A child in free fall and an astronaut on the moon is will be weightless.
Weightlessness refers to the absence of weight, which is the gravitational force that an object exerts on another object. It occurs when an object is in a state of free fall.
Astronauts, when they're in space, experience weightlessness because they're in a state of free fall. It's the same experience that people would have if they were in an elevator and the cable snapped.
The moon's gravity is about one-sixth of the Earth's gravity. Therefore, an astronaut on the moon would weigh less than on Earth. Even though the astronaut wouldn't be completely weightless, he would be close enough to weightless that it would be hard to notice any difference in weight.
A child in the air as she jumps on a trampoline will also feel weightless when falling freely.
A scuba diver exploring a deep-sea wreck is not weightless. The force of gravity is still acting on the diver, pulling them downwards towards the seafloor. However, because the water provides an upward force called buoyancy, the diver may feel a sense of weightlessness or reduced weight compared to their weight on land. This is because the buoyant force counteracts some of the force of gravity acting on the diver, making them feel lighter. However, the diver still has mass and is not truly weightless.
Learn more about Weightlessness:
https://brainly.com/question/13035803
#SPJ11
7) you drop a stone down a well that is 9.5 m deep. how long is it before you hear the splash? the speed of sound in air is 343 m/s and air resistance is negligible
If you drop a stone down a well that is 9.5 m deep, it will take approximately 0.028 seconds for you to hear the splash. This is because the speed of sound in air is 343 m/s, and air resistance is negligible.
The question is about finding the time it will take for the sound of the splash to reach the surface of the well. Given data:
Depth of the well = 9.5 m
Speed of sound in air = 343 m/s
We have to find the time it will take for the sound of the splash to reach the surface of the well.
Let's assume that "t" is the time that the sound of the splash takes to reach the surface of the well.
Using the formula:
t = Distance/Speed
Using the above formula, let's find the time it will take for the sound of the splash to reach the surface of the well.
Distance = Depth of the well = 9.5 m
Speed = Speed of sound in air = 343 m/s
So, the time is:
t = Distance/Speed
t = 9.5/343
t = 0.0277 s ≈ 0.028 s
Therefore, the time it will take for the sound of the splash to reach the surface of the well is 0.028 s
Learn more about time of falling water splash at https://brainly.com/question/21323527
#SPJ11
why do the phases of venus show that the solar system is in a heliocentric model instead of a geocentric model?
The phases of Venus show that the solar system is in a heliocentric model instead of a geocentric model because the heliocentric model states that the Sun is at the center of the solar system, while the geocentric model states that Earth is at the center of the universe.
The phases of Venus can only be explained in the heliocentric model because the planet is orbiting the Sun.The phases of Venus are an important piece of evidence supporting the heliocentric model proposed by Nicolaus Copernicus. The geocentric model was the widely accepted model of the universe until the 16th century when Copernicus proposed the heliocentric model, which suggested that the Sun is at the center of the solar system and the Earth and other planets orbit around it.
The phases of Venus show that it orbits the Sun and not the Earth because, as it orbits the Sun, different portions of the planet's sunlit side are visible from Earth. This can only occur in a heliocentric model because Venus is between the Earth and the Sun in its orbit, which causes it to pass through phases. Therefore, the phases of Venus are not consistent with a geocentric model, which suggests that Venus orbits the Earth.
Learn more about heliocentric at:
https://brainly.com/question/18403954
#SPJ11
which material should be used on a bicycle ramp to increase friction? a. shiny metal b. rough paper c. smooth wood d. wet plastic
The material that should be used on a bicycle ramp to increase friction is option b) rough paper.
Rough paper has a large number of tiny, unevenly-shaped fibers which create a large amount of friction. This makes it ideal for bike ramps as it helps to slow and control the speed of a bicycle while they travel on the ramp. Additionally, rough paper is lightweight and easy to work with, making it ideal for creating ramps.
To ensure the best results, you should use thick, high-quality paper with a large number of tiny fibers. This will create more friction, allowing for better control and more stability for the cyclist. Additionally, you should ensure that the paper is securely attached to the ramp so that it doesn’t slip or move while the cyclist is on the ramp.
Overall, the best material to use on a bicycle ramp to increase friction is rough paper. Its numerous tiny fibers provide plenty of friction, while its lightweight and easy installation make it ideal for bike ramps. With the right paper and installation, you can ensure that cyclists have the best experience possible when using your ramp.
