What mass of K₂CO₃, in grams, is present in 0.273 L of a 0.998 M solution?

Answers

Answer 1

Answer: Mass of K2CO3 is 37.7g

Explanation: You first need to find the moles of K2CO3 by using the molarity formula.

Molarity = moles/Liters

When you do 0.998 = moles/0.273, you will get 0.272454 moles of K2CO3.

The second step is to use the moles of K2CO3 you found and convert it to grams. As shown in the image. Make sure your final answer has the correct number of significant figures. In the question both of the numbers given have 3 sig figs therefore your final answer also needs to have 3 sig figs.

What Mass Of KCO, In Grams, Is Present In 0.273 L Of A 0.998 M Solution?

Related Questions

How many liters of 2.07 M sulfuric acid are needed to make 57 milliliters of a 0.58 M solution of sulfuric acid?
**Round to FOUR places after the decimal.

Answers

We need 0.0161 liters of the 2.07 M sulfuric acid solution to make 57 milliliters of a 0.58 M solution of sulfuric acid.

To solve this problem

We need to use the formula:

C1V1 = C2V2

Where

C1 is the concentration of the initial solutionV1 is the volume of the initial solutionC2 is the concentration of the final solutionV2 is the volume of the final solution

We want to find the volume of the 2.07 M sulfuric acid solution needed to make 57 milliliters of a 0.58 M solution. Let's plug in the values we know:

2.07 M * V1 = 0.58 M * 57 mL

Simplifying the equation, we get:

V1 = (0.58 M * 57 mL) / 2.07 M

V1 = 16.0874 mL

To convert the volume to liters, we divide by 1000:

V1 = 16.0874 mL / 1000 mL/L

V1 = 0.0161 L

Therefore, we need 0.0161 liters of the 2.07 M sulfuric acid solution to make 57 milliliters of a 0.58 M solution of sulfuric acid.

Learn more about concentration here : brainly.com/question/28564792

#SPJ1

a solution is 0.0300m in both cro42- and so42-. slowly, pb(no3)2 is added to this solution. what is the concentration of cro42- that remains in solution when pbso4 first begins to precipitate? ksp of pbcro4

Answers

The concentration of  [tex](CrO_4)^{2-[/tex]that remains in solution when [tex]PbSO_4[/tex] first begins to precipitate is zero.

When [tex]PbSO_4[/tex] is added to the solution containing 0.0300 M of both  [tex](CrO_4)^{2-[/tex]and [tex](SO_4)^{2-[/tex], a precipitation reaction occurs where [tex]PbCrO_4[/tex] (lead chromate) and PbSO4 (lead sulfate) are formed.

The Ksp (solubility product constant) of [tex]PbCrO_4[/tex] is 1.8 x 10^-14 at 25°C. As more [tex]Pb(NO_3)^2[/tex]is added, the concentration of Pb2+ increases until it reaches a point where the Ksp of[tex]PbCrO_4[/tex] is exceeded and precipitation occurs.

At this point, all of the [tex](CrO_4)^{2-[/tex]  ions have reacted with [tex]Pb^{2+[/tex] to form [tex]PbCrO_4[/tex], and the concentration of [tex](CrO_4)^{2-[/tex] in solution is zero. The precipitation of [tex]PbCrO_4[/tex] will continue until all of the [tex]Pb^{2+[/tex] ions have reacted with [tex](CrO_4)^{2-[/tex]  ions, at which point [tex]PbSO_4[/tex] will begin to precipitate.

To learn more about : concentration

https://brainly.com/question/28564792

#SPJ11

if each orange sphere represents 0.010 mol of sulfate ion, how many moles of acid and of base reacted?

Answers

The number of moles of acid and base that react depends on the stoichiometry of the chemical reaction and the amounts of reactants used

Without additional information about the chemical reaction or system being referred to, we cannot determine the number of moles of acid and base that reacted.

If we assume that the orange spheres represent sulfate ions in a specific reaction, then we would need to know the stoichiometry of the reaction to determine the number of moles of acid and base that reacted.

For example, if the reaction involved sulfuric acid ([tex]H_2SO_4[/tex]) and sodium hydroxide (NaOH) and the orange spheres represent sulfate ions ([tex](SO_4)^{2-[/tex]), then the balanced chemical equation would be:

[tex]H_2SO_4 + 2NaOH - > Na_2SO_4 + 2H_2O[/tex]

In this case, we would need to know the amount of sodium hydroxide used to determine the number of moles of acid and base that reacted. If we know the number of orange spheres representing sulfate ions and the amount of sodium hydroxide used, we can determine the moles of acid and base that reacted.

For such more questions on Stoichiometry:

https://brainly.com/question/30417834

#SPJ11

a 35.0-ml sample of 0.20 m lioh is titrated with 0.25 m hcl. what is the ph of the solution after 23.0 ml of hcl have been added to the base? group of answer choices 1.26 12.74 12.33 13.03 1.67

Answers

The pH of the solution after 23.0 mL of 0.25 M HCl have been added to the 35.0 mL of 0.20 M LiOH is 12.74.


1. Calculate the initial moles of LiOH and HCl:
  LiOH: 35.0 mL * 0.20 mol/L = 7.00 mmol
  HCl: 23.0 mL * 0.25 mol/L = 5.75 mmol

2. Determine the limiting reactant and find the moles of unreacted LiOH:
  Since HCl is the limiting reactant, subtract its moles from LiOH moles:
  7.00 mmol - 5.75 mmol = 1.25 mmol of unreacted LiOH

3. Calculate the new concentration of LiOH in the solution:
  Total volume: 35.0 mL + 23.0 mL = 58.0 mL
  New concentration: 1.25 mmol / 58.0 mL = 0.02155 mol/L

4. Calculate the pOH of the solution:
  pOH = -log10(0.02155) = 1.66

5. Find the pH of the solution:
  pH = 14 - pOH = 14 - 1.66 = 12.74

To know more about pH click on below link:

https://brainly.com/question/491373#

#SPJ11

Precautions List precautions and explain why they were taken:
when adding water to the rock salt.
during the filtration stage.
during (i) evaporation to dryness and (ii) crystallisation.​

Answers

Precautions when adding water to rock salt: Add water slowly and carefully to avoid splashing ; Precautions during filtration stage: Use filter paper that fits the funnel properly ; Precautions during (i) evaporation to dryness and (ii) crystallization: Avoid overheating solution during evaporation and stirring the solution.

