The distance between (2 + i) and (4 +3i) would be,
⇒ d = 2√2
We have to given that;
To find distance between (2 + i) and (4 +3i).
Now, We can formulate;
Two points are (2, 1) and (4, 3).
We know that;
The distance between two points (x₁ , y₁) and (x₂, y₂) is,
⇒ d = √ (x₂ - x₁)² + (y₂ - y₁)²
Hence, The distance between (2 + i) and (4 +3i) would be,
⇒ d = √(4 - 2)² + (3 - 1)²
⇒ d = √4 + 4
⇒ d = √8
⇒ d = 2√2
Thus, The distance between (2 + i) and (4 +3i) would be,
⇒ d = 2√2
Learn more about the coordinate visit:
https://brainly.com/question/24394007
#SPJ1
The total cost of ribbon is the product of the total number of yards and the cost per yard. The cost per yard is $.40. Write an equation for the total cost of the following:
2 yards blue ribbon
8 yards white ribbon
11 yards pink ribbon
7 yards peach ribbon
A manufacturer knows that their items have a normally distributed lifespan, with a mean of 5.4 years, and standard deviation of 1.5 years.
If you randomly purchase one item, what is the probability it will last longer than 4 years?
The probability that the item will last longer than 4 years is approximately 0.8236 or 82.36%.
To find the probability that the item will last longer than 4 years, we'll use the z-score formula and then look up the corresponding probability in a standard normal distribution table (also known as a z-table).
1. Calculate the z-score: z = (X - μ) / σ where X is the value of interest (4 years), μ is the mean (5.4 years), and σ is the standard deviation (1.5 years). z = (4 - 5.4) / 1.5 z = -1.4 / 1.5 z ≈ -0.93
2. Look up the probability in a z-table: A z-table gives the probability that a value from a standard normal distribution is less than the z-score.
Since we want to find the probability that the item lasts longer than 4 years (greater than the z-score), we need to find the complement of the probability from the z-table. P(Z < -0.93) ≈ 0.1764
3. Calculate the complement: P(Z > -0.93) = 1 - P(Z < -0.93) P(Z > -0.93) = 1 - 0.1764 P(Z > -0.93) ≈ 0.8236
Your answer: The probability that the item will last longer than 4 years is approximately 0.8236 or 82.36%.
Learn more about probability,
https://brainly.com/question/25870256
#SPJ11
Helppp pleasee will give brainliest
The equation, as the problem requests will be 16 - 0.2h.
How to explain the equationThe mean is an appropriate measure of central tendency to use for this data, since there are no extreme outliers apparent upon inspection of the data.
Hence, the mean is
(0.5+0.6+0.5+0.7+0.7+0.5+0.5+0.6)/8 = 0.575
The average burning candle from this factory, then, loses 0.575 ÷ 3 ounces per hour (the table showed the weight lost by each of the eight candles after three hours of burning, so we need to divide that by 3 to get an hourly rate).
In conclusion, the equation, as the problem requests will be 16 - 0.2h.
Learn more about equations on
https://brainly.com/question/2972832
#SPJ1
Use the shell method to find the volume of the solid generated by revolving the region bounded by the line y = 2x+3 and the parabola y=x^2 about the following lines. a. The line x=3. b. The line x=−1 c. The x-axis d. The line y=9
To use the shell method to find the volume of the solid generated by revolving the region bounded by the line y = 2x+3 and the parabola y=x^2, we need to first determine the limits of integration. Since we are revolving the region about different lines, the limits of integration will change based on the line of revolution.
a. To revolve about the line x=3, we need to find the distance between the line and the parabola. Setting the two equations equal to each other, we get x^2 = 2x+3, which gives us x= -1 and x=3. Therefore, our limits of integration will be from -1 to 3.
Next, we need to set up the integral using the shell method. We will be integrating with respect to x, so the height of our shell will be the difference between the two equations at a given x-value. This gives us the equation h(x) = (2x+3) - x^2.
The radius of our shell will be the distance from the line of revolution (x=3) to the point on the curve at a given x-value. Therefore, our radius will be r(x) = 3-x.
The volume of the solid can be found by integrating 2πrh(x) dx from -1 to 3. This gives us:
V = 2π ∫(-1 to 3) [(3-x)(2x+3-x^2)] dx
b. To revolve about the line x=-1, we again need to find the distance between the line and the parabola. Setting the two equations equal to each other, we get x^2 = 2x+3, which gives us x= -1 and x=3. Therefore, our limits of integration will be from -1 to 3.
Using the same formulas for h(x) and r(x), the volume of the solid can be found by integrating 2πrh(x) dx from -1 to 3. This gives us:
V = 2π ∫(-1 to 3) [(1+x)(2x+3-x^2)] dx
c. To revolve about the x-axis, we need to solve for the x-intercepts of the two equations. This gives us x=0 and x=2. Therefore, our limits of integration will be from 0 to 2.
Using the same formulas for h(x) and r(x), the volume of the solid can be found by integrating 2πrh(x) dx from 0 to 2. This gives us:
V = 2π ∫(0 to 2) [x(2x+3-x^2)] dx
d. To revolve about the line y=9, we need to shift both equations up by 9 units. This gives us the equations y = x^2 + 9 and y = 2x + 12. Setting the two equations equal to each other, we get x^2 - 2x - 3 = 0, which gives us x= -1 and x=3. Therefore, our limits of integration will be from -1 to 3.
