Answer:
Thermal Conduction
Explanation:
If you placed 413g of Bal2 in a beaker and filled it with water to a total volume of 750ml, calculate the molarity of the solution
To calculate the molarity of a solution, we need to determine the number of moles of the solute (Bal2) and then divide it by the volume of the solution in liters.
Given:
Mass of Bal2 = 413 g
Volume of solution = 750 ml = 0.75 L
1. Calculate the number of moles of Bal2:
First, we need to convert the mass of Bal2 to moles using its molar mass. The molar mass of Bal2 can be calculated by summing the atomic masses of boron (B) and iodine (I):
Molar mass of Bal2 = (atomic mass of B × 1) + (atomic mass of I × 2)
Molar mass of Bal2 = (10.81 g/mol × 1) + (126.90 g/mol × 2)
Molar mass of Bal2 = 10.81 g/mol + 253.80 g/mol
Molar mass of Bal2 = 264.61 g/mol
Now we can calculate the number of moles of Bal2:
Moles of Bal2 = Mass of Bal2 / Molar mass of Bal2
Moles of Bal2 = 413 g / 264.61 g/mol
Moles of Bal2 ≈ 1.561 mol
2. Calculate the molarity of the solution:
Molarity (M) = Moles of solute / Volume of solution (in liters)
Molarity (M) = 1.561 mol / 0.75 L
Molarity (M) ≈ 2.081 M
Therefore, the molarity of the solution is approximately 2.081 M.
The molarity of the solution is approximately 1.408 M as to calculate the molarity of a solution, one must need to know the number of moles of the solute and the volume of the solution in liters.
The molar mass of BaI₂ is:
Ba (barium) atomic mass = 137.33 g/mol
I (iodine) atomic mass = 126.90 g/mol
Molar mass of BaI₂ = (Ba atomic mass) + 2 × (I atomic mass)
= 137.33 + 2 × 126.90
= 137.33 + 253.80
= 391.13 g/mol
Given that the mass of BaI₂ is 413 g,
Number of moles = Mass / Molar mass
= 413 g / 391.13 g/mol
= 1.056 moles
Volume of solution = 750 ml = 750/1000 = 0.75 L
Finally, one can calculate the molarity of the solution using the formula:
Molarity = Number of moles / Volume of solution
= 1.056 moles / 0.75 L
= 1.408 M
Learn more about molarity here.
https://brainly.com/question/13386686
#SPJ1
Determine the type of reaction, predict the product and balance the equation for the following:
LiOH + HBr --->
From the uncompleted equation, we have:
LiOH + HBr ->
LiOH is an ionic substance that can dissociate to produce Li⁺ and OH⁻ HBR is an ionic substance that can dissociate to produce H⁺ and Br⁻Since we have two ionic substance reacting, we can conclude that the type of reaction is double displacement reaction as the reaction will involve exchange of ions between the reacting species.
How do i determine the products of the reaction?The products of the reaction can be obtained by balancing the equation. This is shown below:
LiOH + HBr ->
By exchange of ion, we have
LiOH + HBr -> LiBr + H₂O
Now, observing the equation, we can see that the equation is balanced.