What is meant by evaporation?

Physical process by which a liquid substance is transformed into  gaseous state is called evaporation.

Precautions and their explanations:

Precautions when adding water to rock salt:

Add water slowly and carefully to avoid splashing or spilling.

Use a stirring rod to dissolve salt crystals completely.

Explanation: Rock salt can be quite reactive with water, and adding too much water too quickly can cause the solution to boil or splatter. Using a stirring rod helps to dissolve salt crystals completely without creating too much agitation.

Precautions during filtration stage:

Use a filter paper that fits the funnel properly and fold it properly.

Avoid touching filter paper with your fingers.

Explanation: The filter paper needs to fit the funnel properly to ensure that all of the liquid is filtered properly.

Precautions during (i) evaporation to dryness and (ii) crystallization:

Avoid overheating solution during evaporation and stirring the solution.

Use a clean glass rod to encourage crystallization and avoid scratching the walls of the container.

Explanation: Overheating the solution can cause the salt to decompose or change its chemical properties. Stirring the solution can also lead to the formation of smaller crystals.

To know more about evaporation, refer

https://brainly.com/question/9339710

#SPJ1

If 1 g of acetanilide (molecular mass is 135. 17 g/mol) is used, how much (in mol) of nitronium ion do you need?

Answers

0.0074 mol of nitronium ion is needed to react with 1 g of acetanilide

To determine the amount of nitronium ion needed for the reaction with 1 g of acetanilide, we will first calculate the moles of acetanilide and then apply stoichiometry.

Given that the molecular mass of acetanilide is 135.17 g/mol, we can calculate the moles of acetanilide:

moles = mass / molecular mass
moles = 1 g / 135.17 g/mol ≈ 0.0074 mol

Now, we need to determine the stoichiometry of the reaction between acetanilide and nitronium ion. Assuming the reaction is a 1:1 ratio (i.e., one mole of acetanilide reacts with one mole of nitronium ion), the amount of nitronium ion needed would be the same as the moles of acetanilide.

Thus, approximately 0.0074 mol of nitronium ion is needed to react with 1 g of acetanilide. Remember to consider the reaction's stoichiometry when applying this calculation to other scenarios or chemical reactions.

Know more about stoichiometry here:

https://brainly.com/question/14420683

#SPJ11  

What type of change occurs at the molecular level?

Answers

When two or more molecules interact, chemical changes take place at the molecular level.

What transpires during a chemical change at the molecular level?

The molecules in the reactants interact during a chemical reaction to create new compounds. No new material is created during a physical change, such as a state shift or dissolution. You may also assert that no atoms are generated or destroyed during a chemical reaction, so explain this.

How do molecular shifts in phase happen?

The intermolecular interactions between the water molecules are weakening at the molecular level. The water molecules have access to enough energy from the heat to repel these forces. Intermolecular forces are either increased or decreased after every phase shift.

To know more about molecules interact visit:-

https://brainly.com/question/13770836

#SPJ1

which category of amino acid contains r groups that are hydrophobic? which category of amino acid contains r groups that are hydrophobic? polar acidic basic non-polar basic and acidic

Answers

The amino acid that contains the R groups that are hydrophobic are the non - polar.

The Amino acids are the building blocks of the molecules of the  proteins. These contains the one hydrogen atom and the one amine group, the one carboxylic acid group and the one side chain that is the R group will be attached to the central carbon atom.

The side chains of the non polar amino acids includes the long carbon chains or the carbon rings, which makes them bulky. These are the hydrophobic, that means they repel the water. Therefore the non-polar amino acids are the hydrophobic.

To learn more about amino acid here

https://brainly.com/question/12788134

#SPJ4

rade 11 Text Books Exercise 5.4 Answer the following questions: 1. 5.0 mole of ammonia were introduced into a 5.0 L reaction chamber in which it is partially decomposed at high temperatures. CHEMISTRY GRADE 11 267 2NH₂(g) 3H₂(g) + N₂(g) At equilibrium at a particular temperature, 80.0% of the ammonia had reacted. Calculate K for the reaction.​

Answers

At the given temperature, the equilibrium constant K for the reaction is 0.5625 mol/L.

How to determine equilibrium constant?

The balanced chemical equation for the reaction is:

2NH₃(g) ⇌ 3H₂(g) + N₂(g)

The equilibrium expression for the reaction is:

K = [H₂]³[N₂] / [NH₃]²

Given that 5.0 moles of NH₃ were introduced into a 5.0 L reaction chamber, the initial concentration of NH₃ is:

[NH₃]₀ = 5.0 mol / 5.0 L = 1.0 mol/L

At equilibrium, 80.0% of the NH₃ had reacted, which means that 20.0% of NH₃ remains. Therefore, the equilibrium concentration of NH₃ is:

[NH₃] = 0.20 x 1.0 mol/L = 0.2 mol/L

The equilibrium concentrations of H₂ and N₂ can be calculated from the balanced equation:

[H₂] = (3/2) x [NH₃] = 0.3 mol/L

[N₂] = [NH₃] / 2 = 0.1 mol/L

Substituting these values into the equilibrium expression gives:

K = [H₂]³[N₂] / [NH₃]²

K = (0.3 mol/L)³ x (0.1 mol/L) / (0.2 mol/L)²

K = 0.5625 mol/L

Therefore, the equilibrium constant K for the reaction at the given temperature is 0.5625 mol/L.