Using the same formulas for h(x) and r(x), the volume of the solid can be found by integrating 2πrh(x) dx from -1 to 3. This gives us:
V = 2π ∫(-1 to 3) [(9-x^2)(2x+12-9)] dx
Overall, the shell method allows us to find the volume of the solid generated by revolving a region about a line. By setting up the integral with the correct limits of integration and formulas for h(x) and r(x), we can find the volume of the solid for each line of revolution.
a. To find the volume of the solid generated by revolving the region bounded by y = 2x + 3 and y = x^2 about the line x = 3, use the shell method with the formula: V = 2π ∫[R(x)h(x)dx], where R(x) is the radius and h(x) is the height of the cylindrical shell.
Here, R(x) = 3 - x and h(x) = (2x + 3) - x^2. Integrate from the intersection points of the two functions, which are x = 1 and x = 3:
V = 2π ∫[R(x)h(x)dx] = 2π ∫[(3-x)((2x+3)-x^2)dx] from 1 to 3
Evaluate the integral to get the volume.
b. For revolving around the line x = -1, R(x) = x + 1 and h(x) remains the same:
V = 2π ∫[(x+1)((2x+3)-x^2)dx] from 1 to 3
Evaluate the integral to get the volume.
c. For revolving around the x-axis, change the method to disks. The radius is now y, and the height is the difference in x values:
V = π ∫[(3-x)^2 dy] from y = 1 to y = 9
Evaluate the integral to get the volume.
d. For revolving around the line y = 9, R(y) = 9 - y and h(y) is the difference in x values:
V = 2π ∫[R(y)h(y)dy] = 2π ∫[(9-y)(3-x)dy] from y = 1 to y = 9
Evaluate the integral to get the volume.
In each case, evaluate the integrals to find the volume of the solid generated by revolving the region around the specified line.
Learn more about volume at : brainly.com/question/1578538
#SPJ11
Evaluate the function requested. Write your answer as a fraction in lowest terms. Triangle A B C. Angle C is 90 degrees. Hypotenuse A B is 35, side C B is 28, side C A is 21. Find sin A. a. Sine A = four-thirds c. sine A = three-fifths b. sine A = four-fifths d. sine A = five-fourths Please select the best answer from the choices provided A B C D
Answer:
dbd
Step-by-step explanation:
Mia is fostering 10 kittens. She weighed each kitten to the nearest 14 of a pound. The results are recorded in this frequency table.Create a line plot to display the data.To create a line plot, hover over each number on the number line. Then click and drag up to plot the data.
Answer: Im pretty sure that its d
Step-by-step explanation:
How many terms are in the expression 3x+y−23−5
Answer:
There are 4 terms
Step-by-step explanation:
“Terms are single numbers, variables, or the product of a number and variables. Examples of terms: 9 a 9a 9a. y y y.”
True Fit operates a chain of 10 retail department stores. Each department store makes its own purchasing decisions.Haulton ,assistant to the president of True Fit ,is interested in better understanding the drivers of purchasing department costs. For many years,True Fithas allocated purchasing department costs to products on the basis of the dollar value of merchandise purchased. A $100 item is allocated 10 times as many overhead costs associated with the purchasing department as a $10 item. Haulton recently attended a seminar titled "Cost Drivers in the Retail Industry." In a presentation at the seminar,Sunshine Fabrics, a leading competitor that has implemented activity-based costing, reported number of purchase orders and number of suppliers to be the two most important cost drivers of purchasing department costs. The dollar value of merchandise purchased in each purchase order was not found to be a significant cost driver.Haultoninterviewed several members of the purchasing department at theTrue Fitstore in Miami. They believed that Sunshine Fabrics' conclusions also applied to their purchasing department.Haultoncollects the following data for the most recent year for True Fit 's
Total overhead costs for the purchasing department: $500,000
Total dollar value of merchandise purchased: $10,000,000
Total number of purchase orders: 5,000
Total number of suppliers: 1,000
Using the traditional method of allocating costs based on the dollar value of merchandise purchased, the cost per dollar of merchandise purchased would be:
$500,000 / $10,000,000 = $0.05 per dollar of merchandise purchased
To calculate the cost per purchase order and per supplier using activity-based costing, we first need to calculate the cost driver rates for each activity. The cost driver rate is the total cost of an activity divided by the total number of units of the cost driver for that activity. In this case, the cost driver for the purchase order activity is the number of purchase orders, and the cost driver for the supplier activity is the number of suppliers.
The cost driver rate for the purchase order activity is:
$500,000 / 5,000 = $100 per purchase order
The cost driver rate for the supplier activity is:
$500,000 / 1,000 = $500 per supplier
Using these cost driver rates, we can allocate the purchasing department costs to products based on the number of purchase orders and suppliers for each product. For example, if a product had 10 purchase orders and was purchased from 3 different suppliers, its total purchasing department costs would be:
(10 purchase orders x $100 per purchase order) + (3 suppliers x $500 per supplier) = $1,500
By using activity-based costing, True Fit can allocate its purchasing department costs more accurately and can identify the cost drivers that are most important for its purchasing department. This information can help True Fit make better purchasing decisions and manage its costs more effectively.
