which of the following have wavelengths that are longer than visible light? question 3 options: 1) gamma rays 2) ultraviolet (uv) light 3) infrared radiation 4) x rays 5) a, b, and d

Answers

Answer 1

All of the following have wavelengths that are longer than visible light: Gamma Rays, Ultraviolet (UV) Light, Infrared Radiation, and X Rays (A, B, and D).

Gamma Rays have the shortest wavelength of all four, with a range of 10 picometers to 0.01 nanometers. Ultraviolet (UV) Light has a range of 10 nanometers to 400 nanometers. Infrared Radiation has a range of 700 nanometers to 1 millimeter. Finally, X Rays have a range of 0.01 nanometers to 10 nanometers.
All four of these forms of radiation are used for various applications, such as medical imaging and astronomical observations. Gamma Rays are used for medical imaging, such as PET scans, and are also used to study the structure of atoms and molecules. Ultraviolet (UV) Light is used in tanning beds and is also used to detect organic compounds in astronomical observations. Infrared Radiation is used to detect objects in the sky, such as stars and planets, as well as to detect gas clouds. Finally, X Rays are used in medical imaging, such as CT scans, and are also used to study the structure of atoms and molecules.  

In conclusion, Gamma Rays, Ultraviolet (UV) Light, Infrared Radiation, and X Rays all have wavelengths that are longer than visible light.

For more such questions on Wavelengths.

https://brainly.com/question/12037899#

#SPJ11


Related Questions

what physical changes occur to a wave's speed (s), wavelength (l), height (h), and steepness (h/l) as the wave moves across shoaling water to break on the shore?

Answers

Wave speed (S) decreases, wavelength (L) decreases, height (H) increases, and wave steepness ([tex]\frac{H}{L}[/tex]) increases when  the wave moves across shoaling water to break on the shore.

What is wave speed ?

The distance a wave travels in a given amount of time, such as the number of meters per second, is referred to as its wave speed. The equation Speed = Wavelength x Frequency relates wave speed to wavelength and frequency. When the wavelength and frequency are known, this equation can be used to calculate wave speed.

to know more about wave speed , visit ;

brainly.com/question/10715783

#SPJ1

a 35.0-kg bucket is lowered by a rope with constant velocity of 7.11 m/s. what is the tension in the rope?

Answers

The tension in the rope is 343.35 N.

To solve this question, we need to apply Newton's second law. In this scenario, the bucket is being lowered at a constant speed.

This means that the acceleration is zero. The forces acting on the bucket are gravity and tension.

Let's apply Newton's second law:ΣF = ma

Forces in the vertical direction:ΣF = 0

The forces acting on the bucket in the vertical direction are gravity (Fg) and tension (T).

Since the acceleration is zero, the net force must also be zero.

Therefore, the magnitude of the upward force (T) must be equal to the magnitude of the downward force (Fg).

Fg = mg

where m is the mass of the bucket and g is the acceleration due to gravity.

The force of tension can be calculated as follows:T = mg = (35.0 kg)(9.81 m/s²) = 343.35 N

The tension in the rope is 343.35 N.

To learn more about tension:

https://brainly.com/question/13397436#
#SPJ11

how fast (in rpm) must a centrifuge rotate if a particle 8.50 cm from the axis of rotation is to experience an acceleration of 115000 g's? if the answer has 4 digits or more, enter it without commas, e.g. 13500.

Answers

The centrifuge must rotate at approximately 54959 rpm to produce an acceleration of 115000 g's at a distance of 8.50 cm from the axis of rotation.

To solve this problem, we can use the formula for centrifugal acceleration:

a = (r * w^2) / g

where a is the desired acceleration in units of g's, r is the distance of the particle from the axis of rotation, w is the angular velocity of the centrifuge in radians per second, and g is the acceleration due to gravity (approximately 9.81 m/s^2).

First, we need to convert the distance from centimeters to meters:

r = 8.50 cm = 0.085 m

Next, we can rearrange the formula to solve for the angular velocity w:

w = sqrt((a * g) / r)

Substituting the given values, we get:

w = sqrt((115000 * 9.81) / 0.085)

w = 5758.6 radians per second

Finally, we can convert the angular velocity from radians per second to revolutions per minute (rpm):

1 revolution = 2π radians

1 minute = 60 seconds

w (in rpm) = (w / 2π) * 60

w (in rpm) = (5758.6 / (2π)) * 60

w (in rpm) ≈ 54959

Learn more about centrifugal acceleration at: https://brainly.com/question/79801

#SPJ11

Two objects, m1 and m2, have an elastic collision. The initial velocity of m1 is +6. 0 m/s and of m2 is +4. 0 m/s. After the collision, the velocity of m1 is +5. 0m/s. What is the velocity of m2?

Answers

Momentum and kinetic energy are both preserved in an elastic collision between two objects. These conservation rules allow us to find the ultimate velocity of m2 by solving for it.