Thus, the products of the reaction are LiBr and H₂O
Learn more about balancing equation:
https://brainly.com/question/12192253
#SPJ1
Identify reactions types and balancing equations
The following chemical equations must be balanced:
1. N2 + 3 H2 → 2 NH3
Type: Synthesis
2. 2 KClO3 → 2 KCl + 3 O2
Type: Single Replacement
3. 2 NaF + ZnCl2 → ZnF2 + 2 NaCl
Type- Decomposition
4. 2 AlBr3 + 3 Ca(OH)2 → Al2(OH)6 + 6 CaBr2
Type- Double Replacement
5. 2 H2 + O2 → 2 H2O
Type: Combustion
6. 2 AgNO3 + MgCl2 → 2 AgCl + Mg(NO3)2
Type: Synthesis
7. 2 Al + 6 HCl → 2 AlCl3 + 3 H2
Type: Decomposition
8. C3H8 + 5 O2 → 3 CO2 + 4 H2O
Type: Combustion
9. 2 FeCl3 + 6 NaOH → Fe2O3 + 6 NaCl + 3 H2O
Type: Double Replacement
10. 4 P + 5 O2 → 2 P2O5
Type: Synthesis
11. 2 Na + 2 H2O → 2 NaOH + H2
Type: Single Replacement
12. 2 Ag2O → 4 Ag + O2
Type: Decomposition
13. C6H12O6 + 6 O2 → 6 CO2 + 6 H2O
Type: Combustion
14. 2 KBr + MgCl2 → 2 KCl + MgBr2
Type: Double Replacement
15. 2 HNO3 + Ba(OH)2 → Ba(NO3)2 + 2 H2O
Type: Double Replacement
16. C5H12 + 8 O2 → 5 CO2 + 6 H2O
Type: Combustion
17. 4 Al + 3 O2 → 2 Al2O3
Type: Synthesis
18. Fe2O3 + 2 Al → 2 Fe + Al2O3
Type: Single Replacement
Learn more about Chemical reactions, here:
https://brainly.com/question/29039149
#SPJ1
Identify reactions types and balancing equations???
The following chemical equations must be balanced:
1. N2 + 3 H2 → 2 NH3
Type: Synthesis reaction
2. 2 KClO3 → 2 KCl + 3 O2
Type: Single Replacement reaction
3. 2 NaF + ZnCl2 → ZnF2 + 2 NaCl
Type- Decomposition reaction
4. 2 AlBr3 + 3 Ca(OH)2 → Al2(OH)6 + 6 CaBr2
Type- Double Replacement reaction
5. 2 H2 + O2 → 2 H2O
Type: Combustion reaction
6. 2 AgNO3 + MgCl2 → 2 AgCl + Mg(NO3)2
Type: Synthesis reaction
7. 2 Al + 6 HCl → 2 AlCl3 + 3 H2
Type: Decomposition reaction
8. C3H8 + 5 O2 → 3 CO2 + 4 H2O
Type: Combustion reaction
9. 2 FeCl3 + 6 NaOH → Fe2O3 + 6 NaCl + 3 H2O
Type: Double Replacement reaction
10. 4 P + 5 O2 → 2 P2O5
Type: Synthesis reaction
11. 2 Na + 2 H2O → 2 NaOH + H2
Type: Single Replacement reaction
12. 2 Ag2O → 4 Ag + O2
Type: Decomposition reaction
13. C6H12O6 + 6 O2 → 6 CO2 + 6 H2O
Type: Combustion reaction
14. 2 KBr + MgCl2 → 2 KCl + MgBr2
Type: Double Replacement reaction
15. 2 HNO3 + Ba(OH)2 → Ba(NO3)2 + 2 H2O
Type: Double Replacement reaction
16. C5H12 + 8 O2 → 5 CO2 + 6 H2O
Type: Combustion reaction
17. 4 Al + 3 O2 → 2 Al2O3
Type: Synthesis reaction
18. Fe2O3 + 2 Al → 2 Fe + Al2O3
Type: Single Replacement reaction
Learn more about Chemical reactions, here:
https://brainly.com/question/14929452
#SPJ1
What volume of 3.0 M KOH contains 2.1 g?
Answer: about 12.5 mL is the estimated volume of a solution containing 2.1 g of KOH with a concentration of 3.0 M.
need help asap!!
u don’t gotta answer all questions btw
To calculate the molarity of the solution, we need to know the number of moles of BaI2 and the volume of the solution in liters.