To know more about merchandise purchased refer here:
https://brainly.com/question/15418674
#SPJ11
5. Show that an element e of a matroid M is a coloop of M if and only if e is in every basis of M. Now refer to Exercise 6 of Section 1.4 for a number of alternative characterizations of coloops.
To show that an element e of a matroid M is a coloop of M if and only if e is in every basis of M, we need to prove both directions of the statement.
First, let's assume that e is a coloop of M. By definition, a coloop is an element that is not in any basis of M, but adding it to any circuit of M creates a new basis. Since e is not in any basis, it must be in every circuit of M. Now, suppose that e is not in some basis B of M. Then we can remove an element f from B and add e to obtain a new basis B', which contradicts the definition of a coloop. Therefore, e must be in every basis of M.
Conversely, let's assume that e is in every basis of M. We want to show that e is a coloop of M, i.e., that adding e to any circuit of M creates a new basis. Let C be any circuit of M, and suppose that adding e to C does not create a new basis. Then there must exist some element f in C such that removing f and adding e still gives a basis. But this means that e is not necessary for the independence of C, contradicting the assumption that e is in every basis of M. Therefore, e must be a coloop of M.
As for Exercise 6 of Section 1.4, it provides alternative characterizations of coloops in a matroid M, including:
- An element e is a coloop of M if and only if it is the unique maximal element of M that is not in any basis.
- An element e is a coloop of M if and only if there exists a basis B of M such that B\{e} is not a basis.
- An element e is a coloop of M if and only if M\e has a unique basis.
- An element e is a coloop of M if and only if for any basis B of M, there exists an element f in B such that B\{f} U {e} is also a basis.
To learn more about basis of a matrix visit : https://brainly.com/question/31060837
#SPJ11
evaluate m-p-n for m= -12,n=23 and p=4.5
The value of expression is, - 39.5
Given that;
All the Values are,
m = - 12
n = 23
p = 4.5
Now, We can formulate;
⇒ m - p - n
Substitute all the values, we get;
⇒ - 12 - 4.5 - 23
⇒ - 39.5
Thus, The value of expression is, - 39.5
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ1
In a popular online role playing game, players can create detailed designs for their character's "costumes," or appearance. Michael sets up a website where players can buy and sell these costumes online. Information about the number of people who visited the website and the number of costumes purchased in a single day is listed below.
215 visitors purchased no costume.
12 visitors purchased exactly one costume.
3 visitors purchased more than one costume.
If next week, he is expecting 1800 visitors, about how many would you expect to buy more than one costume? Round your answer to the nearest whole number.
Michael should expect that the quantity of visitors that will buy more than one costume is 23.
How do we calculate the quantity of visitors that will buy costume?In order to calculate the quantity of expected visitors who will buy more than one costume amongst a projected 1800 attendees next week, we can utilize the proportion between the individuals who purchased multiple costumes and the overall number of people who bought at least a single costume.
3 / 230 = 0.013
We can determine the potential number of multiple costume buyers among the anticipated 1800 visitors by utilizing a straightforward calculation: multiplying the quantity of one-costume purchasers by the ratio of those who obtained more than one costume.
0.013 x 1800 = 23.4
= 23 visitors
Find more exercises on calculating quantity demand;
https://brainly.com/question/24181967
#SPJ1
Six hundred consumers were asked whether they would like to purchase a domestic or a foreign automoblie. Their reponses are given. domestic 240 foreign 360. Develop a 95% confidence interval for the proportion of all consumers who prefer to purcahse domestic automobiles
we can say with 95% confidence that the proportion of all consumers who prefer to purchase domestic automobiles is between 0.354 and 0.446.
To develop a 95% confidence interval for the proportion of all consumers who prefer to purchase domestic automobiles, we can use the formula:
CI = p ± z*(√(p*(1-p)/n))
where:
p = proportion of consumers who prefer domestic automobiles = 240/600 = 0.4
n = sample size = 600
z = z-score for 95% confidence level = 1.96
Plugging in the values, we get:
CI = 0.4 ± 1.96*(√(0.4*(1-0.4)/600))
= 0.4 ± 0.046
= (0.354, 0.446)
Therefore, we can say with 95% confidence that the proportion of all consumers who prefer to purchase domestic automobiles is between 0.354 and 0.446.
learn more about confidence interval
https://brainly.com/question/24131141
#SPJ11
The volume of this cylinder is 37. 68 cubic feet. What is the height?
Use ≈ 3. 14 and round your answer to the nearest hundredth
The radius of the cylinder is 2 feet.