Find out more on equilibrium constant here: https://brainly.com/question/19340344

#SPJ1

which of the following is true about the absorption and metabolism of alcohol? alcohol is metabolized by most tissue and organs in the body. the majority of alcohol is absorbed in the stomach. men and women do not metabolize alcohol at significantly different rates. acetaldehyde produced during alcohol metabolism is highly toxic.

Answers

The statement "acetaldehyde produced during alcohol metabolism is highly toxic" is true about absorption and metabolism of alcohol. Option 4 is correct.

Acetaldehyde is a byproduct of alcohol metabolism, and it is a toxic substance that can cause various symptoms such as facial flushing, nausea, and headache. Acetaldehyde is rapidly converted to acetate by the enzyme aldehyde dehydrogenase, which is then metabolized further to carbon dioxide and water.

However, if alcohol is consumed at a high rate, the liver may not be able to metabolize all of the acetaldehyde, leading to a buildup of this toxic substance in the body. This can result in more severe symptoms such as vomiting, rapid heartbeat, and difficulty breathing. Therefore, it is important to consume alcohol in moderation and allow enough time for the liver to metabolize the alcohol and its byproducts. Hence Option 4 is correct.

To learn more about absorption and metabolism of alcohol, here

https://brainly.com/question/14310421

#SPJ4

when a 2.5 liter vessel is filled with an unknown gas at stp, it weighs 2.75 g more than when it is evacuated. determine the molar mass of the unknown gas

Answers

The molar mass of the unknown gas is 27.0 g/mol.

According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. At STP, the pressure is 1 atm, the volume is 2.5 L, and the temperature is 273.15 K.

To find the number of moles of gas present, we can rearrange the ideal gas law equation to solve for n:

n = PV/RT

Substituting the values at STP, we get:

n = (1 atm) x (2.5 L) / [(0.08206 L atm/mol K) x (273.15 K)]

n = 0.1018 moles

The difference in weight between the gas-filled vessel and the evacuated vessel is 2.75 g, which is the weight of 0.1018 moles of the unknown gas.

So the molar mass of the gas can be calculated as:

molar mass = mass / moles

molar mass = 2.75 g / 0.1018 mole

molar mass = 27.0 g/mol

Therefore, the molar mass of the unknown gas is 27.0 g/mol.

Learn more about , the molar mass

https://brainly.com/question/22997914

#SPJ4

The molar mass of the unknown gas is 27.0 g/mol.

According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. At STP, the pressure is 1 atm, the volume is 2.5 L, and the temperature is 273.15 K.

To find the number of moles of gas present, we can rearrange the ideal gas law equation to solve for n:

n = PV/RT

Substituting the values at STP, we get:

n = (1 atm) x (2.5 L) / [(0.08206 L atm/mol K) x (273.15 K)]

n = 0.1018 moles

The difference in weight between the gas-filled vessel and the evacuated vessel is 2.75 g, which is the weight of 0.1018 moles of the unknown gas.

So the molar mass of the gas can be calculated as:

molar mass = mass / moles

molar mass = 2.75 g / 0.1018 mole

molar mass = 27.0 g/mol

Therefore, the molar mass of the unknown gas is 27.0 g/mol.

Learn more about , the molar mass

brainly.com/question/22997914

which method would you use to perform these reactions, grignard carboxylation or nitrile hydrolysis?

Answers

Choose the method based on your starting material: Grignard carboxylation for alkyl halide and Nitrile hydrolysis for nitriles

If the desired reactions involve the conversion of a nitrile functional group to a carboxylic acid, then the method that should be used is nitrile hydrolysis. Grignard carboxylation is a different chemical process that involves the addition of a Grignard reagent to a carbonyl group to form a carboxylic acid. Therefore, nitrile hydrolysis would be the appropriate method for the conversion of a nitrile to a carboxylic acid.
Hi! To determine the appropriate method for your reactions, let's briefly discuss each one:

1. Grignard carboxylation: This reaction involves the use of a Grignard reagent (an organomagnesium compound, typically R-MgX) reacting with carbon dioxide (CO2) to produce a carboxylic acid. It's a useful method for preparing carboxylic acids from alkyl halides.

2. Nitrile hydrolysis: This reaction involves the conversion of a nitrile (RC≡N) to a carboxylic acid (RCOOH) by reacting with water in the presence of an acid or a base as a catalyst. This method is suitable for preparing carboxylic acids from nitriles.

If your starting material is a nitrile, the appropriate method to perform the reaction would be nitrile hydrolysis. If your starting material is an alkyl halide, you would use the Grignard carboxylation method.

In summary, choose the method based on your starting material:
- Grignard carboxylation for alkyl halides
- Nitrile hydrolysis for nitriles

Learn more about Grignard carboxylation here:

https://brainly.com/question/9322175

#SPJ11

The process chosen is determined on the starting material and the intended product. Grignard carboxylation is a better procedure if the starting material is an alkyl or aryl halide and the target product is a carboxylic acid. If the starting material is a nitrile and the desired product is a carboxylic acid, nitrile hydrolysis is the procedure to use.

Grignard carboxylation is a useful method for the synthesis of carboxylic acids from alkyl and aryl halides. In this reaction, a Grignard reagent (an organomagnesium compound) is first prepared by reacting an alkyl or aryl halide with magnesium metal.

The resulting Grignard reagent is then reacted with carbon dioxide to form a carboxylate intermediate, which is subsequently hydrolyzed with an acid to produce the carboxylic acid.

Nitrile hydrolysis, on the other hand, is a process that involves the conversion of a nitrile functional group (-CN) to a carboxylic acid functional group (-COOH).

In this reaction, the nitrile is typically reacted with an acid or base in the presence of water to produce an amide intermediate, which is then further hydrolyzed to form the carboxylic acid.

For more question on Grignard carboxylation click on

https://brainly.com/question/9322175

#SPJ11

the alkane c7h16 exhibits structural isomerism. in fact, 9 structural isomers have this same formula (but different bond arrangements). one such isomeric structure is:

Answers

Systematic name of this structure is 3-ethylpentane.