First, let's calculate the number of moles of BaI2. We can use the formula:
Number of moles = Mass (in grams) / Molar mass
The molar mass of BaI2 can be calculated as follows:
Ba: atomic mass = 137.33 g/mol
I: atomic mass = 126.90 g/mol
2 x I = 2 x 126.90 g/mol = 253.80 g/mol
Total molar mass of BaI2 = 137.33 g/mol + 253.80 g/mol = 391.13 g/mol
Number of moles of BaI2 = 413 g / 391.13 g/mol ≈ 1.056 moles
Next, we need to convert the volume of the solution from milliliters to liters:
Volume of solution = 750 ml / 1000 = 0.75 L
Finally, we can calculate the molarity using the formula:
Molarity = Number of moles / Volume of solution
Molarity = 1.056 moles / 0.75 L ≈ 1.408 M
Therefore, the molarity of the BaI2 solution is approximately 1.408 M.
For more details regarding molarity, visit:
https://brainly.com/question/31545539
#SPJ1
Look at the graph that shows the progress made in reducing fuel cell system costs. Graph of progress in reducing Fuel Cell System has an x axis labeled Years from 2002 to 2010, and a y axis labeled cost in dollars per kilowatt hour from 0 to 300. Data is: 2002, 248 dollars. 2003, 198 dollars. 2004, 149 dollars. 2005, 99 dollars. 2007, 82 dollars. 2008, 60 dollars. 2009, 51 dollars. 2010, 43 dollars. 2015 goal is 30 dollars per kilowatt hour. Which conclusion is supported by the information in the graph? The cost of producing a kilowatt of power with a fuel cell will be less than $30 in 2015. Fuel cell cars are unlikely to be affordable in the near future. The rate of emissions is decreasing because of inexpensive fuel cell technology. The environment is unlikely to improve as a result of cheap fuel cell technology.
How many molecules of. C6H1206 are needed to produce 18 molecules of co2
A.3
B.9
C.12
D.18
Answer: A : 3
Explanation: 18 CO2 / 6 CO2 = 3 C6H12O6
Answer:
A = 3.
Explanation:
Here is how:
To determine the number of molecules of C6H12O6 (glucose) needed to produce 18 molecules of CO2, we need to consider the balanced chemical equation for the complete combustion of glucose:
C6H12O6 + 6O2 -> 6CO2 + 6H2O
From the balanced equation, we can see that 1 molecule of glucose (C6H12O6) produces 6 molecules of CO2. Therefore, we can set up a proportion to find the number of glucose molecules needed:
1 molecule of glucose produces 6 molecules of CO2
x molecules of glucose produce 18 molecules of CO2
Using the proportion:
1/6 = x/18
To solve for x, we can cross-multiply:
6x = 18
Dividing both sides by 6:
x = 3
Therefore, 3 molecules of C6H12O6 are needed to produce 18 molecules of CO2.
The Russian Mir space station used a chemical oxygen generator system to make oxygen for the crew. The system ignited a tube of solid lithium perchlorate (LiClO4) to make oxygen and lithium chloride (LiCl):
LiClO4 (s) 2O2 (g) + LiCl (s)
If you have 500 g of LiClO4, then how many liters of oxygen will the system make at the station’s standard operating conditions, a pressure of 101.5 kPa and a temperature of 21°C?
At the usual working conditions of 101.5 kPa and 21°C, the chemical oxygen generator system would generate roughly 220.84 litres of oxygen using 500 g of LiClO4.
We may use the ideal gas law and stoichiometry to calculate how many litres of oxygen are created by the chemical oxygen generator system employing 500 g of LiClO4.