The conservation of momentum can be used as a starting point:

M1V1I and M2V2I equal M1V1F and M2V2F.

where v1i and v2i are the two objects' beginning velocities, m1 and m2 are their respective masses, and v1f and v2f are their respective final velocities.

Inputting the values provided yields:

M1V1I and M2V2I equal M1V1F and M2V2F.

The formula is (6.0 kg)(+6.0 m/s) + (m2)(+4.0 m/s) = (6.0 kg)(+5.0 m/s) + (m2) (v2f)

(1/2)(m2)(+4.0 m/s) + (1/2)(6.0 kg)(+6.0 m/s)2

The formula is 2 = (1/2)(6.0 kg)(+5.0 m/s) + (1/2)(m2)(v2f)

learn more about elastic collision  here:

https://brainly.com/question/2356330

#SPJ4

what is the resistance of a resistor which produces heat energy at a rate 166.0 w when a current 6.44 a is run through it?

Answers

The resistance of a resistor which produces heat energy at a rate of 166.0 W when a current 6.44 A is run through it is: 25.8 ohms

The resistance of a resistor which produces heat energy at a rate of 166.0 W when a current 6.44 A is run through it can be determined using Ohm's Law. According to Ohm's Law, resistance is equal to the voltage divided by the current.

Therefore, in this case, the resistance can be calculated by dividing the voltage of 166.0 W by the current of 6.44 A, which results in a resistance of 25.8 ohms.

This resistance is known as electrical resistance and is measured in ohms. When a current runs through a resistor, it produces heat energy. The amount of heat energy produced is directly proportional to the current and resistance.

Thus, a higher resistance will lead to more heat energy produced. In the example, a current of 6.44 A with a resistance of 25.8 ohms produces 166.0 W of heat energy.

To know more about resistance refer here:

https://brainly.com/question/30799966#

#SPJ11

In the sport of parasailing, a person is attached to a rope being pulled by a boat while hanging from a parachute-like sail. A rider is towed at a constant speed by a rope that is at an angle of 19 ∘
from horizontal. The tension in the rope is 1500 N. The force of the sail on the rider is 30∘
from horizontal

Answers

We may use trigonometry to address this issue by dividing the forces into their horizontal and vertical components.

...... 'S,""" '

T horizontal equals Tension * cos(19°)

T vertical = 1437.61 N

Then, we may determine the tension force's vertical component:

T vertical equals Tension * Sin(19°)

T horizontal = 484.94 N

We can now calculate the horizontal component of the sail's force on the rider:

F horizontal is equal to F sail * cos(30°).

vertical = 25.98 N

Last but not least, we may determine the vertical component of the sail's force on the rider:

F vertical is F sail times sin(30°).

F horizontal = 14.99 N

The net horizontal force must be zero since the rider is not accelerating in the horizontal direction. In light of this, the horizontal component of the tension force and the horizontal component

learn more about horizontal here:

https://brainly.com/question/29019854

#SPJ4

how do the vertical and horizontal components of velocity change for a ball tossed at an upward angle?

Answers

When a ball is thrown at an upward angle, the vertical and horizontal components of velocity change in different ways. The vertical component of velocity decreases to a certain point before increasing again due to gravity. However, the horizontal component of velocity remains constant throughout the motion of the ball.

When a ball is tossed at an upward angle, the velocity has two components; vertical and horizontal components. The horizontal component is unaffected since there is no force acting on it.

The vertical component is influenced by the gravitational force acting on the ball. As the ball goes up, the vertical component of velocity decreases to zero. The maximum point is reached when the ball's velocity is zero. At this point, the ball stops going up and starts going down. As the ball falls, the vertical component of velocity increases in the opposite direction to the gravitational force acting on it.

Therefore, the vertical component of velocity changes as the ball is tossed at an upward angle. It increases, then decreases to zero at the top of its trajectory, and then increases again as the ball falls back to the ground. The horizontal component of velocity is constant throughout the motion of the ball because there is no force acting on it.

Hence, when a ball is tossed at an upward angle, the vertical and horizontal components of velocity change in different ways.

To know more about the components of velocity, refer here:

https://brainly.com/question/14431896#

#SPJ11

a portable cd player uses a current of 7.5 ma at a potential diference of 3.5 v. how much energy does the player use in 35 s?

Answers

A portable CD player uses 7.5mA of current at a potential difference of 3.5V.  Since it is running for 35 seconds, the total energy consumed in that time is  calculated by the product of potential difference, current and time consumed and it is solved as 918.75mJ.


The amount of energy used by the portable CD player can be calculated using the formula:

E = VIt

where E is the energy, V is the potential difference, I is the current and t is the time.

The portable CD player uses a current of 7.5 mA at a potential difference of 3.5 V.

Thus, the energy used by the player in 35 seconds can be calculated as follows:

[tex]E = VIt\\ = 3.5 V \times 7.5 mA \times35 s \\= 918.75 mJ[/tex]

Therefore, the portable CD player uses 918.75 mJ of energy in 35 seconds.