How to find the radius of a cylinder?The volume of this cylinder is 37. 68 cubic feet. Therefore, the radius of the cylinder can be found as follows:
Therefore,
volume of a cylinder = πr²h
where
r = radiush = heightTherefore,
volume of a cylinder = 3.14 × r² × 3
37.68 = 9.42r²
divide both sides by 9.42
r² = 37.68 / 9.42
r² = 4
square root both sides of the equation
r = √4
radius = 2 feet
learn more on cylinder here: brainly.com/question/22907480
#SPJ1
Use the following information to answer the next question. A riverboat cruise currently costs $36/person, and averages 300 people a day. A recent marketing survey indicated that each $2 increase in the price is expected to lead to 10 fewer customers. The table below summarizes the expected revenue for several possible cruise prices. Cruise Price ($) Revenue ($) 36 10 800 38 11 020 40 11 200 42 11 340 44 11 440 46 11 500 The data above can be modelled by a quadratic regression function of the form y = ax? + bx + c where x is the cruise price, in dollars, and y is the potential revenue, in dollars. 13. a) What is the quadratic regression function that models this data? [1 mark] b) What is the ticket price that would maximize revenue, expressed to the nearest dollar? Explain your answer by stating the vertex, 12 Marks) c) What is the maximum revenue, expressed to the nearest dollar? Explain. [2 marks]
a) The quadratic regression function that models this data is [tex]y = -20x^2 + 920x - 5200[/tex].
b) To find the ticket price that would maximize revenue, we need to find the x-value of the vertex of the quadratic function. The x-value of the vertex is given by [tex]\frac{-b}{2a}[/tex], where a = -20 and b = 920. So, the ticket price that would maximize revenue is [tex]x=\frac{-b}{2a} = \frac{-920}{2(-20)} = $23[/tex]
The vertex of the quadratic function is (23, 11,630), which means that if the ticket price is set at $23, the revenue will be maximized.
c) The maximum revenue is given by the y-value of the vertex of the quadratic function, which is 11,630 dollars. This means that if the ticket price is set at $23, the maximum revenue that can be generated is $11,630.
To know more about "Quadratic equations" refer here:
https://brainly.com/question/30855843#
#SPJ11
Petra and Jonah has this information home to the train station. 12 minutes train to Poole 47 minutes jonah says it will take less that 60 minutes in total to go from home to Poole.
Petra and Jonah are traveling separately and not meeting up in Poole. In this case, the 47 minutes that Jonah mentions could refer to the total travel time from his home to his destination (which might not be Poole).
It's possible that Petra and Jonah are not starting their journey from the same location, or that they are using different modes of transportation to get to the train station. Here are a few possible scenarios that could explain how Petra and Jonah could get from home to Poole in less than 60 minutes:
Petra lives closer to the train station than Jonah, so she only needs to travel a short distance to get there. Jonah, on the other hand, lives farther away and needs to take a bus or drive to the train station. Petra could arrive at the train station in a few minutes, take the 12-minute train ride to Poole, and get there in under 30 minutes total. Jonah, who has a longer journey to the train station, might take 40-50 minutes to get there, but could still arrive in Poole in less than 60 minutes if he catches a train shortly after arriving at the station.
Petra and Jonah live in the same area, but Petra prefers to walk or bike to the train station while Jonah takes a bus or drives. If Petra's home is closer to the train station than Jonah's, she could arrive in 10-15 minutes and take the 12-minute train ride to Poole, arriving in under 30 minutes total. Jonah might take longer to get to the station, but could still arrive in Poole in less than 60 minutes if he catches a train shortly after arriving.
To know more about train station here
https://brainly.com/question/29199239
#SPJ4
Petra and Jonah has this information home to the train station. 12 minutes train to Poole 47 minutes jonah says it will take less that 60 minutes in total to go from home to Poole.
How does this occur?
-4x4x4 in exponential form
-4×4=-16×4=-64
8²=-64
no solution
Optimal soda can a. Classical problem Find the radius and height of a cylindrical soda can with a volume of 354 cm that minimize the surface area b. Real problem Compare your answer in part (a) to a real soda can, which has a volume of 354 cm", a radius of 3.1 cm, and a height of 12.0 cm, to conclude that real soda cans do not seem to have an optimal design. Then use the fact that real soda cans have a double thickness in their top and bottom surfaces to find the radius and height that minimizes the surface area of a real can (the surface areas of the top and bottom are now twice their values in part (a)). Are these dimensions closer to the dimensions of a real soda can?
The radius and height of a real soda can with a double thickness in the top and bottom surfaces that minimize its surface area are approximately 2.89 cm and 13.15 cm, respectively. These dimensions are closer to the dimensions of a real soda can compared to the dimensions obtained in part (a).
a. To minimize the surface area of a cylindrical soda can, we need to find the values of radius and height that minimize the surface area equation.