We must first determine the moles of LiClO4. LiClO4 has a molar mass of approximately 106.39 g/mol. As a result, 4.704 mol of LiClO4 are produced from 500 g of LiClO4 using the formula: 500 g / 106.39 g/mol
We can see from the chemical equation that 1 mole of LiClO4 results in 2 moles of O2. 4.704 mol of LiClO4 will therefore result in:
2 mol O2 / 1 mol LiClO4 4.704 mol LiClO4 = 9.408 mol O2
The moles of O2 under the specified conditions must then be converted to volume. The ideal gas law, which goes as follows:
PV = nRT
Where:
P = pressure = 101.5 kPa
V = volume (in liters)
n = moles of gas = 9.408 mol
R = ideal gas constant = 8.314 J/(mol·K)
T = temperature = 21°C = 294 K (converted to Kelvin)
Rearranging the equation to solve for V:
V = (nRT) / P
V = (9.408 mol × 8.314 J/(mol·K) × 294 K) / (101.5 kPa × 1000 Pa/kPa)
Simplifying the units:
V = (9.408 × 8.314 × 294) / 101.5
V ≈ 220.84 liters
For more such questions on oxygen
https://brainly.com/question/15457775
#SPJ8
16. Who was the first modern chemist
Predict the products in the chemical reaction, Na+AlN
A moon rock collected by a U.S. Apollo mission is estimated to be 4.40 billion years old by uranium/lead dating. Assuming that the rock did not contain any lead when it was formed, what is the current mass of Pb206 in the rock, if it currently contains 1.130g of U238? The half-life of U238 is 4.47×109 years
While preparing 2.00 L of iced tea, Dora adds 0.750 moles of sucrose. What is the molarity of the sucrose in the iced tea mixture?
The molarity of the sucrose in the iced tea mixture prepared by dissolving 0.750 moles of sucrose in the 2.00 L of iced tea is
How do i determine the molarity of the solution?The following data were obtained from the question:
Number of mole of sucrose = 0.750 moleVolume of solution = 2 LitersMolarity of solution = ?The molarity of the solution can be obtained as illustrated below:
Molarity of solution = mole / volume
Molarity of solution = 0.750 mole / 2 liters
Molarity of solution = 0.375 M
Thus, we can conclude from the above calculation that the molarity of the solution is 2.5 M
Learn more about molarity:
https://brainly.com/question/16073358
#SPJ1
CHEM FINAL TOMORROW!!! I'm struggling with a few concepts, if anyone could help explain this to me & how to do it, I'd be very grateful!!!
Based on the given reaction, the acid-base pairs in this reaction are:
HCO₃⁻ (acid) and NH₃ (base)NH₄⁺ (acid) and CO₃²⁻ (base)What are the acid-base pairs in the given reaction?An acid-base pair refers to a set of two chemical species that are related through the transfer of a proton (H+ ion) during a chemical reaction.
One species acts as an acid by donating a proton, while the other acts as a base by accepting that proton.
In the given reaction:
HCO₃⁻ (aq) + NH₃ (aq) → NH₄⁺ + CO₃²⁻
An acid-base pair can be identified as follows:
HCO₃⁻ (bicarbonate ion) can act as an acid by donating a proton (H⁺), becoming CO₃⁻.
NH₃ (ammonia) can act as a base by accepting a proton (H⁺), becoming NH₄⁺ (ammonium ion).
Learn more about acid-base pairs at: https://brainly.com/question/22514615
#SPJ1
CHEM FINAL TOMORROW!!! Need some help with concentration stuff. If someone could tell me how this works it would be incredibly helpful!!
The boiling point of a solution is influenced by the presence of solute particles, which can cause a change in the boiling point compared to the pure solvent. This phenomenon is known as boiling point elevation.
The magnitude of boiling point elevation depends on the concentration of the solute and the nature of the solute particles. In general, the greater the concentration of solute particles, the greater the boiling point elevation.
Comparing a 0.5m sodium chloride (NaCl) solution to a 0.3m aluminum sulfate ([tex]Al_2(SO_4)_3[/tex]) solution, we can determine the relative boiling point elevation.
Sodium chloride (NaCl) dissociates into two ions in solution (Na+ and Cl-), while aluminum sulfate ([tex]Al_2(SO_4)_3[/tex])dissociates into three ions (2[tex]Al_3[/tex]+ and 3[tex]SO_4[/tex]2-). This means that the aluminum sulfate solution will have a greater concentration of solute particles per mole than the sodium chloride solution.
Therefore, the boiling point of the 0.5m sodium chloride solution will be lower than the boiling point of the 0.3m aluminum sulfate solution.