For further details on potential difference, click on the below link:

https://brainly.com/question/12918923

#SPJ11

the force on an 0.8 m wire that is perpendicular to earth's magnetic field is 0.12 n. what current flows through the wire

Answers

The current flowing through the wire is 0.15 A.


The force on an 0.8 m wire that is perpendicular to Earth's magnetic field is 0.12 N. This is equal to the equation F=BIL, where B is the magnetic field, I is the current and L is the length of the wire.

Calculate the magnetic force, F, with the equation:

F=BIL, where B is the magnetic field, I is current, and L is the length of the wire.

Calculate the current, I, with the equation I = F/BL = 0.15 A.

Therefore, the current flowing through the wire is 0.15 A.

To know more about current click here:

https://brainly.com/question/16880541

#SPJ11

given that the first 30 super igniters successfully launch rockets, is it reasonable to believe that the failure rate of the super igniters is less than 15 percent? explain.

Answers

The failure rate of the super igniters is less than 15 percent.

What are super igniters?

If 30 super igniters successfully launch rockets, it is reasonable to believe that the failure rate of the super igniters is less than 15 percent.

Let us assume that the total number of super igniters is 100. If the failure rate is less than 15 percent, then the number of igniters that would not work is less than 15.

Since 30 super igniters successfully launch rockets, the number of igniters that would not work is less than 15. Therefore, the failure rate of the super igniters is less than 15 percent.

To know more about super igniters:

https://brainly.com/question/29622271

#SPJ11

I need help with this question

Answers

Answer:

The is answer C

Explanation:

The electrons are always on the outside and the positive are in the inside the nucleus

and the neutron are in the inside.

Answer:

the correct option is C

Explanation:

in the orbitals that surrounds the nucleus .

thank you.

which choice accurately describes what light is?responsesneither a particle nor a waveneither a particle nor a waveboth a particle and a waveboth a particle and a wave,only a particleonly a particleonly a waveonly a wave

Answers

The correct option is C. Both a particle and a wave accurately describe what light is. This is known as the wave-particle duality of light

Wave-particle duality is a fundamental concept in physics that describes the behavior of matter and energy at the atomic and subatomic scale. It states that matter and energy can exhibit both wave-like and particle-like behavior, depending on how they are observed or measured.

For example, light can be observed as both a wave and a particle, depending on the experiment. When it behaves as a wave, it exhibits characteristics such as diffraction, interference, and polarization. When it behaves as a particle, it exhibits characteristics such as energy and momentum. The wave-particle duality has significant implications for our understanding of the nature of reality and the fundamental laws of physics, and it has led to the development of many important technologies, such as lasers, transistors, and semiconductors.

To learn more about Wave-particles visit here:

brainly.com/question/15385740

#SPJ4

Complete Question: -

which choice accurately describes what light is? responses neither

A). a particle nor a wave neither

B). a particle nor a wave

C). both a particle and wave both a particle and a wave,

D). only a particle only a particle only a wave only a wave


6. A pulley, of radius R and moment of inertia 1 = 2 MR2, is mounted on an axle with
negligible friction. Block A with a mass M and Block B with a mass 3M are attached to a
light string that passes over the pulley. Assuming that the string doesn't slip on the
pulley, answer the following questions in terms of M, R, and fundamental constants.
Expres
angular
a.
What is the acceleration of the two blocks?
b. What is the tension force in the left section of the string?
c. What is the tension force in the right section of the string?
d. What is the angular acceleration of the pulley?

Answers

The acceleration of the two blocks is g/4.

Tension force in the left section of the string is 5/4 Mg

Tension force in the right section of the string is 3/4 Mg

Angular acceleration of the pulley is 0.

How to calculate acceleration, tension force and angular acceleration?

a. The acceleration of the two blocks can be found by applying Newton's second law to each block. For Block A, the force equation is:

T - Mg = Ma

where T is the tension force in the string, M is the mass of Block A, g is the acceleration due to gravity, and a is the acceleration of Block A. For Block B, the force equation is:

3Mg - T = 3Ma

where T is the tension force in the string and a is the acceleration of Block B. Since the string is assumed to be light and inextensible, the tension force in both sections of the string is the same.

The two equations can be solved simultaneously to obtain the acceleration: a = g/4

b. To find the tension force in the left section of the string, we can use the force equation for Block A:

T - Mg = Ma

Substituting the value of acceleration we obtained in part a:

T = 5/4 Mg

c. To find the tension force in the right section of the string, we can use the force equation for Block B:

3Mg - T = 3Ma

Substituting the value of acceleration we obtained in part a, and the value of T we obtained in part bt:

T = 3/4 Mg

d. To find the angular acceleration of the pulley, we can use the torque equation:

Iα = Στ

where I is the moment of inertia of the pulley, α is the angular acceleration, and Στ is the net torque acting on the pulley.

The tension force in the string exerts a torque on the pulley, given by:

τ = TR

where R is the radius of the pulley. Since the tension force is the same on both sides of the pulley, the net torque is zero. Thus, we have:

Iα = 0 which implies that the angular acceleration of the pulley is zero.

