Answer:
The lines are not parallel because their slopes are opposite reciprocals.
Explanation:
The lines:
[tex]\begin{gathered} y=-4x-7 \\ \text{and} \\ 8x+2y=17 \end{gathered}[/tex]are not parallel because their slopes are not the same
Note:
Two straight lines are said to be parallel when their slopes are the same, and have different y-intercepts.
Find the Z-score for which 5% of the distributions area lies between-z and z
The equation that will represent this situation will be:
[tex]\begin{gathered} P(-z\le x\le z)=P(x\le z)-(1-P(x\le z))=0.05 \\ \end{gathered}[/tex]Thus:
[tex]\begin{gathered} P(x\le z)-1+P(x\le z)=0.05 \\ 2\cdot P(x\le z)-1=0.05 \\ 2\cdot P(x\le z)=0.05+1 \\ 2\cdot P(x\le z)=1.05 \\ P(x\le z)=\frac{1.05}{2} \\ P(x\le z)=0.525 \end{gathered}[/tex]If we check in a standard normal table. the z-score that corresponds to a probability of 0.525 is 0.063.
Answer: z-score is 0.063.
If a square has a perimeter of 28 inches, what is its area in square inches?
Remember that
The formula to calculate the perimeter of a square is
[tex]P=4*b[/tex]where
b is the length side of the square
we have
P=28 in
substitute in the formula
[tex]\begin{gathered} 28=4*b \\ sol\text{ve for b} \\ b=\frac{28}{4}=7\text{ in} \end{gathered}[/tex]The area of a square is
[tex]A=b^2[/tex]substitute the value of b
[tex]\begin{gathered} A=7^2 \\ A=49\text{ in}^2 \end{gathered}[/tex]The area is 49 square inchesoption C. . Read the problem and write your answer for each part. Make sure to label each part: , , .jasmine is tracking the growth of a specific bacteria bacteria for a science experiment. She assumes that there are bacteria () in a Perti dish at 12:00 midnight. Jamie observes that the number of bacteria increases by 25 every hour . write an equation that describes the relationship between total number of bacteria () and time () in hours, assuming there are () bacteria in the perti dish at = 0. . if Jamie starts with bacteria in the perti dish, how many bacteria will be present after 6 hours? . if Jamie starts with bacteria in the perti dish, draw a graph that displays the total number of bacteria with respect to time from 12:00 midnight ( = ) to 8:00 am. ( = ). Label each axis and label points on your graph at times = , , , .use the coordinate plane below to draw your graph.
Part A:
Let:
T(h)= Total Number of bacterias as a function of time
h = Number of hours
B = Initial number of bacterias
Since the number of bacteria increases by 25 every hour, we can defined the equation as:
[tex]T(h)=25h+B[/tex]Part B:
B = 5
h = 6
Evaluate the previous equation for those values:
[tex]\begin{gathered} T(6)=25(6)+5 \\ T(6)=150+5 \\ T(6)=155 \end{gathered}[/tex]there will be 155 baterias after 6 hours
Part C
Let's graph the equation:
[tex]T(h)=25h+5[/tex]How to tell if a sequence is linear, exponential, quadratic or absolute value as simply as possible without graphing (8th grade algebra) examples will be greatly appreciated
We will have the following:
We will be able to tel apart sequences as follows:
Linear sequence: We have that linear sequences follow the form:
[tex]y=mx+b[/tex]Here "x" represents the iteration value for the sequence, "m" the ratio (slope) and "b" a value that modifies the "position" of the sequence. This sequences grows in a linear manner.
Example:
[tex]\begin{cases}y_{}=2x+2 \\ \\ y_1=4 \\ y_2=6 \\ y_3=8 \\ \ldots\end{cases}[/tex]Exponential sequence: We have that exponential sequences follow the form:
[tex]y=a_1(r)^{x-1}[/tex]Here "a1" is the first term of the sequence, "r" is the ratio and "x" the iteration of the sequence.
We obtain the ratio as follows:
[tex]r=\frac{y_n}{y_{n-1}}[/tex]Example:
[tex]\begin{cases}y=1(5)^{x-1}_{} \\ \\ y_1=1 \\ y_2=5 \\ y_3=25 \\ \\ \ldots\end{cases}[/tex]The ratio for this case:
[tex]r=\frac{y_3}{y_2}\Rightarrow r=\frac{25}{5}\Rightarrow r=5[/tex]Quadratic sequence: A quadratic sequence follows the general form
Writing and evaluating a function modeling continuous exponential growth or decay given two outputs
Explanation
The model has the form
[tex]y=ae^{-kt}[/tex]Where a=initial amount
y= final amount
K= growth rate constant
t= time
When 140 kg of substance is left after 7 hours, the formula can be remodeled to be.
