs to express concern for followers' well-being and social status. a ball is thrown vertically upward from a height of 4 feet with an initial velocity of 50 feet per second. how high will the ball go? 0.1mol of a substance has a mass of 4g. Calculate the mass of 1 mol During a typical storytelling context, for example at home, signs in Plains Sign Talk will most often occur in the periphery of the circular signing space.a. Trueb. False true or false? an organism that is radially symmetric has many well-developed head regions. the police chief mentions that unionized emergency personnel had already been deployed, so pulling them back would not be worth it. what type of decision-making bias does this represent? multiple choice overconfidence confirmation representativeness In this case study, one endocrine imbalance lead to a plethora of health issues in Eric. Based only on all the medical conditions Eric was diagnosed with, indicate how endocrine hormones control a variety of physiological processes? (Select all that apply)A) Direct the rate and timing of growth and developmentB) Exert emergency control during physical and mental stressC) Regulate metabolism and energy productionD)Oversee reproductive mechanismsE)Balance the composition and volume of body fluids Which of the contexts below represents exponential growth?A town's population shrinks at a rate of 8.1% every year.A taxi charges a flat fee of $3.00 for pick-up, then an additional fee of $2.75 per mile.A town's population grows at a rate of 4% every year.A radioactive compound decays at a rate of 5% per hour. Which is not a major component of plasma membranes? The photo shows a street scene in berlin after world war ii. a photo showing tanks driving down a city street. soldiers stand next to a barrier and civilians look at the tanks. the scene is best described as friendly and open. tense and aggressive. calm and peaceful. timid and indecisive. Consider the following concepts: square (plane figures with four equal sides and four equal angles), acid (solutions that taste sour), direct object (parts of speech that receive the action of the verb), and democracy (government by people, usually by elected representatives, or a state so governed). Based on our understanding of concepts and the way students learn them, which one would be most difficult for middle school students to learn?A) Democracy B) AcidC) Square D) Direct object true or false: in general, the quantity of loanable funds demanded drops as interest rates fall. true false question. true false discuss the goals and outcomes of reconstruction plans. in what ways were reconstruction goals unfinished, especially in the south? Student A has a mass of 95 kg and student B has a mass of 82 kg. If their centers of mass are0.6 meters apart, what will be the gravitational force each student exerts on the other?Round your answer to the nearest whole number. How does the conflict begin in your short story or novel? Describe its beginnings and add textual evidence with a page number from your text. The story is Scouts Honor by Avi Individual Retirement AccountA qualified retirement plan that provides most individuals with a deferred federal income tax benefit Given f(x)=5-3x, if f(x)=-19, find x. What does the concept of resource heterogeneity imply? to avoid a near midair collision (nmac) with a manned airplane, you estimate that your small ua climbed to an altitude greater than 400 feet agl. to whom must you submit a written report of the deviation?