Learn more on angular acceleration here: https://brainly.com/question/25129606

#SPJ1

Which label identifies a rarefaction?
O A
Ов
O C
OD

Answers

In the longitudinal wave ,B represents the phenomenon of rarefaction. Rarefaction refers to the region of a sound wave where the pressure of the medium is lower than its normal value.

What is rarefaction?

Rarefaction is a term used to describe a decrease in the density or pressure of a substance, such as a gas or liquid. In the context of sound waves, rarefaction refers to the region of a sound wave where the pressure of the medium is lower than its normal value, causing the particles of the medium to be spread further apart than usual.

Sound waves are composed of regions of compression and rarefaction that alternate in a regular pattern as the wave travels through a medium. In a compressional (longitudinal) sound wave, the particles of the medium are pushed together in regions of compression, while they are spread apart in regions of rarefaction. These changes in pressure and density cause the wave to propagate through the medium.

In general, rarefaction can occur in any medium, not just in sound waves. For example, in a gas, rarefaction can be caused by a decrease in pressure, temperature or density. In a liquid, rarefaction can be caused by a decrease in pressure or density. Rarefaction waves can be observed in many natural phenomena, such as atmospheric pressure waves, seismic waves, and waves on the surface of water.

To know more about rarefaction, visit:

https://brainly.com/question/8401754

#SPJ1

a ball thrown vertically upward is caught by the thrower after 2.80 s at the same height as the initial point of release. find the maximum height the ball reaches from the point of release.

Answers

The maximum height reached is 99.6.

The velocity of the ball at the highest point. When the ball reaches the highest point, its velocity is zero. Therefore, we can use the following formula to find the velocity at the highest point: v = u - gt

where:v is the final velocity (which is zero)u is the initial velocity. g is the acceleration due to gravityt is the time taken to reach the highest pointWe know that the ball takes 2.80 seconds to reach the thrower.

Therefore, it takes half of that time, or 1.40 seconds, to reach the highest point. We also know that the ball was thrown vertically upward, which means that the initial velocity was positive (upward).

Therefore, 0 = u - g(1.40)Solving for u, we get:u = g(1.40) = 9.8(1.40) = 13.72 m/s.

The maximum height: h = ut - ½gt²

where:h is the maximum height. u is the initial velocity (which is 13.72 m/s)t is the time taken to reach the highest point (which is 1.40 seconds)g is the acceleration due to gravity (which is 9.8 m/s²)

h = (13.72)(1.40) - ½(9.8)(1.40)² = 9.60 m.Therefore, the maximum height the ball reaches from the point of release is 9.60 m.

An alternative approach that can also be used is to use the formula:v² = u² + 2ghwhere:v is the final velocity (which is zero)u is the initial velocity. g is the acceleration due to gravityh is the maximum height.

0² = (13.72)² + 2(-9.8)hh = (13.72)²/2(9.8) = 9.60 m.

to know more about height refer here:

https://brainly.com/question/29131380#

#SPJ11

x < If a heater is used for 2 hours and an electric motor for 4 hours, they consume 25 kJ of energy. If the heater is used for 3 hours and the electric motor for 2 hours, they consume 18 kJ of energy. Calculate the energy consumption per hour of the heater and of the electric motor​

Answers

The energy consumption per hour of the heater is 9 kJ/hour and the energy consumption per hour of the electric motor is 3 kJ/hour.

What is the energy consumption rate?

Let's denote the energy consumption per hour of the heater as "h" and the energy consumption per hour of the electric motor as "m".

From the first piece of information, we can set up the equation:

2h + 4m = 25 (equation 1)

Similarly, from the second piece of information, we can set up another equation:

3h + 2m = 18 (equation 2)

We now have two equations with two unknowns, which we can solve using algebraic methods. Multiplying equation 2 by 2 and subtracting it from equation 1 multiplied by 3, we get:

(3h + 6m) - 2(3h + 2m) = 25(3) - 18(2)

Simplifying this expression, we get:

h = 9

Substituting this value of h into equation 2, we get:

3(9) + 2m = 18

Simplifying this expression, we get:

m = 3

Learn more about energy consumption here: https://brainly.com/question/27438014

#SPJ1

the star sirius is 8.6 light-years from earth (in our earth-based reference frame). suppose you traveled from earth to sirius at 0.92 c . during your trip, how far would you measure the distance from earth to sirius to be?

Answers

Answer:

L = L0 (1 - v^2 / c^2)^1/2

L0 is the proper length and L the distance measured by the space traveler

L = L0 (1 - .92^2)^1/2

L = L0 * .39 = 8.6 L-y * .39 = 3.4 L-y     as measured by space traveler

bohr developed an equation for calculating the energy levels of a hydrogen atom. which of the following can be determined using this equation? select all that apply.

Answers

Bohr developed an equation for calculating the energy levels of a hydrogen atom. Using this equation, the following can be determined:

The energy level of an electron

The angular momentum of an electron

The radius of the hydrogen atom's orbit

Around the nucleus of the hydrogen atom, the electrons move in circular orbits. Each of these orbits corresponds to a particular energy level.