[tex]\begin{gathered} 140=400e^{-7k} \\ e^{-7k}=\frac{140}{400} \\ e^{-7k}=\frac{7}{20} \\ \ln (e^{-7k})=\ln (\frac{7}{20}) \\ -7k=\ln (\frac{7}{20}) \\ k=\frac{\ln(\frac{7}{20})}{-7} \\ \therefore k=\frac{\ln (\frac{20}{7})}{7} \end{gathered}[/tex]Therefore, the first solution is
[tex]y=400e^{-\ln (\frac{20}{7})\frac{t}{7}}[/tex]For part b we have 16 hours.
[tex]\begin{gathered} y=400e^{-\ln (\frac{20}{7})\frac{t}{7}}=400e^{-\ln (\frac{20}{7})\frac{16}{7}} \\ y=36.302\approx36\operatorname{kg}\text{ (To the nearest whole number)} \end{gathered}[/tex]Thus, the answer is 36kg
The diameter of a planet at its equator is 5790 kilometers.Estimate using scientific notation:
Explanation
Step 1
divide the number by 1000
remember:
[tex]1000=10^3[/tex][tex]\frac{5790}{1000}=5.79[/tex]Step 2
input the value of cubic ten instead of 100
[tex]\begin{gathered} 5790=5.79\cdot1000 \\ 5.79\cdot1000=5.79\cdot10^3 \end{gathered}[/tex]then, the answer is
[tex]5.79x10^3\text{ kilometers}[/tex]
Which of the following size measures will form a right triangle
From the given side lengths, let's find the measures that will form a right triangle.
Apply Pythagorean Theorem:
[tex]a^2+b^2=c^2[/tex]Where:
• a ,and ,b, are lengths of the legs
,• c is the length of the hypotenuse.
Now, let's start from the first measures in option a.
• 48m, 64m, and 85m
[tex]\begin{gathered} 48^2+64^2=85^2 \\ \\ 2304+4096=7225 \\ \\ 6400\ne7225 \end{gathered}[/tex]The measures in option a will NOT form a right triangle since the left side of the equation does not equal the right side.
• 27 yd, 36 yd, 45 yd
[tex]\begin{gathered} 27^2+36^2=45^2 \\ \\ 729+1296=2025 \\ \\ 2025=2025 \end{gathered}[/tex]The measures in option B will form a right triangle because the Equation is true.
ANSWE
You are choosing between two health clubs. Club A offers membership for a fee
of $20 plus a monthly fee of $25. Club B offers membership for a fee of $25
plus a monthly fee of $24. After how many months will the total cost of each
health club be the same? What will be the total cost for each club?
Let:
x = Number of months
y1 = Total cost for Club A
y2 = Total cost for Club B
a = Fee of Club A per month
b = Fee of Club B per month
c = Initial fee of Club A
d = Initial fee of Club B
so:
[tex]\begin{gathered} y1=ax+c \\ y1=25x+20 \\ -------- \\ y2=bx+d \\ y2=24x+25 \end{gathered}[/tex]So, the total cost will be the same for:
[tex]\begin{gathered} y1=y2 \\ 25x+20=24x+25 \\ solve_{\text{ }}for_{\text{ }}x\colon \\ 25x-24x=25-20 \\ x=5 \end{gathered}[/tex]The cost will be the same for the month number 5. And the total cost will be:
[tex]\begin{gathered} y1(5)=25(5)+20=145 \\ y2(5)=24(5)+25=145 \end{gathered}[/tex]$145
ABC with coordinates (1.3), B.4.5), and C15,2), what are the coordinates of ABC after the glide reflection described by t (-1,1) R y-axis?
Answer:
A'(0,4)
B'(-3,6)
C(-4,3)
Step-by-step explanation:
A glide reflection is the combination of a translation with a rotation.