Therefore, the best material to use on a bicycle ramp to increase friction is rough paper.
To know more about friction, refer here:
https://brainly.com/question/13000653#
#SPJ11
a brick is falling from the roof of a three-story building. how many force vectors would be shown on a free-body diagram? name them
A brick is falling from the roof of three story building then free-body diagram would show only one force vector, which is the force of gravity acting on the brick.
A free-body diagram is used to graphically represent the forces acting on an object. It shows all of the forces acting on an object and can be used to analyze the motion of an object.
A free-body diagram for a falling brick would include two force vectors: Gravity or Weight.
If we consider only the brick and neglect air resistance, then there are two force vectors that would be shown on a free-body diagram of the brick:Force of gravity: The force of gravity, which pulls the brick downwards with a magnitude of its weight. This force is always present and directed downwards towards the center of the Earth. Normal Force: The normal force, which is the force exerted by the roof or any surface in contact with the brick that prevents it from falling through the surface. As the brick is falling, there is no contact force from the roof, so the normal force is zero.So, in this scenario, the free-body diagram would show only one force vector, which is the force of gravity acting on the brick.
To lean more about the 'force vectors':
https://brainly.com/question/30893090
#SPJ11
how to find the minimum thickness of a film such that reflected light undergo constructive interference
The minimum thickness of the film for constructive interference of reflected light would be t = 3*600/(2*1.4) = 850 nm.
The minimum thickness of a film required for constructive interference of reflected light can be calculated using the formula t = m*λ/(2*n),
where t is the minimum thickness of the film, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.
For example, if the order of interference is 3, the wavelength of the light is 600 nm, and the index of refraction is 1.4,
the minimum thickness of the film for constructive interference of reflected light would be t = 3*600/(2*1.4) = 850 nm.
Constructive interference of reflected light occurs when the phase difference between the two waves is equal to an integral multiple of 2π.
This can be determined using the formula Δφ = (2π*m)/(λ*n), where Δφ is the phase difference, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.
To achieve constructive interference, the minimum thickness of the film can be determined by ensuring that the phase difference is equal to an integral multiple of 2π.
The minimum thickness of a film required for constructive interference of reflected light can be calculated using the formula t = m*λ/(2*n),
where t is the minimum thickness of the film, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.
Constructive interference can be achieved by ensuring that the phase difference between the two waves is equal to an integral multiple of 2π.
to know more about light refer here:
https://brainly.com/question/15200315#
#SPJ11
An object in free fall is accelerating downwards, so its velocity is continually increasing. Because of this, its momentum is continually increasing as well, apparently contradicting the principle of conservation of momentum. Which of Newton's laws can we use to show that momentum is actually being conserved for an appropriately defined system?
Momentum may be demonstrated to be conserved for a properly described system using Newton's third law.
Newton's third law may be used to show that momentum is preserved for a system that is adequately defined. The Earth is being drawn towards the item in an equal and opposing force to that of gravity acting on the object while it is in free fall. As a result, the object's momentum is transferred to the Earth, which has a considerably higher mass and is hence more difficult to detect. The system's overall momentum—that of the Earth and the object—remains preserved. An open system like this one allows momentum to be shared with the environment while yet adhering to conservation standards.
learn more about Newton here:
https://brainly.com/question/4128948
#SPJ4
a wooden block has a volume of 12.5 liters and a mass of 5.0 kg. what volume of water must be displaced if the wooden block is to float?
A wooden block has a volume of 12.5 litres and a mass of 5.0 kg. 5.0 litres of water must be displaced if the wooden block is to float.
What volume of water must be displaced if the wooden block is to float?The density of wood is less than the density of water. As a result, to float on water, an object made of wood must displace an amount of water greater than its weight.
The formula for calculating the density of an object is:
density = mass/volume
Rearranging this equation gives: v
olume = mass/density
From the information given in the question, the mass of the wooden block is 5.0 kg, and the volume is 12.5 liters.
Density is the mass divided by the volume:
density = mass/volume = 5.0 kg / 12.5 L = 0.4 kg/L
To float on water, the density of the wooden block must be less than the density of water, which is 1 kg/L.
Applying the formula above, we can solve for the volume of water displaced by the wooden block, which is equal to the volume of the block:
volume = mass/density = 5.0 kg / 1 kg/L = 5.0 L
Thus, 5.0 liters of water must be displaced if the wooden block is to float.