Let's denote the radius of the can as r and the height as h. The volume of the can is given as 354 cm^3, so we have:
πr^2h = 354
Solving for h, we get:
h = 354 / (π[tex]r^2[/tex])
The surface area of the can can be calculated as follows:
A = 2πr^2 + 2πrh
Substituting the expression for h in terms of r, we get:
A = 2πr^2 + 2πr(354 / πr^2)
Simplifying:
A = 2πr^2 + 708 / r
To minimize the surface area, we need to find the value of r that makes the derivative of A with respect to r equal to zero:
dA/dr = 4πr - 708 / r^2
Setting dA/dr = 0, we get:
4πr = 708 / r^2
Multiplying both sides by r^2, we get:
4πr^3 = 708
Solving for r, we get:
r = (708 / 4π)^(1/3) ≈ 3.64 cm
Substituting this value of r back into the expression for h, we get:
h = 354 / (π(3.64)^2) ≈ 9.29 cm
Therefore, the radius and height of the cylindrical soda can with minimum surface area and volume of 354 cm^3 are approximately 3.64 cm and 9.29 cm, respectively.
b. Real soda cans do not seem to have an optimal design because their dimensions are not the same as the ones obtained in part (a). The radius of a real soda can is 3.1 cm and the height is 12.0 cm. However, real soda cans have a double thickness in their top and bottom surfaces, which means that their dimensions are not directly comparable to the dimensions of the cylindrical can we calculated in part (a).
To find the dimensions of a real soda can with a double thickness in the top and bottom surfaces that minimize its surface area, we can use the same approach as in part (a), but with the appropriate modification to the surface area equation:
A = 4πr^2 + 708 / r
Setting dA/dr = 0, we get:
8πr^3 = 708
Solving for r, we get:
r = (708 / 8π)^(1/3) ≈ 2.89 cm
Substituting this value of r back into the expression for h, we get:
h = 354 / (π(2.89)^2) ≈ 13.15 cm
Therefore, the radius and height of a real soda can with a double thickness in the top and bottom surfaces that minimize its surface area are approximately 2.89 cm and 13.15 cm, respectively. These dimensions are closer to the dimensions of a real soda can compared to the dimensions obtained in part (a).
To learn more about surface area visit: https://brainly.com/question/29298005
#SPJ11
10. The following table lists the monthly incomes (in hundreds of dollars) and the monthly rents paid (in hundreds of dollars) by a sample of six families.
Monthly Income: 24,16,19,31,11,27
Monthly Rent: 7.0,4.5,6.5,12.8,4.5,8.5
For the regression of y on x, what are the values of a and b?
A. a=.52,b=-3.75
B. a=.384,b=-.89
C. a=-3.75,b=.52
D. a=-.89,b=.384
For the regression of y on x, the values of a and b is 0.52 and -3.75 respectively.
What is regression?
Regression is a statistical method used to analyze the relationship between a dependent variable (often denoted as Y) and one or more independent variables (often denoted as X).
To find the regression line equation of y on x, we need to find the slope and the y-intercept.
The slope, b, can be found using the formula:
b = r (Sy / Sx)
where r is the correlation coefficient between x and y, Sy is the standard deviation of y, and Sx is the standard deviation of x.
The y-intercept, a, can be found using the formula:
[tex]a = \bar{y} - b\bar{x}[/tex]
where [tex]\bar{y}[/tex] is the mean of y and [tex]\bar{x}[/tex] is the mean of x.
First, we need to calculate some values:
x: 24,16,19,31,11,27
y: 7.0,4.5,6.5,12.8,4.5,8.5
[tex]\bar{y}[/tex] = (7.0 + 4.5 + 6.5 + 12.8 + 4.5 + 8.5) / 6 = 7.16
[tex]\bar{x}[/tex] = (24 + 16 + 19 + 31 + 11 + 27) / 6 = 20
Sy = [tex]\sqrt(((7.0-7.16)^2 + (4.5-7.16)^2 + (6.5-7.16)^2 + (12.8-7.16)^2 + (4.5-7.16)^2 + (8.5-7.16)^2)/5)}[/tex] = 2.314
Sx =[tex]\sqrt(((24-20)^2 + (16-20)^2 + (19-20)^2 + (31-20)^2 + (11-20)^2 + (27-20)^2)/5)[/tex] = 7.481
To find r, we need to calculate the covariance between x and y:
cov(x,y) = [(24-20)(7.0-7.16) + (16-20)(4.5-7.16) + (19-20)(6.5-7.16) + (31-20)(12.8-7.16) + (11-20)(4.5-7.16) + (27-20)(8.5-7.16)] / 5
= 12.9
Then, we have:
r = cov(x,y) / (Sx Sy) = 12.9 / (7.481 * 2.314) = 0.917
Now we can find the slope, b:
b = r (Sy / Sx) = 0.917 (2.314 / 7.481) = 0.283
And the y-intercept, a:
a = [tex]\bar{y}[/tex] - b [tex]\bar{x}[/tex] = 7.16 - 0.283 * 20 = 0.52
Therefore, the answer is A. a = 0.52, b = -3.75
To learn more about regression visit:
https://brainly.com/question/25987747
#SPJ4
Please help
The problem below is solved incorrectly.
Part A: Find the mistake in the work/answer and explain what the mistake is.
Part B: Find the correct answer.
The given figure is a right triangular prism, with 2 parallel and congruent triangular faces and 3 rectangular faces.
The triangular faces have sides 13 ft, 13ft and 24 ft and the height of 5 ft.
Two of the rectangular faces are 13 ft x 30 ft and the remaining face is 24 ft x 30 ft.
Surface area is the sum of areas of all 5 faces.
Area formula for triangle is A = bh/2 and for rectangle is A = ab.
Let's verify the steps of calculation.