In this question:
T(-1,1): This means that the translation is given by:
(x,y) -> (x-1,y+1)
Rotation: Around the y-axis. This means that:
(x,y) -> (-x,y)
The triangle has the following coordinates:
A(1,3), B(4,5), C(5,2)
Applying the translation:
(x,y) -> (x-1,y+1)
A(1,3) -> (1-1,3+1) = (0,4)
B(4,5) -> (4-1,5+1) = (3,6)
C(5,2) -> (5-1, 2+1) = (4,3)
Rotation over the y-axis:
(x,y)->(-x,y)
A'(0,4)
B'(-3,6)
C(-4,3)
If you are given odds of 5 to 6 in favor of winning a bet, what is the probability of winning the bet?
5 to 6 odds means that, out of 11 possible outcomes, odds are that there will be 5 of one kind of outcome and 6 of another kind of outcome.
In this case, you are given 5 to 6 odds, which means that out of 11 possible outcomes you will win a bet 5 times, and lose it 6.
In fraction, it will look like this:
[tex]\frac{11}{11}\text{ \lparen these are all the possible outcomes, which equals 1\rparen = }\frac{5}{11}(the\text{ outcomes in which you win, which equals .4545, so 45.45\%\rparen + }\frac{6}{11}\text{ \lparen the outcomes in which you lose, which equals 0.5454, so 54.54\% \rparen}[/tex]Because of that, the probability of winning the bet is 45.45%, and in a fraction, it is 5/11, which means you will win in 5 out of 11 scenarios.
Which expressions are equivalent to (1/3x−4x−5/3x)−(−1/3x−3) ? Select all correct expressions. Responses −3+5x negaive 3 minus 5 x −2x+3−3x negative 2 x plus 3 minus 3 x −5x+3 negative 5 x plus 3 2x−3+3x 2 x minus 3 plus 3 x
The equivalent expression for the given expression (1/3x - 4x - 5/3x) - (- 1/3x - 3) is 3 - 7x / 3
Given,
The expression;
(1/3x - 4x - 5/3x) - (- 1/3x - 3)
We have to solve this and find the equivalent expression;
Here,
(1/3x - 4x - 5/3x) - (- 1/3x - 3)
= 1/3x - 4x - 5/3x + 1/3x + 3
= 3 - 4x - 5/3x
= 3 - (12x - 5x) / 3
= 3 - 7x / 3
That is,
The equivalent expression for the given expression (1/3x - 4x - 5/3x) - (- 1/3x - 3) is 3 - 7x / 3
Learn more about equivalent expression here;
https://brainly.com/question/27915283
#SPJ1
The population of the county, which follows the exponential growth model,
increased from 491,675 in 2000 to 782,341 in 2010.Write the exponential growth function.
Step 1
Given; The population of the county, which follows the exponential growth model,
increased from 491,675 in 2000 to 782,341 in 2010.
Write the exponential growth function.
Step 2
The exponential function is given as;
[tex][/tex]Please help me with this question I have a test next week and I really have to study this is 11th grade algebra 2
ANSWER:
(a)
(b) P(x < 4) = 0.29
(c) P(x= 6) = 0.17
(d) P(x ≥ 5) = 0.34
STEP-BY-STEP EXPLANATION:
The probability in each case would be the specific amount divided by the total amount, therefore, we calculate the total amount and the probability in each case, like this:
[tex]\begin{gathered} 5+10+2+9+33+12+15+3+1\:=\:90 \\ \\ P(0)=\frac{5}{90}=0.06 \\ \\ P(1)=\frac{10}{90}=0.11 \\ \\ P(2)=\frac{2}{90}=0.02 \\ \\ P(3)=\frac{9}{90}=0.1 \\ \\ P(4)=\frac{33}{90}=0.37 \\ \\ P(5)=\frac{12}{90}=0.13 \\ \\ P(6)=\frac{15}{90}=0.17 \\ \\ P(7)=\frac{3}{90}=0.03 \\ \\ P(8)=\frac{1}{90}=0.01 \end{gathered}[/tex]Therefore, the table would look like this:
With this we calculate the probability in each case:
[tex]\begin{gathered} P\left(x<4\right)=P\left(x=0\right)+P\left(x=1\right)+P\left(x=2\right)+P\left(x=3\right)=0.06+0.11+0.02+0.10=0.29 \\ \\ P(x=6)=0.17 \\ \\ P(x\ge5)=P\left(x=5\right)+P\left(x=6\right)+P\left(x=7\right)+P\left(x=8\right)=0.13+0.17+0.03+0.01=0.34 \end{gathered}[/tex]Can someone please help me with this drag and drop? I would appreciate It a lot! Please explain :) I’ll give brainliest
Answer:
move B to true then everything is right ✅
What’s the total of all the present values of the payments? $320,640 $787,116 $878,611 $987,116
The total of all the present values of the payments is $2,973,483.
