what us the area of the triangle if the perimeter is 16

What Us The Area Of The Triangle If The Perimeter Is 16

Answers

Answer 1

We are asked to find the area of the given triangle.

Recall that the area of a triangle is given by

[tex]A=\frac{1}{2}\cdot b\cdot h[/tex]

Where b is the base and h is the height of the triangle.

Let us find the base and height from the given figure.

As you can see,

base = 6

height = 4

[tex]\begin{gathered} A=\frac{1}{2}\cdot b\cdot h \\ A=\frac{1}{2}\cdot6\cdot4 \\ A=\frac{1}{2}\cdot24 \\ A=12 \end{gathered}[/tex]

Therefore, the area of the triangle is 12 square units.

What Us The Area Of The Triangle If The Perimeter Is 16

Related Questions

Simplify the given expression into the form a+bi, where a and b are rational numbers?

Answers

Given:

2(-36- 3i )+ (5+2i)(12-2i)

Open the parenthesis

2(-36- 3i) + 5( 12 - 2i) + 2i ( 12 - 2i)

- 72 - 6i + 60 - 10i + 24i + 4 ( Note: i² = -1)

Re-arrange

-72+60 + 4 - 6i - 10i + 24i

= -8 + 8i

The diagram has a hollow cylindrical tube, of internal radius 4cm and external radius 6cm. How can I determine the area of an external curved surface, how can I get the area of the inner curved surface and how can I get the total surface area of the tube?

Answers

Given:

internal radius = 4cm

External radius = 6cm

Height = 20cm

Curved surface area of the external surface

The formula for the curved surface is:

[tex]\begin{gathered} =2\pi rh \\ \text{Where r is a radius} \\ \text{and h is the height of the cylinder} \end{gathered}[/tex]

Hence, the curved surface area:

[tex]\begin{gathered} C\mathrm{}S\mathrm{}A\text{ of external surface = 2}\times\pi\times6\times20 \\ =753.982cm^2 \end{gathered}[/tex]

Curved surface area of the inner surface:

[tex]\begin{gathered} C\mathrm{}S\mathrm{}A\text{ of inner surface = 2 }\times\pi\times4\times\text{ 20} \\ =502.654cm^2 \end{gathered}[/tex]

The total surface area of the tube :

The total surface area can be found using the formula:

[tex]\text{Total Surface area = }2\pi(R^2-r^2)\text{ + }2\pi h(R\text{ + r)}[/tex]

Where R is the radius of the external surface and r is the radius of the inner surface

Hence:

[tex]\begin{gathered} \text{Total Surface area = 2}\times\pi\times(6^2-4^2)\text{ + 2}\times\pi\times20\times(6\text{ + 4)} \\ =\text{ }1382.3cm^2 \end{gathered}[/tex]

which question is best modeled with a division expression?
how many 3/8's are in 48
what is 3/8 of 48
what is the total of 3/8 and 48
how much more than 3/8 is 48

Answers

The question that can be best modeled as a division expression is how many 3/8's are in 48.

What is division?

Division is the process of dividing a number into equal parts using another number. The sign used to denote division is ÷. Division is one of the basic mathematical operations. The other mathematical operations are addition, multiplication and division.

In order to determine the 3/8's in 48, divide 48 by 3/8.

In order to determine 3/8 of 48, multiply 48 by 3/8.

In order to determine the total of 3/8 and 48, add the numbers together.

In order to determine how much more than 3/8 is 48, subtract 3/8 from 48.

To learn more about division, please check: https://brainly.com/question/13281206

#SPJ1

3.615 x 4 regrouping

Answers

3.615x4 is 14.46 that’s my answer

Yea I can see if it works if it’s okay

Answers

SOLUTION

We want to find the derivative of

[tex]y=sin(1.2t-3.7)[/tex]

(a) So, using chain rule, the inside function is u,

we have the inside:

[tex]u=1.2t-3.7[/tex]

outside becomes

[tex]y=sin(u)[/tex]

(b) The derivative of

inside, we have

[tex]\frac{du}{dt}=1.2[/tex]

derivative of the outside, we have

[tex]\frac{dy}{du}=cos(u)[/tex]

chain rule we have

[tex]\begin{gathered} \frac{dy}{dt}=\frac{dy}{du}\times\frac{du}{dt} \\ =cos(u)\times1.2 \\ =cos(1.2t-3.7)\times1.2 \end{gathered}[/tex]

Hence the answer is

[tex]\frac{dy}{dt}=1.2cos(1.2t-3.7)[/tex]

if you could please answer quickly my brainly app keeps crashing

Answers

In this case, we'll have to carry out several steps to find the solution.