Part AStep 1
13 x 30 = 390, right390 x 2 = 780, rightThis is right
Step 2
30 x 24 = 720, right720 x 2 = 1440, wrong as there is only one face of same dimensionsThis is wrong
Step 3
24 x 5 x 0.5 = 60, right60 x 2 = 120, rightThis is right
Step 4
780 + 1440 + 120 = 2340 sq ft, this is wrong because of wrong step 2Part BCorrection in step 2, it should be 720 but not 1440.
Correction in last step, the sum:
780 + 720 + 120 = 1620 sq ftWhat is the slope of the line shown below
Answer:
[tex]m = \frac{2 - ( - 4)}{1 - ( - 1)} = \frac{6}{2} = \frac{3}{1} = 3[/tex]
You are standing 2ft from a wall mirror and you see a reflection of a light bulb on the ceiling. The light bulb is 4ft from a wall mirror. If your eyes are 6ft above the floor and the height of the ceiling is 8ft, determine the distance from the ceiling to the reflection of the light bulb in the mirror. You know that the light travels along the shortest path. Also, prove that the tangent of the angle of incidence (the angle between a ray incident on a surface and the normal to the surface at the point of incidence) is equal to the tangent of the angle of reflection.
The distance from the ceiling to the reflection of the light bulb in the mirror is 6ft.
The tangent of the angle of incidence is equal to the tangent of the angle of reflection.
We have,
To find the distance from the ceiling to the reflection of the light bulb in the mirror we can use similar triangles.
Let's call the distance we're trying to find x.
First, we can find the length of the hypotenuse of the triangle formed by the light bulb, the mirror, and the ceiling.
This is equal to the distance from the light bulb to the mirror plus the distance from the mirror to the ceiling, which is:
= 4ft + 8ft
= 12ft.
Next, we can set up the following proportion:
2ft / x = 4ft / 12ft
Cross-multiplying, we get:
4ft x (x) = 2ft x 12ft
Simplifying, we get:
x = 6ft
So,
The distance from the ceiling to the reflection of the light bulb in the mirror is 6ft.
Now,
To prove that the tangent of the angle of incidence is equal to the tangent of the angle of reflection, we can use the law of reflection, which states that the angle of incidence is equal to the angle of reflection. Let's call these angles θ.
We can draw a diagram to represent the situation, with a ray of light hitting a mirror at an angle of incidence:
|\
| \
d | \
--------->| \
|θ_i \
|____\
Here, d is the distance from the light source to the mirror, and θi is the angle of incidence.
Using trigonometry, we can express the tangent of θi as:
tan(θi) = opposite / adjacent
In this case, the opposite side is the vertical distance from the light source to the mirror, which is "h" in the diagram.
The adjacent side is the distance from the mirror to the point where the ray of light reflects off the mirror, which is also d.
tan(θ_i) = h / d
After the light reflects off the mirror, it travels at the same angle as the angle of reflection, θr:
|\
| \
d | \
--------->| \
|θ_i \
|____\
\ θ_r
\
\
Using the law of reflection, we know that θi = θr.
So we can write:
tan(θr) = opposite / adjacent
The opposite side is now the vertical distance from the mirror to the point where the ray of light reflects off the mirror, which is also h.
The adjacent side is still d since the distance from the mirror to the point where the ray of light reflects off the mirror is the same as the distance from the light source to the mirror.
So, we have:
tan(θr) = h / d
Since θi = θr, we can substitute tan(θi) for tan(θr) in the equation above:
tan(θi) = h / d = tan(θr)
This means,
The tangent of the angle of incidence is equal to the tangent of the angle of reflection.
Thus,
The distance from the ceiling to the reflection of the light bulb in the mirror is 6ft.
The tangent of the angle of incidence is equal to the tangent of the angle of reflection.
Learn more about reflection of light here:
https://brainly.com/question/2254222
#SPJ1
(Please help!!!) A landscaper is creating a bench for a pool deck. A model of the bench is shown in the image.
A rectangular prism with dimensions of 6.2 feet by 3 feet by 4 feet.
Part A: Find the total surface area of the bench. Show all work. (6 points)
Part B: The landscaper will cover the bench in ceramic tiles except for the bottom that is on the ground. If the tiles cost $0.83 per square foot, how much will it cost to cover the bench? Show all work. (6 points)
Answer:
The answer to your problem is ↓
Part A: 110.8 feet
Part B: $77
Step-by-step explanation:
Calculation: Part A.
6.2 x 4 = 24.8
24.8 x 2 = 49.6
4 x 3 = 12
12 x 2 = 24
6.2 x 3 = 18.6
18.6 x 2 = 37.2
49.6 + 24 + 37.2 = 110.8
Calculation: Part B.