What is the present value?The present value is the future cash flows discounted to the present day's values.
The present value can be determined using an online finance calculator that inputs the future cash flows, the interest rate, and the period.
How is the total present value determined?The total present value is a function of the summation of the four present values.
Since the present values are given, computing the total involves the mathematical operation of addition.
Present Values:1st payment $320,640
2nd payment $787,116
3rd payment $878,611
4th payment $987,116
Total PV $2,973,483
Learn more about present values at https://brainly.com/question/15904086
#SPJ1
Answer:
The correct answer is $878,611 for plato users
Step-by-step explanation:
Cecilia is making a punch that uses 3 quarts of fruit juice for every quart of citrus soda. How many quarts of each does she need to make 16 quarts of punch?
The number of quarts of each constituent she needs to produce 16 quarts of punch is; 12 quarts of fruit juice and 4 quarts of citrus soda.
What quantity of each constituent is needed to produce 16 quarts of punch?It follows from the task content that the quantity of each constituent that is required to make 16 quarts of punch are to be determined.
Since it follows that 3 quarts of fruit juice are required to mix with every quart of citrus soda, it follows that the amount of punch made in this scenario is; 4 quarts of punch.
Hence, since there are 4 partitions of 4 quarts punch is 16 quarts punch, the amount of.each constituent needed by proportion are as follows;
3 quarts of fruit juice × 4 = 12 quarts of fruit juice.1 quarts of fruit juice × 4 = 4 quarts of citrus soda.Read more on proportion;
https://brainly.com/question/18437927
#SPJ1
In triangle HIJ,△HIJ, overline{HI}cong overline{JH} HI ≅ JH and text{m}angle H = 118^{\circ}.m∠H=118 ∘ . Find \text{m}\angle J.m∠J.
The measure of angle J in the isosceles triangle is given as follows:
m<J = 31º.
What is an isosceles triangle?An isosceles triangle is a triangle in which:
Two of the angles have equal measures.Two of the sides have equal measures.In the context of this problem, the angles are given as follows:
118º. (angle H).x: angle J.x: angle I.Angles J and I are equal as the triangle is isosceles and the congruent angles are acute, that is, they cannot have measures above 90º.
The sum of the measures of the internal angles of a triangle is of 180º, hence we can solve for x as follows:
x + x + 118º = 180º
2x = 62º
x = 62º/2
x = 31º.
Hence the measure of angle J is of 31 degrees.
More can be learned about isosceles triangles at https://brainly.com/question/23986525
#SPJ1
A contractor bought 10.8 ft² of sheet metal. He has used 3.5 ft² so far and has $219 worth of sheetmetal remaining. The equation 10.8x - 3.5x = 219 represents how much sheet metal is remainingand the cost of the remaining amount. How much does sheet metal cost per square foot?
The first step to do is to combine 10.8x - 3.5x and that is equal to 7.3x.
[tex]7.3x=219[/tex]The next step is to divide both sides by 7.3 to solve for x.
[tex]\begin{gathered} \frac{7.3x}{7.3}=\frac{219}{7.3} \\ x=30 \end{gathered}[/tex]Therefore, the remaining sheet metal is 7.3 ft² and the cost per square foot of sheet metal is $30.
Bryan's hockey team is purchasing jerseys. The company charges $250 for a onetime set-up fee and $23 for each printed jersey. Which expression represents the total cost of x number of jerseys for the team?Group of answer choices23x23 + 250x23x+250
To find the right answer, we have to remember that
[tex]\text{Total cost= Variable cost+ Fixed cost}[/tex]The variable cost is that which changes, in our case, the variable cost is the price of each jersey. since each cost $23 and it increases as the number of jerseys increases.
Thus, the variable cost will be
[tex]23x[/tex]The fixed cost is always constant. The fixed cost is the one-time set-up fee of 250.
Thus, we can combine the two costs to get the total cost.