Chemical compounds known as isomers have identical chemical formulae but have different properties and atom arrangements inside the molecule. The term "isomer" refers to a substance that exhibits isomerism.

Structural isomers are substances with the same molecular formula but distinct atomic configurations. The way the atoms are attached in this instance is quite different, as seen by the different types of chains that are formed (straight versus branched), the placements of the atoms (such as middle versus end of the parent chain), and the presence of functional groups (e.g., aldehydes versus ketones).

For instance, although sharing the same molecular formula (C3H6O), propanal and propanone have very distinct chemical structures. They are structural isomers as a result.

Isomers of Heptane are:

Heptane (n-heptane)2-Methylhexane (iso-heptane)3-Methylhexane2,2-Dimethylpentane (neo-heptane)2,3-Dimethylpentane2,4-Dimethylpentane3,3-Dimethylpentane3-Ethylpentane2,2,3-Trimethylbutane

To learn more about isomers, refer:

brainly.com/question/12796779

#SPJ4

The complete question is: The alkane C7H16 exhibits structural isomerism. In fact, 9 structural isomers have this same formula (but different bond arrangements). One such isomeric structure is: What is the correct systematic name for this structure?

6. from the lab on solutions, what is the criterion for determining whether or not a solution is a conductor of electricity?

Answers

In the lab on solutions, the criterion for determining whether or not a solution is a conductor of electricity is the presence of free-moving ions within the solution. When a substance dissolves in water and releases ions, it allows the flow of electric current, making it a conductor of electricity.

The criterion for determining whether or not a solution is a conductor of electricity is whether or not it contains ions that are able to move freely and carry an electric charge. A solution that contains ions is considered a conductor of electricity, while a solution that does not contain ions is considered a non-conductor or insulator of electricity.

Learn more about conductors of electricity at https://brainly.com/question/3447552

#SPJ11

The criterion for determining whether or not a solution is a conductor of electricity is whether or not it contains ions that can carry an electric charge.

If the solution contains ions, it can act as a conductor of electricity. If it does not contain ions, it will not conduct electricity.

Use the following criterion:

A solution is considered a conductor of electricity if it contains ions that are free to move. These ions enable the flow of electrical current through the solution. Typically, this occurs when a solution has dissolved salts, acids, or bases, as they dissociate into ions when dissolved in a solvent like water. To test the conductivity of a solution, you can use a simple conductivity meter or a circuit with a light bulb, and observe if the light bulb lights up or if the meter shows any electrical current flow. If it does, the solution is a conductor of electricity.

Learn more about conductor here:

https://brainly.com/question/15320131

#SPJ11

What is the mass of ether(0. 71) which can be put into a beaker holding 130ml

Answers

The mass of ether that can be put into a 130 mL beaker is approximately 92.3 grams.

How to find the mass of the ether

To calculate the mass of ether that can be put into a 130 mL beaker, we need to know the density of ether.

The density of ether varies depending on the specific type of ether, but assuming you are referring to diethyl ether, the density is approximately 0.71 g/mL.

Using the density and the volume of the beaker, we can calculate the maximum mass of ether that can be put into the beaker as follows:

Mass of ether = Density x Volume

Mass of ether = 0.71 g/mL x 130 mL

Mass of ether = 92.3 grams

Therefore, the maximum mass of diethyl ether that can be put into a 130 mL beaker is approximately 92.3 grams.

Learn more about density at

https://brainly.com/question/26364788

#SPJ1

How many moles of h2 can be produced from x grams of mg in magnesium-aluminum alloy? the molar mass of mg is 24. 31 g/mol?

Answers

The number of moles of H₂ that can be produced from x grams of Mg is (x / 24.31)

The balanced chemical equation for the reaction between Mg and HCl is,

Mg + 2HCl → MgCl₂ + H₂

This equation shows that 1 mole of Mg reacts with 2 moles of HCl to produce 1 mole of H₂. Therefore, the number of moles of H₂ that can be produced from x grams of Mg can be calculated as follows:

Calculate the number of moles of Mg in x grams:

Number of moles of Mg = mass of Mg / molar mass of Mg

Number of moles of Mg = x / 24.31

Use the mole ratio between Mg and H₂ to calculate the number of moles of H₂ produced:

Number of moles of H₂ = Number of moles of Mg × (1 mole of H₂ / 1 mole of Mg)

Number of moles of H₂ = (x / 24.31) × (1/1)

To know more about moles, here

brainly.com/question/26416088

#SPJ4

the gain or loss of electrons from an atom results in the formation of a (an)

Answers

The formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Atoms are composed of protons, neutrons, and electrons. The number of protons in an atom determines its atomic number and the element it represents. The electrons in an atom occupy different energy levels or shells, and these electrons participate in chemical reactions. The outermost shell of electrons, called the valence shell, is particularly important in chemical reactions because it determines the chemical properties of the atom.

When an atom gains or loses electrons, it becomes charged and is called an ion. The process of gaining or losing electrons is called ionization. When an atom loses one or more electrons, it becomes a positively charged ion called a cation. Cations have a smaller number of electrons than protons and have a net positive charge. For example, when the element sodium (Na) loses one electron, it becomes a sodium ion (Na+).

On the other hand, when an atom gains one or more electrons, it becomes a negatively charged ion called an anion. Anions have a larger number of electrons than protons and have a net negative charge. For example, when the element chlorine (Cl) gains one electron, it becomes a chloride ion (Cl-).

The formation of ions is a fundamental process in many chemical reactions. Ions can combine with each other to form ionic compounds, which are compounds composed of ions held together by electrostatic forces. For example, sodium ions (Na+) and chloride ions (Cl-) can combine to form sodium chloride (NaCl), which is common table salt.

Overall, the formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Visit to know more about Compound:-

brainly.com/question/26487468

#SPJ11

according to the ismp, which of the following is appropriate? select one: a. 100000 units b. 0.9% sodium chloride c. .9% sodium chloride d. 1.0 mg

Answers

According to the ISMP, the appropriate option is "0.9% sodium chloride" as it is written in the correct format with the percentage symbol and the correct concentration of sodium chloride.