Bohr's equation calculates these energy levels based on the electron's distance from the nucleus and its angular momentum.

Thus, by using Bohr's equation, we can determine the energy level of an electron, its angular momentum, and the radius of the hydrogen atom's orbit.

To know more about Bohr's Equation here :

https://brainly.com/question/17308813

#SPJ11

T or F: Surface currents flow vertically in the uppermost 400 meters of the water column. False (horizontally).

Answers

The given statement, "surface currents flow vertically in the uppermost 400 meters of the water column," is false because surface currents flow horizontally in the uppermost 400 meters of the water column. They move water parallel to the surface, driven by factors such as wind and temperature differences.

Surface currents are driven by the wind, and they are characterized by movement across the surface of the water. The direction and intensity of surface currents are influenced by a variety of factors, including wind speed and direction, the shape of the coastline, and the rotation of the Earth. These currents are an essential component of the ocean circulation system and can have a significant impact on the climate and the distribution of marine life. They flow parallel to the water columns in the uppermost parts.

Learn more about surface currents here:

https://brainly.com/question/19757282

#SPJ11

a quantity that has a direction associated with?

Answers

A vector is a quantity that has a direction associated with it, and working with vectors involves identifying, representing, performing operations, resolving into components, and analyzing the vector.

A quantity that has a direction associated with it is called a vector. Vectors are used to describe physical quantities, such as velocity, force, and displacement, that have both magnitude and direction. To work with vectors, you can follow these steps:
1. Identify the vector quantity: Determine which physical quantity is being described and ensure it has both magnitude and direction.
2. Represent the vector: Vectors can be represented using arrows, where the length of the arrow represents the magnitude, and the direction of the arrow indicates the direction of the vector.
3. Perform vector operations: You may need to add, subtract, multiply, or divide vectors to solve problems. These operations involve working with both the magnitude and direction of the vectors.
4. Resolve the vector into components: Break the vector down into its horizontal and vertical components, which makes it easier to work with in calculations.
5. Analyze the vector: Use the components and other relevant information to solve the problem or analyze the situation.
For similar question on vector

https://brainly.com/question/28047791

#SPJ11

a bicycle wheel has a radius of 0.304 m and a rim whose mass is 2.50 kg. the wheel has 50 spokes, each with a mass of 0.0100 kg. (a) calculate the moment of inertia of the rim about the axle. (b) determine the moment of inertia of any one spoke, assuming it to be a long, thin rod that can rotate about one end. (c) find the total moment of inertia of wheel, including the rim and all 50 spokes.

Answers

The moment of inertia of the bicycle wheel with radius of 0.304m and 50 spoke, rim with mass 2.50 kg for rim about the axle is 0.229 kg·m² , moment of inertia of any one spoke is 0.00186 kg·m² and  moment of inertia of the wheel, including the rim and all 50 spokes is 0.592 kg·m².

(a) The moment of inertia of the rim about the axle, we use the formula for the moment of inertia of a thin hoop.

We substitute the mass of the rim and the radius of the wheel into the formula and get the moment of inertia of the rim

The moment of inertia of the rim about the axle:

[tex]I_{rim} = MR^2[/tex]

where M is the mass of the rim and

R is the radius of the wheel.

Substituting the given values, we get:

[tex]I_{rim} = (2.50 kg) *(0.304 m)^2 = 0.229 kg*m^2[/tex]

Therefore, the moment of inertia of the rim about the axle is 0.229 kg·m².

(b) The moment of inertia of any one spoke, we use the formula for the moment of inertia of a long, thin rod rotating about one end.

We substitute the mass of the spoke and its length into the formula and get the moment of inertia of one spoke.

[tex]I_{spoke} = (1/3)ML^2[/tex]

where M is the mass of the spoke and

L is its length.

Substituting the given values, we get:

[tex]I_{spoke} = (1/3) *(0.0100 kg)*(2 * 0.304 m)^2= 0.00186 kg*m^2[/tex]

Therefore, the moment of inertia of any one spoke is 0.00186 kg·m².

(c) The total moment of inertia of the wheel, we use the parallel axis theorem.

The moment of inertia of the wheel about the center of mass is given by:

[tex]I_{center} = I_{rim} + 50*I_{spoke}[/tex]

Substituting the values we found in parts (a) and (b), we get:

[tex]I_{center} = 0.229 kg*m^2 + 50 * 0.00186 kg*m^2 = 0.324 kg*m^2[/tex]

The distance between the center of mass and the axle is equal to the radius of the wheel, so we can use the parallel axis theorem to find the total moment of inertia:

[tex]I_{total} = I_{center} + Md^2[/tex]

where M is the total mass of the wheel (rim plus spokes) and

d is the distance between the center of mass and the axle.

Substituting the given values, we get:

M = 2.50 kg + 50 × 0.0100 kg = 3.00 kg

d = 0.304 m

[tex]I_{total} = 0.324 kg*m^2 + (3.00 kg) *(0.304 m)^2= 0.592 kg*m^2[/tex]

Therefore, the total moment of inertia of the wheel, including the rim and all 50 spokes, is 0.592 kg·m².