The answer will be:
[tex]\text{Total cost=23x+250}[/tex]The sum of two numbers is 83. The difference of the 2 numbers is 13. What is the product of the two numbers?A.1632B.1650C.1666D.1680
Answer:
Let the first number be
[tex]=x[/tex]Let the second number be
[tex]=y[/tex]The sum of two numbers is 83 can be represented below as
[tex]x+y=83\ldots\ldots(1)[/tex]The difference of the 2 numbers is 13 can be represented below as
[tex]x-y=13\ldots\ldots\text{.}(2)[/tex]Step 1:
From equation (1) make x the subject of the formula to to give equation (3)
[tex]\begin{gathered} x+y=83\ldots\ldots(1) \\ x=83-y\ldots\text{.}(3) \end{gathered}[/tex]Step 2:
Substitute equation (3) in equation (2)
[tex]\begin{gathered} x-y=13\ldots\ldots\text{.}(2) \\ x=83-y\ldots\text{.}(3) \\ 83-y-y=13 \\ 83-2y=13 \\ \text{collect similar terms,} \\ -2y=13-83 \\ -2y=-70 \\ \text{divide both sides by -2} \\ \frac{-2y}{-2}=\frac{-70}{-2} \\ y=35 \end{gathered}[/tex]Step 3:
Substitute y= 35 in equation (3)
[tex]\begin{gathered} x=83-y\ldots\text{.}(3) \\ x=83-35 \\ x=48 \end{gathered}[/tex]Hence,
The product of the two numbers will be calculated as
[tex]\begin{gathered} =x\times y \\ =35\times48 \\ =1680 \end{gathered}[/tex]Hence,
The final answer is = 1680
OPTION D is the final answer
can you help me to find midpoint
First, locate the given points.
Then, draw the line that connects them
Next, add the two x-coordinates of the endpoints and divide by 2. In this case, (1 + 4)/2 = 5/2 = 2.5
Then, draw a line perpendicular to the x-axis that passes through x = 2.5, until it intersects the other line. The intersecting point is the midpoint.
In this case, the coordinates of the midpoint are (2.5, 0.5), as can be seen in the figure
In a right triangle, the side opposite angle β has a length of 16.4 cm. The hypotenuse of the triangle has a length of 25.1 cm. What is the approximate value of sin(β)?
Given
Length of hypotenuse= 25.1 cm
length of BC = 16.4 cm
Find
Value of
[tex]sin\beta[/tex]Explanation
As , we know
[tex]sin\beta=\frac{opposite}{hypotenuse}[/tex]now, put values
[tex]sin\beta=\frac{16.4}{25.1}=0.653[/tex]Final Answer
Value of
[tex]sin\beta=0.653\text{ approx}[/tex]Find the simple interest owed for the following loan. Principal = 2775 Rate = 7.5% Time = 5 1/2 years
We would apply the simple interest formula which is xpressed as
I = PRT/100
Where
I represents interest
P represents principal or amount borrowed
T represents time in years
R represents rate.
From the information given,
P = 2775
R = 7.5
T = 5 1/2 = 5.5
I = (2775 * 7.5 * 5.5)/100
I = 1144.6875
Rounding to the nearest cent,
I = 1144.69
product of the equationa^4•a^6
Okay, here we have this:
Considering the provided operation, we are going to perform it, so we obtain the following:
Let us remember that when two terms with the same base are multiplied, then the base is preserved and the exponents are added, in this case we have:
[tex]\begin{gathered} a^4\cdot a^6 \\ =a^{(4+6)} \\ =a^{10} \end{gathered}[/tex]Finally we obtain that the operation is equal to a^10.
f(x) = x^3- 9x^2 + 10.c ) list the x values of all the inflection points of F
To find the inflection points the first step we have to follow is to find the second and third derivatives of the function:
[tex]\begin{gathered} f\mleft(x\mright)=x^3-9x^2+10 \\ f^{\prime}\left(x\right)=3x^2-18x \\ f^{\prime}^{\prime}\left(x\right)=6x-18 \\ f^{\prime}^{\prime}^{\prime}\left(x\right)=6 \end{gathered}[/tex]Now, find the values of x for which the second derivative is 0:
[tex]\begin{gathered} 0=6x-18 \\ 18=6x \\ x=\frac{18}{6} \\ x=3 \end{gathered}[/tex]Evaluate the third derivative at this values of x, if the third derivative is different from 0, then that value is an inflection point:
[tex]f^{\prime}^{\prime}^{\prime}\left(3\right)=6[/tex]It means that there is an inflection point at x=3.