To know more about volume refer here:
https://brainly.com/question/14325102#
#SPJ11
A resistor and a capacitor are connected in series across an ideal battery. At the moment contact is made with the battery the voltage across the capacitor is
a. equal to the battery's terminal voltage. b. less than the battery's terminal voltage, but greater than zero. c. zero.
When a resistor and a capacitor are connected in series across an ideal battery, the voltage across the capacitor is zero at the moment contact is made with the battery.
The correct option is c.
An ideal battery is a voltage source that delivers a constant voltage regardless of the load resistance or current drawn from it.
An ideal battery can maintain a steady voltage regardless of the amount of current being drawn from it.
In real-life batteries, there is always some internal resistance, which causes the voltage to drop as the current increases.
A resistor is an electrical component that opposes or limits the flow of electrical current. It has two terminals and can be made of various materials like carbon, metal, and ceramic. It is used in various applications, including voltage dividers, current limiting, and biasing.
A capacitor is an electronic component that stores energy in an electric field between two charged conductors. It has two terminals and is made of two conducting plates separated by an insulating material called a dielectric.
Capacitors are used in various applications, including energy storage, timing circuits, and power conditioning.
To Learn more :
https://brainly.com/question/17134302
#SPJ11
the resistance between the two ends must remain the same, so what diameter must be chosen for the new wire?
T diameter of the new wire must be 0.1572 m in order to maintain the same resistance between the two ends.
To determine the diameter of the new wire required to maintain the same resistance, we can use the equation
R = ρL/A,
where R is the resistance, ρ is the resistivity of the material, L is the length, and A is the cross-sectional area of the wire.
Since we know that the resistance must remain the same, we can rearrange the equation to solve for A:
A = ρL/R.
Plugging in the given values for resistivity, length, and resistance, we can calculate the required cross-sectional area of the wire:
A = ρL/R = (0.0005 Ω⋅m)(5 m)/(5 Ω) = 0.0025 m^2.
Since the cross-sectional area of the wire is circular, we can use the equation for the area of a circle A = πr^2 to solve for the radius r, and thus the diameter d of the new wire:
r = sqrt(A/π) = sqrt(0.0025 m^2/π) = 0.0786 m
d = 2r = 2 x 0.0786 m = 0.1572 m
Therefore, the diameter of the new wire must be 0.1572 m in order to maintain the same resistance between the two ends.
When the resistance between the two ends must remain the same, the diameter chosen for the new wire is directly proportional to the length of the wire. According to Ohm's law, resistance is directly proportional to length and inversely proportional to the cross-sectional area of the wire. Therefore, if the length of the wire doubles, the resistance doubles, and if the area of the wire doubles, the resistance is halved.This means that when the resistance between the two ends must remain the same, the diameter of the new wire must be such that the cross-sectional area of the wire is proportional to the length of the wire. In other words, if the new wire is half the length of the original wire, its diameter should be twice that of the original wire, and so on.
For more such questions on resistance , Visit:
https://brainly.com/question/17563681
#SPJ11
magnus has reached the finals of a strength competition. in the first round, he has to pull a city bus as far as he can. one end of a rope is attached to the bus and the other is tied around magnus's waist. if a force gauge placed halfway down the rope reads out a constant 1400 newtons while magnus pulls the bus a distance of 1.55 meters, how much work does the tension force do on magnus? the rope is perfectly horizontal during the pull.
The work done by the tension force on Magnus is 2170 J.
What is work?
Work is the product of the force acting on an object and the distance through which the object moves. In other words, work is accomplished when a force is used to transfer energy to an object, causing the object to move some distance as a result.
The force of 1400 N, Distance of 1.55 meters, and a rope tied around Magnus's waist.
The work done by the tension force on Magnus is the product of the force exerted by the tension force and the distance through which Magnus is moved.
W = Fd
where W = Work done by the tension force on Magnus
F = Force of tension force
= 1400 Nd
= Distance moved by Magnus
= 1.55 m
Substituting these values:
W = 1400 N x 1.55 mW
= 2170 J
Hence, the work done by the tension force on Magnus is 2170 J.
To know more about work:
https://brainly.com/question/29762840
#SPJ11
a semi-circular gate on an inclined wall is in contact with water. calculate the resultant force of the water on the gate
The resultant force of the water on the semi-circular gate on an inclined wall can be calculated using the equations of hydrostatics.