The other options do not relate to the given terms or are not written in the appropriate format. The option "1.0 mg" is written in the correct format but does not relate to sodium chloride or the given scenario.
According to the ISMP (Institute for Safe Medication Practices), the appropriate option among the given choices is:

b. 0.9% sodium chloride

This option is appropriate because it clearly specifies the concentration of the sodium chloride solution, which is essential for accurate and safe medication administration. The other options (a, c, and d) lack context or contain ambiguous information, which could lead to medication errors or incorrect dosing.

Learn more about sodium chloride here:

https://brainly.com/question/29801408

#SPJ11

According to the ISMP, the appropriate term would be "0.9% sodium chloride".

How to represent concentrations according to ISMP?


This is because the ISMP recommends using a leading zero before a decimal point for concentrations and avoiding the use of ambiguous or error-prone abbreviations, such as option C (.9% sodium chloride) which lacks a leading zero. Option A (100000 units) and option D (1.0 mg) are not relevant to the context of the question. Therefore, the correct format is "0.9%" rather than ".9%" or "1.0 mg".

To know more about ISMP:

https://brainly.com/question/31018598

#SPJ11

what happened to the cell potential when you added aqueous ammonia to the half-cell containing 0.001 m cuso4? how does ammonia react with copper ions in aqueous solution? (think back to coordination complexes in exp

Answers

When aqueous ammonia is added to the half-cell containing 0.001 M CuSO4, the cell potential is likely to change. The reason for this is that ammonia can form coordination complexes with copper ions, which can affect the concentration of copper ions in the solution, and hence the concentration gradient that drives the redox reaction in the cell.

Ammonia can react with copper ions in aqueous solution to form a series of coordination complexes. The most common complex is Cu(NH3)42+, which is a tetraamminecopper(II) complex. The formation of this complex reduces the concentration of free Cu2+ ions in solution, which can shift the equilibrium of the redox reaction in the cell.

If the reduction half-reaction is Cu2+ + 2e- → Cu, the addition of ammonia can reduce the concentration of Cu2+ ions in the solution and shift the equilibrium to the left, decreasing the cell potential. On the other hand, if the oxidation half-reaction is Cu → Cu2+ + 2e-, the addition of ammonia can increase the concentration of Cu2+ ions and shift the equilibrium to the right, increasing the cell potential.

Learn more about aqueous ammonia

https://brainly.com/question/14672082

#SPJ4

calculate the volume of a stock solution, in liters and to the thousandths place, that has a concentration of 0.400 m koh and is diluted to 3.00 l of 0.130 m koh

Answers

The volume of the stock solution is approximately 0.975 liters, to the thousandths place.

To calculate the volume of the stock solution, you can use the dilution formula:

C₁V₁ = C₂V₂

where:
C₁ = concentration of the stock solution (0.400 M KOH)
V₁ = volume of the stock solution (unknown, in liters)
C₂ = concentration of the diluted solution (0.130 M KOH)
V₂ = volume of the diluted solution (3.00 L)

Rearrange the formula to solve for V1:

V1 = C₂V₂ / C₁

Now, plug in the given values:

V₁ = (0.130 M KOH * 3.00 L) / 0.400 M KOH

V₁ ≈ 0.975 L
know more about stock solution here

https://brainly.com/question/25256765#

#SPJ11

what is a possible set of quantum numbers m, l, ml, ms for the electron configuration of cobalt g

Answers

One possible set of quantum numbers for cobalt's electron configuration is:

m = -2, -1, 0, 1, 2, 1, 0

l = 2

ml = -2, -1, 0, 1, 2, 0, 1

ms = +1/2, -1/2, +1/2, -1/2, +1/2, -1/2, +1/2

The electron configuration of cobalt in its ground state is:

1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7

To determine the possible set of quantum numbers, we need to first fill the orbitals in the order of increasing energy and the Pauli exclusion principle, Hund's rule, and the aufbau principle.

The last electron enters the 3d subshell, which has five orbitals (dxy, dyz, dxz, dx2-y2, and dz2). The possible quantum numbers for the last electron in the 3d subshell are:

ml can have values from -2 to +2, corresponding to the five d orbitals.

l = 2 since d orbitals have an azimuthal quantum number of 2.

ms can have values of +1/2 or -1/2, corresponding to the electron's spin.

Since there are seven electrons in the 3d subshell, we can have up to seven sets of quantum numbers for the seven electrons. One possible set of quantum numbers for cobalt's electron configuration is:

m = -2, -1, 0, 1, 2, 1, 0

l = 2

ml = -2, -1, 0, 1, 2, 0, 1

ms = +1/2, -1/2, +1/2, -1/2, +1/2, -1/2, +1/2

Note that the last three electrons must have opposite spins (Pauli exclusion principle), and each orbital can have at most two electrons (Hund's rule).

Click the below link, to learn more about Electron Configuration of cobalt:

https://brainly.com/question/19863670

#SPJ11

a 16.60 ml portion of 0.0969 m ba(oh)2 was used to titrate 25.0 ml of a weak monoprotic acid solution to the stoichiometric point. what is the molarity of the acid?

Answers

The molarity of the weak monoprotic acid solution is 0.0644 mol/L.

To find the molarity of the acid, we need to use the balanced chemical equation and the stoichiometry of the reaction between the acid and the base. The equation for the reaction is:

HA(aq) + Ba(OH)2(aq) → BaA2(aq) + 2H2O(l)

where HA is the weak monoprotic acid, Ba(OH)2 is the strong base, BaA2 is the barium salt of the acid, and H2O is water.