For more details regarding boiling point, visit:
https://brainly.com/question/2153588
#SPJ1
Identify the type of reaction and predict the product: Calcium + water -->
Answer:
Exothermic Reaction
Product = Calcium hydroxide + hydrogen
Explanation:
If you know the answer tell me please
Metamorphic rocks can be harder, less porous, and have crystals that can be lined, describing some of the ways in which metamorphic rocks differ from sedimentary rocks.
There are two different types of rocks: sedimentary rocks and metamorphic rocks. Igneous or sedimentary pre-existing rocks undergo changes under extreme heat and pressure to form metamorphic rocks. This process results in the recrystallization of minerals, leading to the formation of a new rock with distinct physical and chemical characteristics.
Therefore, the correct option is B.
Learn more about Metamorphic rocks, here:
https://brainly.com/question/19930528
#SPJ1
Select all of the equations which demonstrate the law of conservation of mass.
A Mg + S → MgS2
B C + O2 → C2O
C 4Cu + O2 → 2Cu2O
D 2H2 + O2 → 2H2O
E H2SO4 + Zn → 4ZnSO + H2
The equations (C + O2 → C2O), C (4Cu + O2 → 2Cu2O), and D (2H2 + O2 → 2H2O) demonstrate the law of conservation of mass. Option B.
The law of conservation of mass states that in a chemical reaction, the total mass of the reactants is equal to the total mass of the products. Let's analyze each equation to determine if it demonstrates the conservation of mass:
A Mg + S → MgS2:
This equation does not demonstrate the conservation of mass. The reactants contain one magnesium atom and one sulfur atom, while the product contains one magnesium atom and two sulfur atoms.
The number of atoms on the left side is not equal to the number of atoms on the right side, violating the law of conservation of mass.
B C + O2 → C2O:
This equation demonstrates the conservation of mass. The reactants contain one carbon atom and two oxygen atoms, while the product contains two carbon atoms and two oxygen atoms. The number of atoms on the left side is equal to the number of atoms on the right side, satisfying the law of conservation of mass.
C 4Cu + O2 → 2Cu2O:
This equation demonstrates the conservation of mass. The reactants contain four copper atoms and two oxygen atoms, while the product contains four copper atoms and two oxygen atoms.
The number of atoms on the left side is equal to the number of atoms on the right side, satisfying the law of conservation of mass.
D 2H2 + O2 → 2H2O:
This equation demonstrates the conservation of mass. The reactants contain four hydrogen atoms and two oxygen atoms, while the product contains four hydrogen atoms and two oxygen atoms. The number of atoms on the left side is equal to the number of atoms on the right side, satisfying the law of conservation of mass.
E H2SO4 + Zn → 4ZnSO + H2:
This equation does not demonstrate the conservation of mass. The reactants contain one sulfur atom, while the products contain four sulfur atoms.
The number of atoms on the left side is not equal to the number of atoms on the right side, violating the law of conservation of mass. So Option B is correct.