Step 01:

Data:

diagram:

circle and chords

Step 02:

congruent chords:

Congruent chords are equidistant from the center of a circle.

x = 7 + 7

x = 14

The answer is:

x = 14

In a music class of 20 students, there are 12 who play the Guitar (G), 7 who play the Piano (P) and 4 who do not play any of these instruments.1)Represent this situation using a Venn diagram2)What is the probability no randomly selected student plays guitar and piano3)What is the probability that no randomly selected student plays either of these two instruments?4) How likely is it that no randomly selected student plays the piano

Answers

GIVEN:

Total number of students: 20

Number that plays the Guitar: 12

Number that plays the Piano: 7

Number that does not play any of the instruments: 4

Note that included in the number that plays either the guitar and the piano is the number that plays both instruments. Let's call this number x.

Number that play both instruments: To calculate this number, we have to get the number that plays each instrument alone and find the sum equated to the total number of students.

Number that plays the Guitar only: 12 - x

Number that plays the Piano only: 7 - x

Therefore, the total number of students will be:

[tex]\begin{gathered} 12-x+7-x+x+4=20 \\ 23-x=20 \\ \therefore \\ x=23-20 \\ x=3 \end{gathered}[/tex]

Hence, there are 3 students that play both instruments.

Therefore, 9 students play the guitar only and 4 students play the piano only.

VENN DIAGRAM:

QUESTION 2:

The formula to calculate the probability of an event E is given to be:

[tex]P(E)=\frac{n(E)}{n(U)}[/tex]

where

[tex]\begin{gathered} P(E)=\text{ Probability of event E happening} \\ n(E)=\text{ Number of times event E happened} \\ n(U)=\text{ Number of times all possible events occured} \end{gathered}[/tex]

The number of students that play the guitar and piano is 3. This means that the number that does not play the guitar and piano is

[tex]\Rightarrow20-3=17\text{ students}[/tex]

Therefore, the probability is given to be:

[tex]P=\frac{17}{20}[/tex]

QUESTION 3:

This question requires us to find the probability of students that do not play any of the two instruments. This number is 4.

Therefore, the probability is given to be:

[tex]P=\frac{4}{20}=\frac{1}{5}[/tex]

QUESTION 4:

The number of students that play the piano is 7. Hence, the number that doesn't play the piano will be:

[tex]\Rightarrow20-7=13[/tex]

Therefore, the probability is:

[tex]P=\frac{13}{20}[/tex]

I need help with my homework pls be fast it’s 11pm for me and I couldn’t do this earlier because of family business

Answers

We have a linear function and we have to find the meaning of the slope.

The function is:

[tex]C=50h+35[/tex]

In this function the slope is m=50, as it is the coefficient for h, the number of hours.

The slope usually represents the variation of the result variable (in this case, the cost in dollars) and the independent variable (in this case, h, the number of hours).

Then, we can think of the slope in this model as the marginal hourly rate he charges. This means that any additional hour of work will cost $50 more.

Then, from the options given, the correct one is: the charge per hour [Option D].

Hello good night everyone I need help with number 6 I’m so lost I’m abt to cry

Answers

We have to add and substract this complex numbers.

In this type of problems, where we have to add or substract complex numbers, we need to have the real and imaginary terms separated.

In this case, we already have all the terms as real or imaginary.

Then, we can group the real terms on one side and the imaginary terms on the other side and simplify them. We can do it like this:

[tex]\begin{gathered} (7-2i)-(-1-4i)+3 \\ 7-2i+1+4i+3 \\ (7+1+3)+(-2i+4i) \\ 11+2i \end{gathered}[/tex]

Answer: 11 + 2i

For each value of v, determine whether it is a solution to -96= -8(v +7)

Answers

Solution for v =5
Everything else is no

a can of juice is 5.5 inches high and its base has a diameter or 6 inches what is the volume of the can? round to the nearest hundredth

Answers

According to the problem, the can of juice has the form of a cylinder, so we have to use the following formula

[tex]V=\pi(r)^2h[/tex]

Where the radius is half the diameter, r = 3 in, h = 5.5 in, and pi = 3.14. Replacing these values, we have

[tex]V=3.14\cdot(3in)^2\cdot5.5in=155.43in^3[/tex]Hence, the volume of the can is 155.43 cubic inches.