To learn and practice more questions for 'moment of inertia':

https://brainly.com/question/3406242

#SPJ11

find the tension in an elevator cable if the 1 500-kg elevator is descending with an acceleration of 2.8 m/s2, downward.

Answers

The tension in an elevator cable if the 1 500-kg elevator is descending with an acceleration of 2.8 m/s² is 18,900 N.

The tension in the elevator cable, for net force is :

[tex]F_{net} = ma[/tex]

where [tex]F_{net}[/tex] is the net force,

m is the mass of the elevator, and

a is the acceleration of the elevator.

Since the elevator is descending, we can take the upward direction as positive.

The forces acting on the elevator are the force of gravity (mg) and

the tension in the cable (T), where T is in the upward direction.

Therefore, the net force acting on the elevator is:

[tex]F_{net}= T - mg[/tex]

where g is the acceleration due to gravity (9.8 m/s²).

Substituting the given values into the equation:

[tex]F_{net} = T - mg[/tex]

[tex]ma = T - mg[/tex]

Rearranging the equation, we get:

[tex]T = ma + mg[/tex]

where T is the tension in the cable,

m is the mass of the elevator,

a is the acceleration of the elevator, and

g is the acceleration due to gravity.

Also Substituting the given values:

T = (1500 kg) × (2.8 m/s²) + (1500 kg) × (9.8 m/s²)

T = 4200 N + 14700 N

T = 18900 N

Therefore, the tension in the elevator cable is 18,900 N when the 1,500-kg elevator is descending with an acceleration of 2.8 m/s², downward.

To practice more questions about 'tension':

https://brainly.com/question/26116693

#SPJ11

a wheel of radius r and negligible mass is mounted on a horizontal frictionless axle so that the wheel is in a vertical plane. three small objects of mass im, m, and 2mi respectively are mounted on the rim of the wheel, as shown. if the system is in static equilibrium, what is the value of m in terms of m?

Answers

Answer: C) 3M/2

Explanation:

rotational equilibrium at center pivot

mg(R) + Mg(Rcos60°) – 2Mg(R) = 0.

so cos60° = ½  meaning r 3M/2

A wheel of radius r and negligible mass is mounted on a horizontal frictionless axle so that the wheel is in a vertical plane. The value of m in terms of i is m = 2i * r.

The value of m in terms of m, we can use the condition for static equilibrium which states that the sum of all the forces acting on the system must be zero, and the sum of all the torques must also be zero.
Considering the forces acting on the system, we can see that there are only two: the weight of the objects and the tension in the string that connects them to the wheel. Since the system is in static equilibrium, the tension must be equal to the weight of the objects.
Next, let's consider the torques acting on the system. The torques due to weights of the objects are balanced by the torques due to their distances from the axis of rotation. However, the torque due to the tension in the string is not balanced and produces a net torque on the system.
We can calculate the torque due to the tension in the string by multiplying the tension by the radius of the wheel. The torque due to each object can be calculated by multiplying its weight by its distance from the axis of rotation. Since the system is in static equilibrium, the net torque must be zero, which gives us the following equation:
Tension x Radius = (2im) x 2r + m x r - im x r
Simplifying this equation, we get:
Tension x Radius = 4imr + mr - imr
Tension = (5im + m) / r
Since we know that the tension is equal to the weight of the objects, we can equate the tension to the sum of the weights and solve for m:
(5im + m) / r = 5im + m + 2im
m/r = 2im
m = 2i * r
Therefore, the value of m in terms of i is m = 2i * r.

For more such questions on vertical plane

brainly.com/question/30257698

#SPJ11

what was the peak vertical ground reaction force (not resultant force) from the beginning of the measurement through leaving the ground in your spreadsheet?

Answers

In the following question, among the conditions given, The peak vertical ground reaction force (not resultant force) from the beginning of the measurement through leaving the ground in your spreadsheet is the highest vertical force.

Hence The peak vertical ground reaction force (not resultant force) from the beginning of the measurement through leaving the ground in your spreadsheet is the highest vertical force that the ground exerts on your body during the time period in question. so then, in order To calculate this, you need to examine your spreadsheet and look for the highest vertical force value present in the data.

For more such questions on vertical ground

https://brainly.com/question/15576736

#SPJ11

given two identical iron bars, one of which is a permanent magnet and the other unmagnetized, how could you tell which is which by using only the two bars?

Answers

There are two identical iron bars, one of which is a permanent magnet and the other unmagnetized. We can identify that: when the magnetized bar is brought near the other bar, it will stick to it, indicating that it is magnetized. The bar that does not stick is unmagnetized.

Iron bars are used to make permanent magnets by a process called magnetization. Permanent magnets are composed of atoms and aligned electrons that have magnetic properties. The other bar that is not magnetized does not have aligned electrons, so it will not attract other magnets as a magnetized bar would.