R = √([tex]F1^2 + F2^2 - 2*F1*F2*cos[/tex])α, where 'R' is the resultant force and 'α' is the angle of the wall.
First, determine the pressure of the water at any given point along the gate. To do this, multiply the density of the water, 'ρ', by the acceleration of gravity, 'g', and then the vertical height of the water relative to the gate, 'h', to get the pressure 'p':
p = ρ*g*h
Second, determine the force acting on the gate. This is done by multiplying the pressure with the area of the gate, 'A':
F = p*A
Finally, find the resultant force, 'R', by adding the forces together and taking into account the angle of the wall:
R = √([tex]F1^2 + F2^2 - 2*F1*F2*cos[/tex])α
where α is the angle of the wall.
By following these steps, you can calculate the resultant force of the water on the semi-circular gate on an inclined wall.
For more questions related to Force.
https://brainly.com/question/13191643
#SPJ11
two students sit on a seesaw in a way that makes it balance and not move. when a third person pushes down on one side, that side moves down. what caused the seesaw to move?
The seesaw moved when a third person pushed down on one side. This is because the seesaw is a simple machine that consists of a long plank balanced in the middle with a pivot point that allows it to move up and down.
When the two students sit on the seesaw in a way that makes it balance and not move, they are evenly distributed on each end. However, when the third person pushes down on one side, this distribution of weight becomes unequal, and the seesaw moves in the direction of the heavier side.
The heavier end of the seesaw moves down while the lighter end moves up. This is because the heavier side creates more force, or torque, on the pivot point, causing the seesaw to tilt towards that side.
As a result, the seesaw moves and is no longer in balance.
Learn more about balance and move at
brainly.com/question/14160688
#SPJ11
A dog can hear sounds in the range from 15
to 50,000 Hz.
What wavelength corresponds to the lower
cut-off point of the sounds at 20◦C where the
sound speed is 344 m/s?
Answer in units of m.
Explanation:
Speed of sound is 344
The frequency corresponding to the lower cut-off point is the lowest frequency which his 15Hz
F=15Hz
The relationship between the wavelength, speed and frequency is given as
v=fλ
Then,
λ=v/f
λ=v/f
λ=344/15
λ=22.93m
a spherical capacitor has vacuum between its conducting shells and a capacitance of 125 pf . the outer shell has inner radius 9.00 cm . what is the outer radius of the inner shell? express your answer with the appropriate units.
For a spherical capacitor with a capacitance of 125 and a vacuum between its conducting shells, the outer radius of the inner shell is around 5.60 cm.
The capacitance of a spherical capacitor is given by:
C = 4πε₀[(r₁r₂)/(r₂-r₁)]
where C is the capacitance, ε₀ is the electric constant (8.85 x [tex]10^{-12}[/tex] F/m), r₁ is the radius of the inner shell, and r₂ is the radius of the outer shell.
In this case, we know that the capacitance C = 125 pF (picoFarads), r₂ = 9.00 cm, and we want to find r₁.
We can rearrange the equation to solve for r₁:
r₁ = (C × r₂)/(4πε₀ + C)
Substituting the values:
r₁ = (125 x [tex]10^{-12}[/tex] F × 0.09 m) / (4π × 8.85 x [tex]10^{-12}[/tex] F/m + 125 x [tex]10^{-12}[/tex] F)
r₁ ≈ 5.60 cm
Therefore, the outer radius of the inner shell is approximately 5.60 cm.
To learn more about the capacitor at
https://brainly.com/question/17176550
#SPJ4
an n-type piece of silicon experiences an electric field equal to 0.1v/m. (a) calculate the velocity of electrons and holes in this material
In an n-type piece of silicon, the electric field causes the electrons to accelerate due to the attractive force between the negatively charged electrons and the positively charged electric field. This acceleration causes the electrons to reach a velocity of V = E/μ, where E is the electric field (0.1V/m) and μ is the mobility of electrons in silicon (1350 cm2/V⋅s). Therefore, the velocity of electrons in this material would be equal to 0.1V/m/1350cm2/V⋅s = 0.0741 cm/s.
The holes, on the other hand, experience a repulsive force due to the positive electric field. This causes the holes to decelerate, with a velocity of V = -E/μ. Therefore, the velocity of holes in this material would be equal to -0.1V/m/1350cm2/V⋅s = -0.0741 cm/s.
Know more about electric field here:
https://brainly.com/question/8971780
#SPJ11
a ball of mass is dropped. what is the formula for the impulse exerted on the ball from the instant it is dropped to an arbitrary time later?