Cilantro earns $17.43 per hour. If Cilantro works 27 hours in a week, what will Cilantro's earnings be for the week?
Let be "x" Cilantro's earnings (in dollars) for the week.
According to the explained in the exercise, Cilantro makes $17.43 per hour and works a total of 27 hours per week.
With that information, you can set up the following proportion:
[tex]\frac{$17.43\text{dollars}$}{1\text{hour}}=\frac{x}{27\text{hours}}[/tex]In order to find the value of "x", you need to solve for it. You can apply the Multiplication property of equality and multiply both sides of the equation by 27 hours.
Therefore, you get this result:
[tex]\begin{gathered} (27\text{hours)(}\frac{$17.43\text{dollars}$}{1\text{hour}})=(\frac{x}{27\text{hours}})(27\text{hours)} \\ x=470.61\text{dollars} \end{gathered}[/tex]Then, Cilantro's earnings for the week will be $470.61
what are the lenghths of the legs in the triangle?give your answer in simplest radical form or rounded to the nearest hundredth.
Here, we are given a 45°-45°-90° triangle.
Let's find the length of the legs.
A 45°-45°-90° triangle is an isosceles triangle, and the two legs of an isosceles triangle are of equal lengths.
To find the length of each leg apply the formula:
[tex]c=a\sqrt[]{2}[/tex]Where;
c = 12
Thus, we have:
[tex]12=a\sqrt[]{2}[/tex]Solve for a:
Divide both sides by √2
[tex]\begin{gathered} \frac{12}{\sqrt[]{2}}=\frac{a\sqrt[]{2}}{\sqrt[]{2}} \\ \\ \frac{12}{\sqrt[]{2}}=a \\ \\ a=\frac{12}{\sqrt[]{2}} \\ \\ \text{Simplify the denominator:} \\ a=\frac{12}{\sqrt[]{2}}\ast\frac{\sqrt[]{2}}{\sqrt[]{2}} \\ \\ a=\frac{12\sqrt[]{2}}{2} \\ \\ a=6\sqrt[]{2} \end{gathered}[/tex]Therefore, the length of each leg in radical form is 6√2
ANSWER:
[tex]6\text{ }\sqrt[]{2}[/tex]Q.Using triangle congruency theorems, justify why the triangles are similar.
4a)
Looking at the figure,
AD and BE are parallel lines
AE and BD are transversals
Thus,
angle DAE is congruent to angle BEA because they are alternate angles(They lie in similar positions but on alternate sides of the transversal
Also,
angle ADB is congruent to angle EBD because they are alternate angles(They lie in similar positions but on alternate sides of the transversal.
Angle ACD is congruent to angle BCE
Recall, 2 triangles are similar if at least, 2 of their corresponding angles are congruent. In this case, 3 corresponding triangles are congruent. Thus,
triangle ADC is similar to triangle EBC by AA(angle angle) postulate
4b) If 2 triangles are similar, it means that the ratio of their corresponding sides is equal. Thus,
AD/EB = DC/BC = AC/ CE
From the information given,
AD = 2
AC = 4
EB = 5
Thus,
2/5 = 4/CE
By cross multiplying,
2 * CE = 5 * 4
2CE = 20
CE = 20/2
CE = 10
which expression is equivalent to 5^-2 x 5^5
Given the expression:
[tex]5^{-2}\ast5^5[/tex]To find the equivalent expression, let's simplify the expression using power rule.
[tex]a^m\ast a^n=a^{m+n}[/tex]Since they have the same base, we are to add the exponents.
We have:
[tex]5^{-2}\text{ }\ast5^5=5^{-2+5}=5^3[/tex]Therefore, the eqivalent expression is 5³
ANSWER:
[tex]5^3[/tex]We a
make a conjecture about each value or geometric relationship.
The relationship between the angles of a triangle with all sides congruent.
Congruence of all sides implies congruence of all angles. All of the angles line up.
What is geometric conjecture?
According to Thurston's geometrization conjecture in mathematics, each of a select group of three-dimensional topological spaces has a distinctive geometric structure that can be connected to it.
How do the angles of a triangle with congruent sides relate to one another?
We refer to a triangle as being equilateral when its three sides are congruent. We add a slash mark to the sides that are congruent. An equilateral triangle always has 60° angles.Learn more about congruent
brainly.com/question/12413243
#SPJ13