The direction of a magnetic field will change when a magnet is brought near it. The North Pole will attract the South Pole, and they will come together. The North Pole will repel the North Pole, and the South Pole will repel the South Pole. The magnetized bar will be attracted to the unmagnetized bar, and the unmagnetized bar will not be attracted to the magnetized bar.

As a result, when the magnetized bar is brought near the other bar, it will stick to it, indicating that it is magnetized. The bar that does not stick is unmagnetized. Thus, with the aid of two bars, one magnetized and the other unmagnetized, we can determine which is which.

To know more about permanent magnets refer here:

https://brainly.com/question/6458972#

#SPJ11

a wire has a length l1 and a cross sectional surface area of a1. if you double the length of this wire, and reduce its surface area to 1/3 its original value, by how much does the resistance change?

Answers

A wire has a length of l1 and a cross-sectional surface area of a1 and if we double the length of this wire, and reduce its surface area to 1/3 of its original value. The resistance change by: 6 times

The resistance change can be calculated using the formula R = ρl / a, where ρ is the resistivity of the wire, l is the length of the wire, and a is the cross-sectional area of the wire. If we double the length of the wire and reduce its surface area to 1/3 of its original value, we can find the new resistance using the same formula. Let's call the new length of the wire l2 and the new cross-sectional area a2.

So, we have:
l2 = 2l1  (double the length)
a2 = (1/3)a1  (reduce the surface area to 1/3 its original value)

Now we can calculate the new resistance:
[tex]R2 = ρl2 / a2[/tex]
[tex]R2 = ρ(2l1) / [(1/3)a1][/tex]
[tex]R2 = 6ρl1 / a1[/tex]

So the new resistance is 6 times the original resistance. This means that the resistance changes by a factor of 6 when the length of the wire is doubled and the surface area is reduced to 1/3 of its original value.

To know more about resistance refer here:

https://brainly.com/question/30799966#

#SPJ11

a flyewheel has a diameter of 1.72 m and a mass of 902 kg. what torque in newtons is needed to produce and angular acceleration of 100 rpm/s

Answers

A torque of 3471.9 N·m is needed to produce an angular acceleration of 100 rpm/s in a flywheel with a diameter of 1.72 m and a mass of 902 kg.

How to find the torque

First, let's convert the angular acceleration from revolutions per minute per second (rpm/s) to radians per second per second (rad/s²):

100 rpm/s = 100 × 2π/60 rad/s² ≈ 10.47 rad/s²

The moment of inertia of a flywheel can be calculated using the formula:

I = (1/2)mr²

where

m is the mass of the flywheel and

r is the radius (half of the diameter).

Thus, we have:

r = 1.72/2 = 0.86 m

m = 902 kg

I = (1/2) × 902 kg × (0.86 m)² ≈ 331.9 kg·m²

The torque (T) required to produce the desired angular acceleration (α) can be found using the formula:

T = I × α

T = 331.9 kg·m² × 10.47 rad/s² ≈ 3471.9 N·m

Learn more about torque at:

https://brainly.com/question/1233416

#SPJ1

what is the general process by which a large diffuse cloud of gas turns into a star and surrounding planets?

Answers

The general process by which a large diffuse cloud of gas turns into a star and surrounding planets are known as: star formation.

The Star Formation process starts with a giant molecular cloud of gas and dust, where the gravitational forces act on the cloud and it collapses under its own gravity. This collapse results in a disc-like structure, which is also known as a protoplanetary disc, and has the potential to form planets.

The center of the disc gets hotter and denser, and eventually, nuclear fusion begins, resulting in the formation of a star. The protoplanetary disc contains a lot of dust and gas, and as the temperature increases, some of the minerals and elements present in the dust start to melt and then solidify, eventually forming small planetesimals, which aggregate to form the larger planets.

As the planets move around in the disc, they can migrate inward and outward, and some can collide and merge with others, thus forming even larger planets.

The remaining gas and dust in the disc are eventually swept up by the planets or blown away by the star's radiation, and the planets settle into stable orbits. This is the general process by which a large diffuse cloud of gas turns into a star and surrounding planets.

To know more about star formationrefer here:

https://brainly.com/question/16118644#

#SPJ11

6. a 21.00-kg child initially at rest slides down a playground slide from a height of 3.40 m above the bottom of the slide. if her speed at the bottom is 2.30 m/s, how much energy is lost due to friction?

Answers

If a 21.00-kg child slide from a height of 3.40 m above the bottom of the slide and her speed at the bottom is 2.30 m/s, the amount of energy lost due to friction is 644.18 J.

The potentiаl energy of аn object depends on the locаtion of the object from the bottom reference floor аnd the mаss of the object. The аmount of energy contаins by the object аt аny height is known аs the potentiаl energy of thаt object.