A bag of marbles contains 6 blue marbles, 2 yellow marbles, 4 red marbles, and 1 green marble. What is the
probability of reaching into the bag and selecting a yellow marble?
73.
13
16
26

Answers

Answer:

2/13

Step-by-step explanation:

Out of a total 13 marbles , 2 are yellow     2 out of 13 = 2/13

Answer:

2/13

Step-by-step explanation:

6 blue marbles, 2 yellow marbles, 4 red marbles, and 1 green marble = 13 marbles

P( yellow) = number yellow / total

                 = 2/13

The perimeter of a rectangle is 36 cm and the length is twice the width. What are the dimensions of this rectangle? What’s the length and width?

Answers

answer: 6*12

Perimeter = 2x + 2x + x + x = 6x. 6x = 36, so x = 6. The rectangle is 6*12, so area = 72 sq cm.

Amy's cookie shop had expenses of the following: flour $45.00sugar $92.00butter $53 she earns $12 per dozen. what is her profit,if she sells 9 dozen?what is the total dollar amount for expenses?what is the total dollar amount for earnings or revenue?

Answers

If she earns $12 per dozen, the following will be the profit if she sells 9 dozen:

[tex]9\cdot12=108[/tex]

Profit would be $108.

*The dollar amount of expenses would be:

[tex]e=\frac{190\cdot108}{12}\Rightarrow e=1710[/tex]

The expenses would be $1710 if she were to sell 9 dozen.

*The total amount of revenue would be $108 for the 9 dozen sold.

Car Survey In a survey of 3,100 people who owned a certain type of car, 1,550 said they would buy that type of car again.
What percent of the people surveyed were satisfied with the car?
% of the people surveyed were satisfied with the car.
(Type a whole number.)

Answers

The percentage of people satisfied with car is 50.


What is percentage?
A number or ratio which can be expressed as a fraction of 100 is referred to as a percentage in mathematics. If we need to calculate a percentage of a number, we should divide it by its entirety and then multiply it by 100. The percentage therefore refers to a part per hundred. Per 100 is what the word percent means. The letter "%" stands for it. There is no dimension to percentages. As a result, it is known as a dimensionless number. When we say a number is 50% of something, we mean that it is 50% of everything. As in 0.6%, 0.25%, etc., percentages can also be expressed as decimals or fractions. The grades earned in any subject have been calculated in terms of percentages in academics. Ram, for instance, scored 78% on his exam.

To find the percentage We divide 1550 by 3100 and then multiply by 100

We get

[tex]\frac{1550}{3100}*100\\=50[/tex]

Hence the percentage of people satisfied with the car is 50%

To learn more about percentage please refer

https://brainly.com/question/24304697

#SPJ13

If f(x) = -3 and g(x) = 4x + 2x - 4, find (* + )(x).O A. 4x2 + x +1OB. 432 + x ->C.X2-12OD. 4x2+2x-7

Answers

You have the following functions:

[tex]\begin{gathered} f(x)=\frac{x}{4}-3 \\ g(x)=4x^2+2x-4 \end{gathered}[/tex]

In order to find (g + f)(x) add like terms of each function. Remind that like terms are those terms with the same variable and same exponent.

Then, you have:

[tex]\begin{gathered} (f+g)(x)=4x^2+2x+\frac{x}{4}-3-4 \\ (f+g)(x)=4x^2+\frac{9}{4}x-7 \end{gathered}[/tex]

Hence, the answer is

4x^2 + 9/4 x - 7

Evaluation the expression -19-9-(11)

Answers

[tex]-19-9-(-11)=-19-9+11=-19+2=-17[/tex]

Then the final answer will be -17.

Write a quadratic equationwith vertex (3,-6) and otherpoint (-7,14). Solve for a!

Answers

We have to find the parameter a of a quadratic equation knowing the following

• The vertex is (3,-6).

,

• A random point is (-7,14).