The formula for the impulse exerted on the ball from the instant it is dropped to an arbitrary time later is:
Impulse = (Final momentum - Initial momentum)
What is impulse?Impulse is a vector quantity having both magnitude and direction, whereas momentum is a vector quantity, but the impulse is not equal to momentum. The impulse is the change in momentum.
If a ball of mass m is dropped from rest, then its initial momentum is zero.
The final momentum of the ball after falling for time t is:
Final momentum = mv
Where v is the velocity of the ball after falling for time t.
Therefore, the impulse exerted on the ball from the instant it is dropped to an arbitrary time later is:
Impulse = (mv - 0) = mv
To know more about impulse:
https://brainly.com/question/14073258
#SPJ11
which of the following appliances has the lowest typical energy costs? (1 point) group of answer choices dishwasher microwave oven washing machine refrigerator
Among the given options, the appliance with the lowest typical energy cost is the microwave oven. Typical energy cost refers to the average amount of money spent on energy usage by an appliance or device over a certain period of time.
Microwave ovens use electromagnetic radiation to cook or heat food, and they are generally more energy-efficient compared to other appliances such as dishwashers, washing machines, and refrigerators. This is because microwave ovens use less power and cook food faster than conventional ovens, reducing energy waste and costs. However, it is important to note that the exact energy cost of an appliance can depend on factors such as its age, model, usage, and energy efficiency rating.
Learn more about microwave ovens: https://brainly.com/question/1120515
#SPJ11
a wire with a current of 4 amps is in a magnetic field of 2 tesla. the magnetic field is oriented perpendicular to the wire. what is the magnitude of the force per unit length on the wire?
The magnitude of the force per unit length on the wire carrying a current of 4 amps in a magnetic field of 2 Tesla, oriented perpendicular to the wire will be 8 N/m.
It can be determined using the formula F = BIL,
where F is the force per unit length,
B is the magnetic field,
I is the current and
L is the length of the wire.
For the given data, B = 2 T, I = 4 A, L = 1 meter.
Therefore, F = BIL= 2 T x 4 A x 1 m= 8 N/m. Thus, the magnitude of the force per unit length on the wire is 8 N/m.
To know more about force, refer here:
https://brainly.com/question/30526425#
#SPJ11
if the sun is located at one focus of earth's elliptical orbit, the earth is at the other focus. question 20 options: true false
the intensity of the sound of a television commercial is 10 times greater than the intensity of the television program it follows. by how many decibels does the loudness increase?
The television commercial loudness increases by 10 decibels.
Increase in the Intensity of soundThe decibel (dB) scale is a logarithmic measure of sound intensity. The intensity of a sound is measured in watts per square meter and the decibel scale is a way to express the relative loudness of a sound, compared to a reference level.
A 10 dB increase in intensity is a 10-fold increase in sound power. This means that a sound with an intensity of 10 watts per square meter is 10 times louder than a sound with an intensity of 1 watt per square meter.
Learn more about Intensity of sound here:
https://brainly.com/question/17062836
#SPJ1
why does it take more energy to convert liquid water to steam than it does to convert ice to liquid water
The water molecules require more energy to be further separated and converted into steam than it does to convert ice to liquid water, because liquid water has a higher specific heat capacity than ice, which means that it requires more energy to raise its temperature.
In order to convert liquid water into steam, the water molecules must absorb a large amount of energy. This energy is used to overcome the strong intermolecular forces of attraction between the water molecules that hold them in their liquid state. This energy is known as the latent heat of vaporization.
In contrast, when ice is converted into liquid water, the energy required is only enough to overcome the weaker intermolecular forces of attraction that hold the ice in its solid state. This energy is known as the latent heat of fusion.
Once the ice has been converted to liquid water, the water molecules require more energy to be further separated and converted into steam than they did to overcome the weaker forces that held them together as a solid ice block. This is because liquid water has a higher specific heat capacity than ice, which means that it requires more energy to raise its temperature.
Learn more about latent heat of vaporization here:
https://brainly.com/question/30762921#
#SPJ11
what is the angular momentum of a 0.205 kg k g ball rotating on the end of a thin string in a circle of radius 1.45 m m at an angular speed of 11.6 rad/s r a d / s ?
The angular momentum of the ball rotating on the end of a thin string in a circle of radius 1.45 m m at an angular speed of 11.6 rad/s r a d / s is 6.07 × 10⁻⁶ kg m²/s.