For more question on conservation visit:
https://brainly.com/question/27891057
#SPJ8
Identify reactions types and balancing equations
Balance the following chemical equations:
1. N2 + 3 H2 → 2 NH3
Ex: Synthesis reaction
2. 2 KClO3 → 2 KCl + 3 O2
Single Replacement reaction
3. 2 NaF + ZnCl2 → ZnF2 + 2 NaCl
Decomposition reaction
4. 2 AlBr3 + 3 Ca(OH)2 → Al2(OH)6 + 6 CaBr2
Double Replacement reaction
5. 2 H2 + O2 → 2 H2O
Combustion reaction
6. 2 AgNO3 + MgCl2 → 2 AgCl + Mg(NO3)2
Synthesis reaction
7. 2 Al + 6 HCl → 2 AlCl3 + 3 H2
Decomposition reaction
8. C3H8 + 5 O2 → 3 CO2 + 4 H2O
Combustion reaction
9. 2 FeCl3 + 6 NaOH → Fe2O3 + 6 NaCl + 3 H2O
Double Replacement reaction
10. 4 P + 5 O2 → 2 P2O5
Synthesis reaction
11. 2 Na + 2 H2O → 2 NaOH + H2
Single Replacement reaction
12. 2 Ag2O → 4 Ag + O2
Decomposition reaction
13. C6H12O6 + 6 O2 → 6 CO2 + 6 H2O
Combustion reaction
14. 2 KBr + MgCl2 → 2 KCl + MgBr2
Double Replacement reaction
15. 2 HNO3 + Ba(OH)2 → Ba(NO3)2 + 2 H2O
Double Replacement reaction
16. C5H12 + 8 O2 → 5 CO2 + 6 H2O
Combustion reaction
17. 4 Al + 3 O2 → 2 Al2O3
Synthesis reaction
18. Fe2O3 + 2 Al → 2 Fe + Al2O3
Single Replacement reaction
Learn more about Chemical reactions, here:
https://brainly.com/question/29762834
#SPJ1
A compound is found to contain 3.622 % carbon and 96.38 % bromine by weight.
The molecular weight for this compound is 331.61g/mole. What is the molecular formula for this compound?
If a compound is found to contain 3.622 % carbon and 96.38 % bromine by weight. The molecular formula for the compound is CBr4.
First, get the empirical formula in order to calculate the molecular formula of the chemical. The empirical formula shows the atoms of a compound in their most straightforward whole number ratio.
Suppose 100 grams of the substance. To determine the mass of carbon and bromine in the compound using the provided percentages.
Mass of C = 3.622% of 100g
= 3.622g
Mass of Br = 96.38% of 100g
= 96.38g
The next step is to determine the atomic masses of carbon and bromine in order to determine the number of moles for each.
Atomic mass of carbon = 12.01 g/mol
Atomic mass of bromine = 79.90 g/mol
Moles of C = (mass of carbon) / (atomic mass of carbon)
= 3.622g / 12.01 g/mol
= 0.3016 mol
Moles of Br = (mass of bromine) / (atomic mass of bromine)
= 96.38g / 79.90 g/mol
= 1.205 mol
Divide the moles of each element by the fewest number of moles obtained, in this case the moles of carbon, to arrive at the empirical formula.
Empirical formula ratio:
C: (0.3016 mol) / (0.3016 mol)
= 1
Br: (1.205 mol) / (0.3016 mol)
= 4
The empirical formula for the compound is C₁Br4.
To determine the molecular formula, it is required to know the molecular weight of the compound. The molecular weight is 331.61 g/mol.
To find the number of empirical formula units in the molecular formula, divide the molecular weight by the empirical formula weight.
Empirical formula weight:
C = 12.01 g/mol × 1
= 12.01 g/mol
Br= 79.90 g/mol × 4
= 319.60 g/mol
Empirical formula weight = 12.01 + 319.60
= 331.61 g/mol
Now find the number of empirical formula units in the molecular formula:
Number of empirical formula units
= (molecular weight) ÷ (empirical formula weight)
Number of empirical formula units
= 331.61 g/mol / 331.61 g/mol
= 1
The number of empirical formula units is 1, the empirical formula C₁Br4 is would be the molecular formula for this compound.
Thus, the molecular formula for the compound is CBr₄.
Learn more about molecular formula, here:
https://brainly.com/question/29435366
#SPJ1
How are moles and particles related. How could you find the number of particles in 4 moles of substance
Water arrived on earth in the form of
Answer:
the water arrives on the earth in the form of water rich objects(planetesimals)
MgCl2 + 2 NaOH → 2 NaCl + Mg(OH)2
If you want to produce 11.00 moles of MgCl2, how many grams of NaOH are needed for the reaction to take place ?
To produce 11.00 moles of MgCl2, you would need 858.00 grams of NaOH.