At the stoichiometric point, the moles of Ba(OH)2 used will be equal to the moles of acid present in the solution. Using the given volume and molarity of Ba(OH)2, we can calculate the moles of Ba(OH)2 used:

moles of Ba(OH)2 = volume × molarity = 16.60 ml × 0.0969 mol/L = 0.00161 mol

Since the acid is a monoprotic acid, the moles of acid present in the solution will be equal to the moles of Ba(OH)2 used. Therefore:

moles of HA = 0.00161 mol

Using the volume of the acid solution (25.0 ml), we can calculate the molarity of the acid:

molarity of HA = moles of HA / volume of HA solution in L

molarity of HA = 0.00161 mol / 0.0250 L

molarity of HA = 0.0644 mol/L

For such more questions on Molarity:

https://brainly.com/question/14469428

#SPJ11

A sample of oxygen (O2) gas occupies a volume of 251 mL at 735 torr of pressure. Calculate the volume the oxygen will occupy if the pressure changes to 825 torr.

Answers

The volume the oxygen will occupy if the pressure changes to 825 torr is 223.62 mL.

How to calculate volume?

The volume of a gas with a changing pressure can be calculated in accordance to Boyle's law as follows;

P₁V₁ = P₂V₂

Where;

P₁ and V₁ = initial pressure and volumeP₂ and V₂ = final pressure and volume

According to this question, a sample of oxygen gas occupies a volume of 251 mL at 735 torr of pressure. If the pressure changes to 825 torr, the new volume can be calculated as follows:

251 × 735 = V × 825

V = 184,485 ÷ 825

V = 223.62 mL

Learn more about volume at: https://brainly.com/question/24189159

#SPJ1

A vinegar solution of unknown concentration was prepared by diluting 10. 00 mL of vinegar to a total volume of 50. 00 mL with deionized water. A 25. 00-mL sample of the diluted vinegar solution required 20. 24 mL of 0. 1073 M NaOH to reach the equivalence point in the titration. Calculate the concentration of acetic acid, CH3COOH, (in M) in the original vinegar solution (i. E. , before dilution)

Answers

The concentration of acetic acid in the original vinegar solution is 0.0435M.

Balanced chemical equation for the reaction between acetic acid (CH₃COOH) and sodium hydroxide (NaOH) is:

CH₃COOH + NaOH → CH₃COONa + H₂O

The number of moles of NaOH used in the titration will be calculated as;

moles NaOH = Molarity × Volume (in L)

moles NaOH = 0.1073 M × 0.02024 L

moles NaOH = 0.002174872

Therefore, the concentration of CH₃COOH in the diluted vinegar solution is;

C₁V₁ = C₂V₂

C₁ × 10.00 mL = C₂ × 50.00 mL

C₁ = (C₂ × 50.00 mL) ÷ 10.00 mL

C₁ = 5 × C₂

where C₁ is the concentration of CH₃COOH in the diluted vinegar solution, and C₂ is the concentration of CH₃COOH in the original vinegar solution.

The number of moles of CH₃COOH in the diluted vinegar solution is;

moles CH₃COOH = C₁ × V₁ (in L)

moles CH₃COOH = (5 × C₂) × 0.01000 L

moles CH₃COOH = 0.05000 × C₂

The concentration of CH₃COOH in the original vinegar solution can be calculated;

moles CH₃COOH in original vinegar = moles CH₃COOH in diluted vinegar

0.05000 × C₂ = 0.002174872

C₂ = 0.002174872 ÷ 0.05000

C₂ = 0.043

To know more about concentration here

https://brainly.com/question/10725862

#SPJ4

phenacetin can be prepared from p-acetamidophenol, which has a molar mass of 151.16 g/mol, and bromoethane, which has a molar mass of 108.97 g/mol. the density of bromoethane is 1.47 g/ml. what is the yield in grams of phenacetin, which has a molar mass of 179.22 g/mol, possible when reacting 0.151 g of p-acetamidophenol with 0.12 ml of bromoethane?

Answers

The theoretical yield of phenacetin is 0.17922 g. However, the actual yield may be lower due to factors such as incomplete reaction, loss during purification, or experimental error.

To calculate the theoretical yield of phenacetin, we need to first determine the limiting reagent. The limiting reagent is the reactant that will be completely consumed in the reaction, thus limiting the amount of product that can be produced.

First, we need to convert the volume of bromoethane given in milliliters to grams, using its density:

0.12 ml x 1.47 g/ml = 0.1764 g bromoethane

Next, we can use the molar masses of p-acetamidophenol and bromoethane to determine the number of moles of each:

moles p-acetamidophenol = 0.151 g / 151.16 g/mol = 0.001 mol

moles bromoethane = 0.1764 g / 108.97 g/mol = 0.00162 mol

Since the reaction requires a 1:1 molar ratio of p-acetamidophenol to bromoethane, and the number of moles of p-acetamidophenol is smaller than the number of moles of bromoethane, p-acetamidophenol is the limiting reagent.

The theoretical yield of phenacetin can be calculated using the molar mass of phenacetin and the number of moles of p-acetamidophenol:

moles phenacetin = 0.001 mol p-acetamidophenol

mass phenacetin = 0.001 mol x 179.22 g/mol = 0.17922 g

For such more questions on Phenacetin:

https://brainly.com/question/29460577

#SPJ11

For a mechanical change in an isolated system, the mechanical
energy at the beginning equals the mechanical energy at the
end of the process, as long as friction is negligible.
O True
O False

Answers

For a mechanical change in an isolated system, the mechanical energy at the beginning equals the mechanical energy at the end of the process, as long as friction is negligible. This statement is true.

The combination of kinetic energy, meaning energy of motion, with potential energy, meaning energy retained by a system as a result of the arrangement of its components, is known as mechanical energy. A system with solely gravitational forces or one that is otherwise idealized.

For a mechanical change in an isolated system, the mechanical energy at the beginning equals the mechanical energy at the end of the process, as long as friction is negligible. This statement is true.

To know more about mechanical energy, here:

https://brainly.com/question/29509191

#SPJ1

consider the following polymer (pva) and potential-cross linking agent (boric acid). what type of intermolecular forces is likely to sustain cross-linking of polymeric chains in this system?