Same as the beginning of Part A:
6.2 x 4 = 24.8
24.8 x 2 = 49.6
4 x 3 = 12
12 x 2 = 24
6.2 x 3 = 18.6
49.6 + 24 + 18.6 = 92.2
92.2 x .83 = 76.526
We then need to round ‘ 76.526 ‘
Rounded = 77
Thus the answer to your problem is ↓
Part A: 110.8 feet
Part B: $77
Answer:
$76.526
Step-by-step explanation:
Front and back: length = 6.2 feet, width = 4 feet
Left and right: length = 3 feet, width = 4 feet
Top and bottom: length = 6.2 feet, width = 3 feet
The area of each face is:
Front and back: A = lw = (6.2)(4) = 24.8 square feet
Left and right: A = lw = (3)(4) = 12 square feet
Top and bottom: A = lw = (6.2)(3) = 18.6 square feet
The total surface area is the sum of the areas of all six faces:
SA = 2(24.8) + 2(12) + 2(18.6) SA = 49.6 + 24 + 37.2 SA = 110.8 square feet
Part B: To find the cost of covering the bench in ceramic tiles, we need to find the surface area of the bench excluding the bottom face that is on the ground. This is the same as the total surface area minus the area of the bottom face:
SA’ = SA - A(bottom) SA’ = 110.8 - 18.6 SA’ = 92.2 square feet
The cost of covering one square foot of the bench is $0.83, so the total cost is:
C = SA’ x $0.83 C = 92.2 x $0.83 C = $76.526
Rounding to the nearest cent, the cost is $76.53.
Received message. Part A: To find the total surface area of the bench, we need to find the area of each face of the rectangular prism and add them up. The formula for the area of a rectangle is A = lw, where l is the length and w is the width. The dimensions of the bench are 6.2 feet by 3 feet by 4 feet, so we can label the faces as follows: - Front and back: length = 6.2 feet, width = 4 feet - Left and right: length = 3 feet, width = 4 feet - Top and bottom: length = 6.2 feet, width = 3 feet The area of each face is: - Front and back: A = lw = (6.2)(4) = 24.8 square feet - Left and right: A = lw = (3)(4) = 12 square feet - Top and bottom: A = lw = (6.2)(3) = 18.6 square feet The total surface area is the sum of the areas of all six faces: SA = 2(24.8) + 2(12) + 2(18.6) SA = 49.6 + 24 + 37.2 SA = 110.8 square feet Part B: To find the cost of covering the bench in ceramic tiles, we need to find the surface area of the bench excluding the bottom face that is on the ground. This is the same as the total surface area minus the area of the bottom face: SA' = SA - A(bottom) SA' = 110.8 - 18.6 SA' = 92.2 square feet The cost of covering one square foot of the bench is $0.83, so the total cost is: C = SA' x $0.83 C = 92.2 x $0.83 C = $76.526 Rounding to the nearest cent, the cost is $76.53.
PLEASE ANSWER!!!! QUICK!!!1
A pair of standard dice are rolled. Find the probability of rolling a sum of 3 these dice
P(D1 + D2 = 3) --
Be sure to reduce
The probability of rolling a sum of 3 these dice is 1/18.
Given that, a pair of standard dice are rolled.
There are six different possible outcomes for a dice, the set (S) of all the outcomes can be listed as follows:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
We know that, probability of an event = Number of favorable outcomes/Total number of outcomes.
Number of favorable outcomes = 2
Total number of outcomes = 36
Here, probability = 2/36
= 1/18
Therefore, the probability of rolling a sum of 3 these dice is 1/18.
To learn more about the probability visit:
https://brainly.com/question/11234923.
#SPJ1
When rotated about its center, a regular octagon has In addition to rotational symmetry, a regular octagon has symmetry rotational symmetries. Lines of reflectional
6 and 8
8 and 6
8 and 8
6 and 6
A regular octagon has a rotation about its centre that has A regular octagon possesses rotational symmetry in addition to other types of symmetry. Reflective lines 6 and 6. Option d is Correct.
A regular pentagon has five rotational symmetries when it is rotated around its centre. A regular pentagon has _5_ lines of reflectional symmetry in addition to rotational symmetry.
Regular pentagons are regular polygons that have five sides. If a figure has the exact same shape after being rotated by a certain angle with regard to a fixed point in the figure, then that figure exhibits rotational symmetry for that angle.
The figure is considered to have reflectional symmetry if it is the same as the preceding figure when we reflect it with respect to a fixed line. Finding the amount of rotational and reflectional symmetries in a regular pentagon using the aforementioned definitions
Learn more about rotational symmetries visit: brainly.com/question/28643102
#SPJ4
Correct Question:
When rotated about its center, a regular octagon has In addition to rotational symmetry, a regular octagon has symmetry rotational symmetries. Lines of reflectional
a. 6 and 8
b. 8 and 6
c. 8 and 8
d. 6 and 6
If you flip two coins 44 times, what is the best prediction possible for the number of times both coins will land on tails?
The best prediction for the possible number of times both coins will land on tails would be = 1/2
How to calculate the possible outcomes for tails?To calculate the possible outcome of the event the formula that should be used is given as follows:
probability = possible outcome/sample space.
sample space for a coin tossed 44 times = 44×2 = 88.
for two coins = 88×2 = 176
Possible sample space = 176/2 = 88
probability = 88/176
= 1/2
Learn more about probability here:
https://brainly.com/question/24756209
#SPJ1
Pick one 6-12 grade level that you want to teach and look at the CCSSM for that grade level, the previous grade level, and the next grade level. (If you pick 6, look at 6-7-8 and if you pick 12, look at 10-11-12. You'll need to look at the typical classes taught for each grade level at a particular school/district).