To determine the amount of NaOH needed to produce 11.00 moles of MgCl2, we need to use stoichiometry and the balanced chemical equation:
[tex]MgCl_2 + 2 NaOH[/tex] → [tex]2 NaCl + Mg(OH)_2[/tex]
From the balanced equation, we can see that the mole ratio between [tex]MgCl_2[/tex]and NaOH is 1:2.
Therefore, for every 1 mole of[tex]MgCl_2[/tex], we need 2 moles of NaOH.
Given: Moles of [tex]MgCl_2[/tex]= 11.00 moles
Using the mole ratio, we can calculate the moles of NaOH required:
moles of NaOH = 2 * moles of MgCl2
moles of NaOH = 2 * 11.00 moles
moles of NaOH = 22.00 moles
Now, we need to convert the moles of NaOH to grams using the molar mass of NaOH:
The molar mass of NaOH = 22.99 g/mol + 16.00 g/mol + 1.01 g/mol = 39.00 g/mol
grams of NaOH = moles of NaOH * molar mass of NaOH
grams of NaOH = 22.00 moles * 39.00 g/mol
grams of NaOH = 858.00 grams
Therefore, to produce 11.00 moles of [tex]MgCl_2[/tex], you would need 858.00 grams of NaOH.
Know more about molar mass here:
https://brainly.com/question/837939
#SPJ8
A block of wood has a mass of 450. g. When dropped into a graduated cylinder, the water level rises from 4.50 mL to 16.22 mL. What is the density of the block in g/mL?
The density of the block of wood is approximately 38.40 g/mL.
To calculate the density of the block of wood, we need to use the formula:
Density = Mass / Volume
First, let's convert the mass of the block from grams (g) to milliliters (mL). Since the density is expressed in g/mL, the mass and volume need to have the same units.
Given:
Mass of the block = 450 g
Change in water level = 16.22 mL - 4.50 mL = 11.72 mL
Density = 450 g / 11.72 mL
Calculating the density:
Density ≈ 38.40 g/mL
Therefore, the density of the block of wood is approximately 38.40 g/mL.
The density of a substance represents its mass per unit volume. In this case, the mass of the block of wood is 450 g, and the volume is determined by the change in water level when the block is dropped into the graduated cylinder. By subtracting the initial water level (4.50 mL) from the final water level (16.22 mL), we find that the block occupies a volume of 11.72 mL. Dividing the mass by the volume gives us the density of the block, expressed in grams per milliliter.
It's important to note that the density of wood can vary depending on factors such as the type of wood and its moisture content. The value calculated here represents the density of the specific block used in the given scenario.
For more such question on density visit
https://brainly.com/question/26364788
#SPJ8
A solution is made by mixing 569 mL of water and 238 mL ethanol. What is the concentration of ethanol in units of volume/volume percent?
The concentration of ethanol in units of volume/volume percent is 29.49%.
Volume/volume concentrationTo calculate the concentration of ethanol in units of volume/volume percent, we need to determine the volume of ethanol relative to the total volume of the solution.
Total volume of the solution = volume of water + volume of ethanol
Total volume = 569 mL + 238 mL
Total volume = 807 mL
To express the concentration as volume/volume percent, we can calculate the ratio of the volume of ethanol to the total volume of the solution and multiply by 100 to obtain a percentage.
Concentration of ethanol = (volume of ethanol / total volume of solution) x 100
Concentration of ethanol = (238 mL / 807 mL) x 100
Concentration of ethanol = 0.2949 x 100
Concentration of ethanol = 29.49%
Therefore, the concentration of ethanol in the solution is approximately 29.49%.