Answers

The cross-linking of PVA and boric acid is sustained by a combination of covalent and non-covalent interactions, including hydrogen bonding and van der Waals forces. These interactions lead to the formation of a stable, three-dimensional network structure that has a range of potential applications, including in the development of new materials with unique properties.


Polyvinyl alcohol (PVA) can form cross-linked networks when reacted with boric acid. The cross-linking is due to the formation of borate ester linkages between PVA chains and boric acid molecules. The formation of these linkages is facilitated by a combination of covalent and non-covalent interactions, including hydrogen bonding and van der Waals forces.

Hydrogen bonding is a particularly important intermolecular force that plays a key role in the formation and stability of the cross-linked PVA network. PVA contains hydroxyl (-OH) groups along its polymer chains that can form strong hydrogen bonds with the borate groups on boric acid molecules. This interaction leads to the formation of a three-dimensional network structure that is stabilized by the formation of multiple hydrogen bonds between adjacent PVA chains and boric acid molecules.

Van der Waals forces also contribute to the stability of the cross-linked network. These forces arise from the fluctuating dipoles in atoms and molecules and are responsible for the attraction between non-polar species. In the PVA-boric acid system, van der Waals forces between the polymer chains and boric acid molecules help to stabilize the cross-linked network.

For such more questions on Cross-linking of PVA:

https://brainly.com/question/13247684

#SPJ11

2 NO(g)+Cl2(g)⇌2 NOCl(g) Kc=2000
A mixture of NO(g) and Cl
2
(g) is placed in a previously evacuated container and allowed to reach equilibrium according to the chemical equation shown above When the system reaches equilibrium, the reactants and products have the concentrations listed in the following table:
Species Concentration (M)
NO(g) 0.050
C12(g) 0.050
NOCl(g) 0.50
Which of the following is true if the volume of the container is decreased by one-half?
A. Q = 100, and the reaction will proceed toward reactants.
B. Q = 100, and the reaction will proceed toward products.
C. Q = 1000, and the reaction will proceed toward reactants.
D. Q = 1000, and the reaction will proceed toward products.

Answers

Neither A, B, C nor D. The equilibrium position will not be affected by the change in volume.

To determine how the equilibrium of the reaction 2 NO(g) + Cl₂(g) ⇌ 2 NOCl(g) will shift if the volume of the container is decreased by one-half, we first need to calculate the reaction quotient Q.

The balanced chemical equation for the reaction is:

2 NO(g) + Cl₂(g) ⇌ 2 NOCl(g)

At equilibrium, the concentrations of the species are:

[NO] = 0.050 M

[Cl2] = 0.050 M

[NOCl] = 0.50 M

Using these values, we can calculate the value of the reaction quotient Q:

Q [tex]= [NOCl]^2 / ([NO]^2[Cl2])[/tex]= [tex](0.50)^2 / ((0.050)^2 x 0.050)[/tex] = 1000

Now we compare the value of Q to the equilibrium constant Kc:

Kc =[tex][NOCl]^2 / ([NO]^2[Cl2])[/tex] = 2000

Since Q < Kc, we can conclude that the reaction has not yet reached equilibrium and that the forward reaction will proceed to reach equilibrium.

When the volume of the container is decreased by one-half, the concentration of all species will increase due to the decrease in volume. According to Le Chatelier's principle, the reaction will shift in the direction that reduces the total number of moles of gas.

In this case, the reaction produces two moles of gas on the left-hand side and two moles of gas on the right-hand side, so the total number of moles of gas does not change. Therefore, the volume change will not have an effect on the equilibrium position.

Learn more about  equilibrium here:

https://brainly.com/question/30807709

v

#SPJ11

The correct answer is: C. Q = 1000, and the reaction will proceed toward reactants.

How to determine the reactions at equilibrium?



To determine which statement is true if the volume of the container is decreased by one-half, we need to calculate the reaction quotient (Q) for the new conditions.

When the volume is decreased by half, the concentrations of all species will double:

NO(g): 0.050 * 2 = 0.100 M
Cl2(g): 0.050 * 2 = 0.100 M
NOCl(g): 0.50 * 2 = 1.00 M

Now, calculate Q using the new concentrations:

Q = [NOCl]^2 / ([NO]^2 * [Cl2])
Q = (1.00)^2 / ((0.100)^2 * (0.100))
Q = 1 / 0.001
Q = 1000

So, Q = 1000. Now, compare Q to Kc:

Q > Kc, meaning the reaction will proceed toward the reactants to reach equilibrium.

To know more about Reaction Quotient:

https://brainly.com/question/24202150

#SPJ11

A buffer solution contains 0.10 mol of acetic acid and 0.14 mol of sodium acetate in 1.00 L. What is the pH of the buffer after the addition of 0.03 mol of KOH?

Answers

The pH of the buffer after the addition of 0.03 mol of KOH is 5.04.

To answer this question, we need to use the Henderson-Hasselbalch equation, which relates the pH of a buffer solution to the concentration of the acid and its conjugate base:

pH = pKa + log([A-]/[HA])

where pKa is the dissociation constant of the acid, [A-] is the concentration of the conjugate base (in this case, sodium acetate), and [HA] is the concentration of the acid (acetic acid).

First, we need to calculate the initial concentrations of acetic acid and sodium acetate:

[HA] = 0.10 mol/L
[A-] = 0.14 mol/L

Next, we need to calculate the new concentrations of acetic acid and sodium acetate after the addition of 0.03 mol of KOH. Since KOH is a strong base, it will react completely with the acetic acid to form acetate ion:

CH3COOH + KOH -> CH3COO- + H2O

The amount of acetic acid that reacts with KOH is:

0.03 mol KOH / 1 L = 0.03 M

Since acetic acid and KOH react in a 1:1 ratio, the concentration of acetic acid is now:

[HA] = 0.10 mol/L - 0.03 mol/L = 0.07 mol/L

The amount of acetate ion that is formed is also 0.03 mol/L, since acetic acid and acetate ion are in equilibrium:

CH3COOH <--> CH3COO- + H+

Since the buffer initially contained 0.14 mol/L of sodium acetate, the new concentration of acetate ion is:

[A-] = 0.14 mol/L + 0.03 mol/L = 0.17 mol/L

Now we can calculate the pH of the buffer using the Henderson-Hasselbalch equation:

pH = 4.76 + log(0.17/0.07) = 5.04

To learn more about Henderson-Hasselbalch equation click here

brainly.com/question/13423434

#SPJ11

one kg of butane (c4h10) is burned with 25 kg of air that is at 30c and 90kpa. assuming the combustion is complete, determine the percentage of theoretical air used?