Based on the given information, we have the following

[tex]\begin{gathered} h=3 \\ k=-6 \\ x=-7 \\ y=14 \end{gathered}[/tex]

The vertex form of a quadratic equation is

[tex]y=a(x-h)^2+k[/tex]

Replacing all the givens, we have

[tex]14=a(-7-3)^2-6[/tex]

Now, we solve for a

[tex]\begin{gathered} 14=a(-10)^2-6 \\ 14=a(100)-6 \\ 14+6=100a \\ 100a=20 \\ a=\frac{20}{100}=\frac{1}{5} \end{gathered}[/tex]Therefore, a is equal to 1/5.

What is the quotient of 2.592 x 10^7 and 7.2 x 10^4 expressed in scientific notation?

Answers

Answer:

Explanation:

Given the expression:

[tex]\frac{2.592\times10^7}{7.2\times10^4}[/tex]

We can rewrite it as:

[tex]\frac{2592\times10^{-3}\times10^7}{72\times10^{-1}\times10^4}[/tex]

Combine all powers of 10:

[tex]\begin{gathered} =\frac{2592\times10^{-3+7}}{72\times10^{-1+4}^{}} \\ =\frac{2592\times10^4}{72\times10^3} \\ =\frac{2592}{72^{}}\times\frac{10^4}{10^3} \\ =36\times10 \\ =3.6\times10^1\times10^1 \\ =3.6\times10^{1+1} \\ =3.6\times10^2 \end{gathered}[/tex]

The quotient expressed in scientific notation is 3.6 x 10².

Check off all of the equations that would give infinitely many solution

Answers

All of the equations that would give infinitely many solutions are given as follows:

[tex]\begin{gathered} 1)\text{ 3x + 12 = 3x + 12} \\ 2)\text{ 2\lparen3x - 4\rparen = 6x - 8} \end{gathered}[/tex]

Thus the correct answer is option 3 and option 5.

Please help with this

Answers

Answer:

228

Step-by-step explanation:

Top 6x 6 = 36

4 sides 4(6x8)

4(48)

192

192 + 36 = 228

Answer:264

Step-by-step explanation: the surface area is every side added together and you calculate each side by multiplying the width height and length

a test has 20 Questions worth 100 points the test consists of true or false questions worth 3 points each and multiple choice questions worth 11 points each how many multiple choice questions are on the test

Answers

A test is to be conducted with certain types of questions and each type of question weighs certain number of points.

A test would consist of two types of questions. These two types will be assigned variables that will denote the number of questions respectively as follows:

[tex]\begin{gathered} \text{True and False: x} \\ \text{MCQS : y} \end{gathered}[/tex]

We are given that the entire test will consits of 20 questions. We can express the total number of questions on the test in terms of number of True and False questions ( x ) and number of MCQS ( y ) as follows:

[tex]\begin{gathered} \text{Total number of Questions = True and False + MCQS} \\ \textcolor{#FF7968}{20}\text{\textcolor{#FF7968}{ = x + y }}\textcolor{#FF7968}{\ldots Eq1} \end{gathered}[/tex]

Further information is given to us in the questions regarding the number of points aloted to each type. The total weightage of each type of question on the test can be expressed as a product of ( number of each type * point weight of each type ).

The point weights for each type of questions are:

[tex]\begin{gathered} \text{True and False ( x ) : 3 points each} \\ \text{MCQs ( y ) : 11 points each} \end{gathered}[/tex]

The total weights of each types of questions are:

[tex]\begin{gathered} \text{True and False ( points ) = 3}\cdot x \\ \text{MCQS ( points ) = 11}\cdot x \end{gathered}[/tex]

We are given that the entire test is worth ( 100 points ). We express the total number of points of the test in terms of total weight of each type of question as follows:

[tex]\begin{gathered} test\text{ points = True and False ( points ) + MCQS ( points )} \\ \textcolor{#FF7968}{100}\text{\textcolor{#FF7968}{ = 3}}\textcolor{#FF7968}{\cdot x}\text{\textcolor{#FF7968}{ + 11}}\textcolor{#FF7968}{\cdot y\ldots}\text{\textcolor{#FF7968}{ Eq2}} \end{gathered}[/tex]

We have two equations that express the total number of questions ( Eq 1 ) and total points ( Eq2 ) of the test in terms of number of True and False questions ( x ) and number of MCQs on the test ( y ).