State your level of knowledge (A-F) for each standard and why. The why could be "I learned this in [insert math class] and remember it well."
Every standard that isn't an A or a B, find an example to help you make sense of that standard.
I will pick 8th grade for this analysis, so I will look at the CCSSM for grades 7, 8, and 9.
For 7th grade:
1. 7.NS.A.1 (A): I have a strong understanding of applying operations with rational numbers, as I learned this in various math classes.
2. 7.RP.A.2 (B): I am familiar with proportional relationships, but I may need to review some specific examples to strengthen my understanding.
For 8th grade:
1. 8.EE.A.1 (A): I have a deep understanding of working with exponents, as it was a significant topic in my algebra classes.
2. 8.G.B.6 (B): I am familiar with the Pythagorean Theorem, but I may need to review some specific examples to solidify my knowledge.
For 9th grade (Algebra 1):
1. A.REI.B.3 (A): I am confident in solving linear equations, as this was a core topic in my algebra and calculus classes.
2. A.CED.A.2 (C): I understand creating equations in two variables, but I would need to review examples to ensure I fully grasp this standard.
For every standard that isn't an A or a B, I would look for examples and resources to help me better understand the concepts. For instance, for A.CED.A.2, I could find example problems involving creating and solving equations in two variables, which would help me improve my understanding of this standard.
Learn more about knowledge at https://brainly.com/question/28135429
#SPJ11
Cuánto es 234 entre 14?
-6 4/5 divided by (-2/5)
Answer:
the answer will be
Step-by-step explanation:
the steps is founded below
[tex] - 6 \frac{4}{5} \div ( - \frac{2}{5} ) \\ - \frac{34}{5} \div ( - \frac{2}{5} ) \\ - \frac{34}{5} \times - ( \frac{2}{5} ) \\ = \frac{68}{25} is \: the \: answer[/tex]
Answer:
17
Step-by-step explanation:
I'm sure that the answer is 17.
Here's how to arrive at that answer:
-6 4/5 divided by -2/5 can be rewritten as (-34/5) divided by (-2/5) using mixed number subtraction and fraction division.
To divide fractions, we multiply the first fraction by the reciprocal of the second, so we can rewrite (-34/5) divided by (-2/5) as (-34/5) multiplied by (-5/2):
(-34/5) x (-5/2) = (34/5) x (5/2) = 17
So the final answer is 17.
in a given linear regression model with given features/predictors, we can compute its coefficients (which multiply corresponding features) by using...
In a given linear regression model with given features/predictors, we can compute its coefficients (which multiply corresponding features) by using a mathematical formula called the "ordinary least squares" method. This method finds the best-fit line through the data by minimizing the sum of the squared errors between the predicted values and the actual values.
The resulting coefficients represent the slope of the line for each feature, indicating the strength and direction of the relationship between that feature and the target variable. These coefficients can be used to predict future values of the target variable based on the values of the input features.
Thus, In a given linear regression model with given features/predictors, we can compute its coefficients (which multiply corresponding features) by using the following steps:
1. Organize the data: Arrange the dataset into a matrix (X) containing the features/predictors and a vector (y) containing the target variable.
2. Standardize the data (optional): If the features have different scales, standardize them by subtracting their mean and dividing by their standard deviation.
3. Calculate the coefficient matrix: Compute the coefficients by using the formula:
β = (X^T * X)^(-1) * X^T * y
where:
- β is the coefficient vector (includes coefficients for each feature/predictor)
- X^T is the transpose of the matrix X
- (X^T * X)^(-1) is the inverse of the product of X^T and X
4. Interpret the coefficients: The resulting coefficients represent the relationship between each feature/predictor and the target variable. A positive coefficient indicates a positive correlation, while a negative coefficient indicates a negative correlation.
By following these steps, you can compute the coefficients of a linear regression model and understand the relationship between the features/predictors and the target variable.
Learn more about variable here:- https://brainly.com/question/17344045
#SPJ11
Could anyone see what question is wrong? It’s for simple probability
The probability given that is wrong is the probability of landing on blue because the probability should be 3 / 4 .
How to find the probability ?The answer in the question says that the probability of not landing on blue is 1 / 4 when in fact, this is the probability that it lands on blue. This is because there are only 2 blue slices so the odds of landing on blue is:
= 2 / 8
= 1 / 4
The probability of not landing on blue would be :
= ( Total number of slices - Number of blue slices ) / Total number of slices
= ( 8 - 2 ) / 8
= 6 / 8
= 3 / 4
Find out more on probability at https://brainly.com/question/235239.
#SPJ1
Which pair of lines in this figure are perpendicular?
Answer:
A and D
Step-by-step explanation:
You want to know which pair of lines in the figure is perpendicular.
PerpendicularThe lines are perpendicular if they meet at an angle of 90°.
Vertical line A is perpendicular to horizontal line D.
__
Additional comment
If the given lines were altitudes of their respective triangles, and if the figure were a regular hexagon, then more pairs of lines would be perpendicular. Alas, the figure seems wider than tall, and the lines don't seem to be perpendicular to the sides they intersect (except line D). Hence there appears to be only one perpendicular pair.
<95141404393>