More on concentration units can be found here: https://brainly.com/question/29787755
#SPJ1
determine if the following compounds are soluble (s) or insoluble (i) in what we based on the solubility chart
a. (NH4)2CO3
b.Fe(OH)2
c.CaOH
d. PbCl2
The solubility chart provides information about the solubility of various compounds in water. Here are the solubilities of the given compounds:
a. (NH₄)₂CO₃: According to the solubility chart, most carbonate (CO₃²⁻) salts are insoluble, except for those of Group 1 metals (alkali metals) and ammonium (NH₄⁺). Therefore, (NH₄)₂CO₃ is soluble.
b. Fe(OH)₂: Hydroxide (OH⁻) salts of transition metals, including iron (Fe), are generally insoluble, except for those of Group 1 metals and ammonium. Therefore, Fe(OH)₂ is insoluble.
c. Ca(OH)₂: Calcium hydroxide (Ca(OH)₂) is soluble. However, the given compound "CaOH" appears to be missing the subscript ₂, indicating two hydroxide ions. If it should be Ca(OH)₂, then it is soluble.
d. PbCl₂: According to the solubility chart, chloride (Cl⁻) salts, including lead chloride (PbCl₂), are generally soluble, except for those of silver (Ag⁺), lead (Pb²⁺), and mercury (Hg₂²⁺). Therefore, PbCl₂ is insoluble.
Learn more about solubility, here:
https://brainly.com/question/29857840
#SPJ1
What is the name of LiBr and what is the charge of the cation (indicate the number and - or +)?
The name of LiBr is lithium bromate and the charge of the cation (K) is +.
What is a cation?A cation is a positively charged ion, i.e. one that would be attracted to the cathode in electrolysis. The opposite of a cation is an anion.
Cations and anions make up an ionic compound and determine the charge on the compound. For example, an ionic compound; Lithium bromate is given in this question.
Lithium bromate is made up of Lithium (Li+) as the cation and chlorine (Cl-) as the anion.
Learn more about cations at: https://brainly.com/question/1626694
#SPJ1
Determine the limiting reactant:
2BF3 (1) + 3Li2SO4 (aq) --> B₂(SO4)3 (aq) + 6LiF (aq) (balanced)
300 grams of BF3 react with 800 grams of Li₂SO4.
Answer:
The limiting reactant is BF3 because there is less of it than Li2SO4.
Explanation:
determine if the following are ionic or covalent compounds
a. P2O7
b. SnBr2
c.Fe(OH)2
d.Cl3O8
Answer:
a. P2O7 - This is a covalent compound. P and O have similar electronegativities and they form a covalent bond between them, rather than an ionic bond.
b. SnBr2 - This is a covalent compound. Sn and Br have different electronegativities, but they still form a covalent bond due to their relatively small difference in electronegativity.
c. Fe(OH)2 - This is an ionic compound. Fe has a higher electronegativity than O and H, so it tends to donate its electrons and become positively charged. This results in the formation of ionic bonds between Fe and OH.
d. Cl3O8 - This is a covalent compound. Cl and O have similar electronegativities, so they form covalent bonds rather than ionic bonds.
Identify what kind of bonding takes place between sodium and chlorine? Explain this bonding. What is the name of the resulting compound? Explain what happens to the compound in water and why it acts this way.
The dissociation of sodium chloride in water allows it to act as an electrolyte, conducting electricity through the movement of ions.
The bonding between sodium and chlorine is classified as ionic bonding. In this type of bonding, electrons are transferred from one atom to another, resulting in the formation of ions. Sodium (Na) readily donates one electron from its outermost shell to achieve a stable electron configuration, while chlorine (Cl) accepts this electron to fill its outermost shell. As a result, sodium forms a positively charged ion (Na+), known as a cation, while chlorine forms a negatively charged ion (Cl-), known as an anion. The electrostatic attraction between these oppositely charged ions creates a strong bond between sodium and chlorine, forming sodium chloride (NaCl) as the resulting compound.
When sodium chloride is dissolved in water, the compound dissociates into separate sodium cations and chloride anions. Water molecules, which have a polar nature, surround the individual ions due to their attraction to opposite charges. This process is called hydration or solvation. The water molecules effectively separate the sodium and chloride ions, leading to the compound's dissolution. This is because water molecules have a higher affinity for the charged ions compared to the ionic bond holding the compound together.
For more such questions on chloride
https://brainly.com/question/28106660
#SPJ8