[tex]\begin{gathered} \textcolor{#FF7968}{x}\text{\textcolor{#FF7968}{ + y = 20 }}\textcolor{#FF7968}{\ldots Eq1} \\ \textcolor{#FF7968}{3x}\text{\textcolor{#FF7968}{ + 11y = 100 }}\textcolor{#FF7968}{\ldots}\text{\textcolor{#FF7968}{ Eq2}} \end{gathered}[/tex]

We will solve the above two equations simultaneously using Elimination method.

Step1: Multiply Eq1 with ( -3 )

[tex]\begin{gathered} -3\cdot\text{ ( x + y ) = -3}\cdot20 \\ \textcolor{#FF7968}{-3x}\text{\textcolor{#FF7968}{ - 3y = -60 }}\textcolor{#FF7968}{\ldots}\text{\textcolor{#FF7968}{ Eq3}} \end{gathered}[/tex]

Step2: Add Eq 3 into Eq 2

[tex]\begin{gathered} -3x\text{ - 3y = -60 } \\ 3x\text{ + 11y = 100} \\ =========== \\ 8y\text{ = 40 } \\ \textcolor{#FF7968}{y}\text{\textcolor{#FF7968}{ = 5}} \\ =========== \end{gathered}[/tex]

Step3: Back susbtitue the value of ( y ) into ( Eq1 )

[tex]\begin{gathered} x\text{ + ( 5 ) = 20 } \\ \textcolor{#FF7968}{x}\text{\textcolor{#FF7968}{ = 15 }} \end{gathered}[/tex]

Therefore, the number of each type of questions that must be put on the test should be.

[tex]\begin{gathered} \text{\textcolor{#FF7968}{True and False ( x ) = 15}} \\ \text{\textcolor{#FF7968}{MCQs ( y ) = 5}} \end{gathered}[/tex]

Consider the following data. The expected value is -2.1.Find the variance, standard deviation, P(X ≥ -1), and P(X ≤ -3).

Answers

Given

The data,

To find:

The variance, standard deviation, P(X ≥ -1), and P(X ≤ -3).

Explanation:

It is given that,

Then,

The variance is,

[tex]\begin{gathered} Var[x]=(-4-(-2.1))^2\times0.2+(-3-(-2.1))^2\times0.3+(-2-(-2.1))^2 \\ \times0.1+(-1-(-2.1))^2\times0.2+(0-(-2.1))^2\times0.2 \\ =(-4+2.1)^2\times0.2+(-3+2.1)^2\times0.3+(-2+2.1)^2\times0.1+(-1+2.1)^2 \\ \times0.2+(2.1)^2\times0.2 \\ =3.61\times0.2+0.81\times0.3+0.01\times0.1+1.21\times0.2+4.41\times0.2 \\ =0.722+0.243+0.001+0.242+0.882 \\ =2.09 \end{gathered}[/tex]

And the standard deviation is,

[tex]\begin{gathered} SD=\sqrt{Var[x]} \\ =\sqrt{2.09} \\ =1.45 \end{gathered}[/tex]

Also,

[tex]\begin{gathered} P\left(X≥-1\right)=P(X=-1)+P(X=0) \\ =0.2+0.2 \\ =0.4 \\ P\left(X≤-3\right)=P(-4)+P(-3) \\ =0.2+0.3 \\ =0.5 \end{gathered}[/tex]

Hence, the answers are,

Variance is 2.09

Standard deviation is 1.45

P(X ≥ -1) is 0.4

P(X ≤ -3) is 0.5.

Beginning in 1995,( 1995= 0 years) the Chicago Cubs decreased its ticket price by a constant amount each year until 2016 when they finally won the World Series. A ticket cost $77.50 in 2005, but only $49.50 in 2012. How much did a ticket cost in 2000?

Answers

The cost of the Chicago Cubs ticket in the year 2000 was $97.50.

What is defined as the constant rate of change?A rate of change is defined as the ratio of change in dependent values as well as outputs to change in independent variables or inputs. The change, also known as the function's slope, describes what numbers change between 2 points on the a coordinate plane.

For the given question.

The price of the Chicago Cubs ticket in year 2005 is $77.50.

The price of the ticket reduced in year 2012 as $49.50.

There is a constant amount of decrease in the price.

Thus, difference in years;

= 2012 - 2005

= 7 years.