Angular momentum is the quantity of motion that describes the rotation of a body about a fixed axis. It is a vector quantity that is the cross product of the position vector and the momentum vector.
The angular momentum of a 0.205 kg k g ball rotating on the end of a thin string in a circle of radius 1.45 m m at an angular speed of 11.6 rad/s r a d / s can be calculated as follows:
L = IωL = Iω
Here, L is angular momentum,
I is the moment of inertia of the ball, and
ω is the angular velocity of the ball.
The moment of inertia of a uniform sphere can be calculated as follows:
I= (2/5)mr²I = (2/5)mr²
Here, m is the mass of the sphere, and r is the radius of the sphere.
Therefore, the moment of inertia of the ball is given by:
I = (2/5)mr²I = (2/5) × 0.205 × (0.00145)²I = 5.23 × 10⁻⁷ kg m²
Substituting this value into the expression for angular momentum:
L = IωL = 5.23 × 10⁻⁷ × 11.6L = 6.07 × 10⁻⁶ kg m²/s.
for such more question on angular momentum
https://brainly.com/question/4126751
#SPJ11
A Frisbee gets stuck in a tree. You want to get it out by throwing a 1.0-kg rock straight up at the Frisbee. If the rock’s speed as it reaches the Frisbee is 4.0 m/s, what was its speed as it left your hand 2.8 m below the Frisbee? Specify the system and the initial and final states.
Answer: The rock's speed as it left your hand was 8.8 m/s.
Explanation: The system is the rock and the Earth. The initial state is the rock at rest in your hand 2.8 m below the Frisbee. The final state is the rock hitting the Frisbee at a speed of 4.0 m/s.
Using conservation of energy, we know that the initial potential energy of the rock-Earth system is transformed into both kinetic energy and potential energy at its maximum height. Therefore, we can use the conservation of energy equation:
potential energy (initial) = kinetic energy (final) + potential energy (final)
mgh = 1/2mv^2 + mgh
where m is the mass of the rock, g is the acceleration due to gravity, h is the height that the rock has been raised, and v is the velocity of the rock.
We can solve for the initial velocity by rearranging the equation:
v = sqrt(2gh + v^2)
Plugging in the values, we get:
v = sqrt(2 * 9.81 * 2.8 + 4^2)
v ≈ 8.8 m/s
Therefore, the rock's speed as it left your hand was 8.8 m/s.
Find the change in temperature of each sample after the hot water was added. Fill in the table with the data you collected in parts C and D. To find the change in a sample’s temperature, subtract the starting temperature from the ending temperature.
Sample Starting Temperature Ending Temperature Change in Temperature
50 g sand
50 g water
100 g water
The change in temperature of 50 g sand :50 g water and 100 g water is
10°C ;15°C and 15.1°C
The change in temperature of each sample after the hot water was added can be found by subtracting the starting temperature from the ending temperature. For the 50 g sand sample, the starting temperature was 23.4°C and the ending temperature was 33.4°C, so the change in temperature was 10°C. For the 50 g water sample, the starting temperature was 22.7°C and the ending temperature was 37.7°C, so the change in temperature was 15°C. For the 100 g water sample, the starting temperature was 21.5°C and the ending temperature was 36.6°C, so the change in temperature was 15.1°C.
Sample Starting Temp Ending Temp Change in Temp
50 g sand 23.4°C 33.4°C 10°C
50 g water 22.7°C 37.7°C 15°C
100 g water 21.5°C 36.6°C 15.1°C
learn more about temperature Refer:brainly.com/question/4160783
#SPJ1
calculate the average force on the person if he is stopped by a padded dashboard that compresses an average of 1.00 cm. calculate the average force on the person if he is stopped by an air bag that compresses an average of 15.0 cm.
The average force on the person if they are stopped by an airbag that compresses an average of 15.0 cm is approximately 70,000 N.
To calculate the average force on a person,
Average force = (change in momentum) / (time interval)
Assuming that the person's initial velocity is constant, we can simplify the formula to,
Average force = (mass of the person) x (change in velocity) / (time interval)
Now, let's consider the two scenarios,
Stopped by a padded dashboard that compresses an average of 1.00 cm:
Assuming the person's initial velocity is known and constant, we need to know the time interval it takes for the person to stop after hitting the dashboard. Without this information, we cannot calculate the average force.