Answers

The percentage of theoretical air used is approximately 190.3%.

To determine the percentage of theoretical air used in the combustion of 1 kg of butane (C4H10), we need to calculate the amount of air required for complete combustion and compare it to the actual amount of air used.

The balanced chemical equation for the combustion of butane is:

[tex]C_4H_{10} + 13/2 O_2 - > 4 CO_2 + 5 H_2O[/tex]

This means that for every mole of butane that is burned, 13/2 moles of oxygen are required. The molar mass of butane is 58.12 g/mol, so 1 kg of butane is equivalent to 17.20 moles.

Therefore, the amount of oxygen required for complete combustion of 1 kg of butane is:

(13/2) mol O_2/mol butane x 17.20 mol butane = 111.4 mol O_2

Next, we need to calculate the amount of air required for complete combustion. Air is approximately 21% oxygen and 79% nitrogen by volume. Therefore, the volume of air required for complete combustion is:

111.4 mol O_2 / (0.21 mol O2/mol air) = 530.5 mol air

Assuming ideal gas behavior, the volume of air at 30°C and 90 kPa can be calculated using the ideal gas law

PV = nRT

where P is the pressure (90 kPa), V is the volume, n is the number of moles of air, R is the gas constant, and T is the temperature in Kelvin (303 K).

V = nRT/P = (530.5 mol x 0.08206 L atm K^-1 mol^-1 x 303 K) / (90 kPa x 101.3 kPa/atm) = 12,425 L

Therefore, the percentage of theoretical air used in the combustion of 1 kg of butane is:

(actual air used / theoretical air required) x 100%

= (25,000 g air / 12,425 L) / (530.5 mol air / 1 kg butane) x 100%

= 190.3

So, the percentage of theoretical air used is approximately 190.3%. This value is greater than 100% because the actual amount of air used is more than the theoretical amount due to the excess nitrogen present in air.

To learn more about : theoretical

https://brainly.com/question/14714924

#SPJ11

Other Questions
the loanable funds market in an economy is in equilibrium. draw a correctly labeled graph of the loanable funds market, labeling the equilibrium real interest rate and the equilibrium quantity. show the impact of a decrease in the money supply for this economy in your graph from part (a). will the result be a shortage or surplus in the loanable funds market at the original equilibrium? will lenders of existing fixed-rate loans be better or worse off as a result of the change in the real interest rate? how will investment spending on facilities and equipment in this economy be impacted? explain. true or false the decimalformat class is part of the java api so it is automatically available to your programs. Algunos nmeros irracionales no tienen inverso aditivo which change will the nurse expect the healthcare provider to make when the serum drug concentration in the patient is 8 mcg/ml after the second dose of vancomycin Problem 21-1 (LG 21-2) Jane Doe earns $30,000 per year and has applied for an $80,000, 30-year mortgage at 8 percent interest, paid monthly. Property taxes on the house are expected to be $1,200 per y ear. if her bank requires a gross debt service ratio of no more than 30%, will Jane be able to obtain the mortgage? Use the graph to answer the question.Determine the direction and degree of rotation used to create the image. 90 clockwise rotation 90 counterclockwise rotation 270 counterclockwise rotation 180 clockwise rotation Which function has real zeros at x = 3 and x = 7?f(x) = x2 4x 21f(x) = x2 4x 21f(x) = x2 10x 21f(x) = x2 10x 21 What were two differences between Florence's Old Market and New Market? For a gaseous reaction, standard conditions are 298 K and a partial pressure of 1 atm for all species.For the reactionN2(g)+3H2(g)2NH3(g)the standard change in Gibbs free energy is =32.8 kJ/mol . What is G for this reaction at 298 K when the partial pressures are N2=0.350 atm , H2=0.300 atm , and NH3=0.750 atm ? abc bank offers to lend you $50,000 for one year at a quoted annual rate of 8.31% with each payment at the end of each month. def bank also offers to lend you the same amount at a quoted annual rate of 8.63%, with each payment at the end of each quarter. what is the difference in the effective annual rates charged by the two banks? group of answer choices 0.22% 0.24% 0.26% 0.30% 0.28% if the original diameter of the artery is d , what should be the new diameter to accomplish this for the same volume flow rate? Quilt squares are cut on the diagonal to form triangular quilt pieces. The hypotenuse of the resulting triangles is 20 inches long. What is the side length of each piece? 1. 1022. 2023. 1034. 203 a/an __________ are motivated by a desire to acquire something, for example food riots. (35) Chatbots are an example of what emerging technology in mobile retailing? A. push-based apps. B. one-click mobile payments. C. in-store beacons. D. artificial which of the following is NOT a factor that influences population distribution?a - languageb - government policyc - economyd - resources________ is a good indicator whether or not a country is developed or developinga - religionb - currencyc - literacy rated - language some economists argue that regional free trade agreements will provide global benefits only if _______________________________ means the holy spirit influenced human authors and editors so that god could design their writings. so-called adrenaline junkies enjoy dangerous sports, like base jumping and wingsuit flying. this can be explained by the _____ theory of motivation, which has some evidence from genetics in its favor. In 1870, the French writer Jules Verne carol fisher wants to sell the stock of hathaway international at the next available price after the prices reaches $50 per share. what type of transaction is carol making?