We are given:

The mass of the child is: m = 21 kgThe height of the slide from the bottom is: h = 3.40 mThe speed at the bottom is: v = 2.30 m/s

The energy of the child at the upper end of the slide is,

[tex]E_{u}[/tex] = mgh

Substitute the values in the above equation

[tex]E_{u}[/tex] = 21 kg × 9.8 m/s2 × 3.40 m

= 699.72 J


The energy at the bottom of the slide is,

[tex]E_{b}[/tex] = [tex]\frac{1}{2}(mv^{2})[/tex]

Substitute the values in the above equation.

[tex]E_{b}[/tex] = [tex]\frac{1}{2}(21.2.30^{2})[/tex]

[tex]E_{b}[/tex] = 55.54 J

The energy lost due to friction is,

[tex]E_{f}[/tex] = [tex]E_{u}[/tex] - [tex]E_{b}[/tex]

Substitute the values in the above equation

[tex]E_{f}[/tex] = 699.72 - 55.54

[tex]E_{f}[/tex] = 644.18 J

Thus, the energy lost due to friction is 644.18 J.

For more information about potentiаl energy refers to the link: https://brainly.com/question/14904642

#SPJ11

what is the potential difference between two points in an electric field if 1 j of work is required to move 1 c of charge between the points

Answers

The potential difference between the two points in an electric field is 1 V.

Given that, 1 J of work is required to move 1 C of charge between two points in an electric field, we are to calculate the potential difference between these two points.

The potential difference (V) between two points in an electric field is the amount of work done (W) in moving a unit positive charge (q) from one point to the other point.

Mathematically, we can represent it as, V = W/q For the given problem, the amount of work done in moving a unit positive charge is given as 1 J.

So we can write it as, W = 1 J Also, the amount of charge moved is 1 C. So we can write it as, q = 1C

Now substituting these values in the above expression for potential difference (V), we get, V = W/q = 1 J/1 C = 1 V.

To know more about Electric field refer here:

https://brainly.com/question/15800304#

#SPJ11

Other Questions
brianna and aiden have known each other since high school. after many years of marriage, they get divorced. nonetheless, they continue their friendship and rely on each other in times of need. which style of love does this relationship exemplify? PLS HELP......!Fill in the blanks to describe each sequence in words. Then write the missing terms. Pyramidal Sequence: Each term in the sequence is the (BLANK) of a perfect square and all perfect squares before it. 1, (BLANK) , 14, 30, (BLANK) , 91, ... Fibonacci Sequence: Each term in the sequence is the (BLANK) of the 2 terms before it.1, 1, 2, 3, (BLANK) , 8, 13, (BLANK) , 34, ... how would the effects on the autonomic nervous system differ between a drug that blocks muscarinic acetylcholine receptors versus one that blocks nicotinic acetylcholine receptors? Plotters are small, lightweight printers that easily can be connected to mobile devicesa. Trueb. False the national football league players association agreed to a salary cap. this is an example of how the 2. the most common fat in foods are made up of three fatty acids attached to a three-carbon glycerol backbone and are called blank. First, read the prompt. Next, explain what organizational structure you would use to write this essay, and why. Last, identify the purpose and audience required by the prompt and briefly explain how you would address both in the first draft of the assignment. Essay Prompt Imagine your school receives a large donation. The school board is considering three different possibilities for making use of the money: a new cafeteria, a new library, or a new gymnasium. Consider the state of these facilities at your own school, why each is important, and why each does or doesn't need the money for upgrades or repairs. Then, write a letter to the school board explaining your findings and expressing your opinion about which is the best choice to receive the donation. a major driving mechanism of the moc is the sinking of water in the north atlantic. this begins with the formation of . as ocean water freezes, ice crystals exclude salt and the salinity of the surrounding water increases. emma's initial license was effective on october 30th of 2020. what is the date of her first license renewal? march 31st, 2022 Read the following excerpt from The Prince and the Pauper by Mark Twain. Then, answer the question that follows.Before him, at a little distance, reclined a very large man, with a wide, pulpy face, and a stern expression. His large head was very grey; and his whiskers, which he wore only around his face, like a frame, were grey also.Which type of figurative language is used in the bolded lines? Allusion Onomatopoeia Personification Simile the table contains prices and output for a two-good economy. nominal and real gdp in 2013 are both $33,500. use the information in the table to answer the questions.what is nominal gdp in 2014? How does this period of compromise show that civil war was unavoidable ? enabling characteristics include the attributes of the surrounding area affecting the availability of healthcare. group of answer choices true false What are 3 examples of ecosystem services in the ecosystem? according to the writings of st. augustine, st. thomas aquinas, ibn rushd, and al-farabi, what has played a major role in the history of authoritarianism? You can form a positive reputation andbe a good digital citizen byA. making more than $30k per year.B. posting appropriately.C. texting everyday.D. being younger than 65. explosive volcanoes tend to occur at which type of plate boundary? fontanels question 4 options: 1) gradually close by adolescence. 2) prevent the brain from growing too large. 3) cannot be felt after four or five months. 4) permit the bones to overlap during childbirth. name a modern cultural artifact, it's creator, and it's relation to arts in the humanities. for a second order reaction with an initial concentration of reactant of 64 m, what concentration of the reactant is left after three half lives?