Difference in amount;

= 49.50 - 77.50

= -28

Price decreased in one year = 28/ 7 = -4 per year.

For the price of the ticket in the years 2000.

= 2005 - 2000

= 5 years.

Price decreased in 5 years is;

= -4 x 5

= -20

The price is 2000 is 77.50 + 20 = 97.50

Thus, the cost of the Chicago Cubs ticket in the year 2000 was $97.50.

To know more about the constant rate of change, here

https://brainly.com/question/7326947

#SPJ10

in a hurry! have to finish the practice test in 30mins, so I can take the real one!(CHECKING AWNSERS, SO ONLY NEED AWNSERS TO I CAN COMPARE)

Answers

The expression can be simplified as,

[tex]\begin{gathered} \frac{3}{x+2}+\frac{2}{x-3}=\frac{3(x-3)+2(x+2)}{(x-3)(x+2)} \\ =\frac{3x-9+2x+4}{(x-3)(x+2)} \\ =\frac{5x-5}{(x-3)(x+2)} \end{gathered}[/tex]

Thus, option (D) is the correct option.

INT. ALGEBRA: You have a coupon for $20 off the purchase of a calculator. At the same time, the calculator is offered with a discount of 20%, and no further discounts apply. For what price on the calculator do you pay the same amount for each discount?

Thank you for your help, and please do show work! I will be looking to give the Brainliest answer to someone!

Answers

X=180.15x= 18x =120 so the answer is 120

Chen is opening a new account with a $1,200 deposit. She will be keeping money in the account, compounded monthly for no more than 3 years. the formula gives the value, V, of the account as a function of time, t. Which is a reasonable domain of this function?V(t)= 1,200(1 + 0.02)^t/12A) 0< or equal to t < or equal to 36B) 0C) 0 < or equal to t < or equal to 1,273.45D) 1,200 < or equal to t < or equal to 1,273.45

Answers

The Solution:

Given the function:

[tex]V(t)=1200(1+0.02)^{\frac{t}{12}}[/tex]

We are required to find a reasonable domain for the given function.

The domain of the function V(t) is the range of values for t.

The question says Chen is will continue to keep money in the account for not more than 3 years, but the interest will be compound monthly.

Recall:

1 year = 12 months

So,

3 years will be

[tex]12\times3=36\text{ months}[/tex]

This means that the range of values for t is:

[tex]0\leq t\leq36[/tex]

Therefore, the correct answer is [option A]

Painter charges $20 every hour that he paints let H represent the number of hours he paints & E represent his earnings select all statements that are trueA. The equation H equals 20 E shows the correct relationship between the earnings and hours worked B. With this hourly rate the painter must work more than 12 hours to earn 500C. With this hourly rate the painter earns 20h dollars for each hour worked.D. With this hourly rate if the painter works 10 hours he earns 20.E. Is the painter raises his hourly rate by two dollars the new equation is e=22h

Answers

Answer:

No.

Yes.

Yes.

No.

Yes...

HELP HELP! PLEASE, MY MOM WANT ME TO BE DONE!

Answers

Answer:

From least to greatest, we have:

2 to 3, 3:4, and 7/8

Explanation:

Given the following:

7/8, 2 to 3, and 3:4

The least is 2 to 3, followed by 3:4, then 7/8

A medical experiment on tumor growth gives the following data table.



x y
61 48
95 76
97 82
101 95
115 118


The least squares regression line was found. Using technology, it was determined that the total sum of squares (SST) was 2640.8 and the sum of squares of regression (SSR) was 2429.8. Calculate R2, rounded to three decimal places.

Provide your answer below:

Answers

The calculation of the coefficient of determination, or rounded to three decimal places is 0.080.

What is the coefficient of determination (R²)?

The coefficient of determination, R², is a statistical measurement that determines the proportion of variance in the dependent variable that the independent variable can explain.

In other words, shows how well the actual data is approximated by the regression line.

R-Squared (R²) is widely used to predict future outcomes and for hypothesis testing because it provides information about the goodness of fit of the statistical model.

x         y

61      48

95     76

97     82

101    95

115    118

The total sum of squares (SST) = 2640.8

The sum of squares of regression (SSR) = 2429.8

R² = 1 - SSR/SST

R² = 1 - 2429.8/2640.8

R² = 1 - 0.92

R² = 0.080

R² = 8%

Thus, with R² = 8%, we can conclude that the y values are only accountable for 8% of the variation in x.

Learn more about the coefficient of determination (R²) at https://brainly.com/question/17237825

#SPJ1

Other Questions
Name and briefly describe 3 major figures from Russian history and 3 major events.Describe in full sentences. Write in a whole paragraph. assuming the interest rate is 6 percent, which of the following has the greatest present value? a. $300 paid in two years b. $100 paid today plus $100 paid in one year plus $100 paid in two years c. $150 paid in one year plus $140 paid in two years d. $285 today On one day Freds Sports World sold 9 Buffalo Bills jerseys and 3 Miami Dolphin jerseys for a total of $899.40. The next day they sold 12 Bills jerseys and only 2 Dolphins jerseys for a total of $1139.30. How much is the Bills jersey and how much is the Dolphins jersey? ASAP PLEASE HELP *20 POINTS*1.If the parent function f(x) = |x| is transformed to h(x) = |x| - 3, what transformation occurs from f(x) to h(x)?A.Shift left 3 unitsB.Shift right 3 unitsC.Shift up 3 unitsD.Shift down 3 units2. If the parent function f(x) = |x| is transformed to h(x) = |x| - 3, how is the vertex affected? Select all that apply.A.The vertex will not change.B.The vertex will shift right 3 units.C.The vertex will shift left 3 units.D.The vertex will shift up 3 units.E.The vertex will shift down 3 units.F.The vertex will not move up or down.G.The vertex will not move right or left.3. If the parent function f(x) = |x| is transformed to h(x) = |x| - 3, how is the range affected?A.The range will not change.B.The range will be all real numbers.C.The range will change from y 0 to y -3.D.The range will change from x 0 to x -3. giving that -3+20=5x-4 write 3 more equations that you know are true what is the purchase price (present value) of a car if you make equal annual payments of $6,000 over 4 years compounded annually at 9%, rounded to the nearest $1? the answer to this question Multiple computers configured to be able to communicate and share information with each other form a ____________. Media analysis can be best described as:A. forming an opinion about the values carried by a particular mediamessage.B. connecting the different parts of a media text with the producer'sgoals.C. avoiding emotional responses to media texts.D. understanding how to rate production values from low to high. rhino airlines uses two measures of activity, flights and passengers, in the cost formulas in its budgets and performance reports. the cost formula for plane operating costs is $36,330 per month plus $2,076 per flight plus $1 per passenger. the company expected its activity in november to be 93 flights and 243 passengers, but the actual activity was 92 flights and 248 passengers. the actual cost for plane operating costs in november was $226,310. the activity variance for plane operating costs in november would be closest to: The difference between two numbers is 28. The sum of the two numbers is 56. Let x be the larger number and y be the smaller number. Which system of equations represents this proble O y - x = 28 I + y = 56 O x=y= 28 x + y = 56 Oy - 2 = 56 x + y = 28 - y = 56 a window-mounted air conditioner removes 3.5 kj from the inside of a home using 1.75 kj work input. how much energy is released outside and what is its coefficient of performance? To which category does galaxy #2 belong? Why does it belong in this category? Given right triangle ABC, with altitude CD intersecting AB at point D. If AD = 5 and DB = 8, find the length of CD, in simplest radical form. In your video include whether you would use SAAS or HYLLS to solve (and WHY), the proportion you would set up, how you would solve for the missing side, and how you know your answer is in simplest radical form. Which function matches the graph?-5-23/7A. f(x) =(x + 3)(x - 5)(x + 7)(x - 2)B. f(x) = (x - 3)(x + 5)(x-7)(x + 2)C. f(x) = (x - 3)(x + 5)(x - 7)(x + 2)D. f(x) = (x - 3)(x + 5)(x-7)(x + 2)E. f(x) = (x + 3)(x - 5)(x-7)(x + 2) help, Asap!!!!!!!!!!!!!!!!!! A car that originally valued at $32,000 loses 18% of its value every 3 years. What will be the value of the car after 12 years? f(x) = 3x + 9x 16Find f(-8) how many term has G.p whose 2nd term is 1/2 and common ratio and the last term are 1/4and1/128respestively Find the area of thisirregular figure.9 ft8 ft15 ft26 ft