Stopped by an airbag that compresses an average of 15.0 cm:
The time interval for an airbag to deploy and cushion the person's impact is typically very short (about 0.03 seconds), so we can assume that the time interval is negligible in this case. Therefore, we can use the simplified formula above.
Let's assume the mass of the person is 70 kg and their initial velocity is 30 m/s. The change in velocity is the final velocity (0 m/s) minus the initial velocity (30 m/s), which is -30 m/s. The negative sign indicates that the person's velocity is decreasing.
Using the formula,
Average force = (mass of the person) x (change in velocity) / (time interval)
= (70 kg) x (-30 m/s) / (0.03 s)
= -70,000 N
To know more about average force, here
brainly.com/question/29754124
#SPJ4
which of the following are waves that can travel without a medium? select all that apply. visible light seismic waves x-rays waves on a lake sound waves radio waves
The following waves can travel without a medium: visible light, x-rays, and radio waves. Seismic waves and waves on a lake require a medium, such as air or water, to travel through.
Visible light is a form of electromagnetic radiation that is composed of various colors. It can travel through a vacuum, such as the space between planets, and does not require a medium to travel through. X-rays are also electromagnetic radiation, but with a higher frequency than visible light, allowing them to pass through objects that visible light cannot. Radio waves are also a form of electromagnetic radiation, and can travel through a vacuum. Seismic waves, on the other hand, require a medium, such as air or rock, to travel through. These waves are used to measure earthquakes and are created when energy is released from the ground. Similarly, waves on a lake require a medium, such as water, to travel through.
Learn more about the type of waves: https://brainly.com/question/12050819
#SPJ11
in u.s. customary units, air pressure is measured in pounds per square inch. in the metric system, it is measured in pascals, and one pascal is equal to
In the metric system, air pressure is measured in pascals. One pascal is equal to a force of one newton per square meter.
Air pressure can be measured using different units. Pascal is a unit of pressure, defined as one newton per square meter. This unit is named after Blaise Pascal, a French mathematician, physicist, and philosopher who made important contributions to the fields of hydrodynamics and hydrostatics.
In the US customary system, air pressure is measured in pounds per square inch (psi), while in the International System of Units (SI), it is measured in pascals (Pa). The unit psi is used to measure pressure in liquids and gases, and it is defined as the amount of pressure exerted by a force of one pound-force per square inch.
Learn more about pascal unit at https://brainly.com/question/30777634
#SPJ11
if you hold a 1.85 kg k g package by a light vertical string, what will be the tension in this string when the elevator accelerates as in the previous part?
The tension in the string of a 1.85 kg package held by a light vertical string will depend on the acceleration of the elevator. When the elevator accelerates, the force of acceleration on the package will be equal and opposite to the tension in the string, causing the tension to increase.
The equation for tension in a string is:
Tension = Mass x Acceleration
Therefore, in this case, the tension in the string is equal to 1.85 kg x Acceleration.
If we assume that the acceleration of the elevator is a constant rate, then the tension in the string can be calculated by multiplying the mass of the package by the acceleration of the elevator.
To sum up, the tension in the string of a 1.85 kg package held by a light vertical string will depend on the acceleration of the elevator. If the acceleration of the elevator is a constant rate, then the tension in the string can be calculated by multiplying the mass of the package by the acceleration of the elevator.
For more such questions on Tension.
https://brainly.com/question/13397436#
#SPJ11
Is elasticl energy a type of
potential energy or kinetic
energy?
Elastic energy is a type of potential energy. It is the energy stored in an elastic material when it is stretched or compressed.
Potential energy explained.
Potential energy is a type of energy that is stored within an object due to its position or configuration. It is the energy that an object possesses by virtue of its position, shape, or state, and has the potential to do work.
Potential energy can be converted into kinetic energy, which is the energy of motion, when the object is allowed to move or fall. The total energy of a system, including both potential and kinetic energy, is conserved, meaning it remains constant unless acted upon by external forces.
Elastic energy is a type of potential energy. It is the energy stored in an elastic material when it is stretched or compressed. When an elastic material such as a spring is stretched or compressed, work is done on it, and this work is stored in the form of elastic potential energy. This potential energy can be released when the material returns to its original shape, causing it to vibrate or move.
Therefore, elastic potential energy is a type of potential energy that can be converted into kinetic energy as the material moves back to its original shape.
Learn more about potential energy below.
https://brainly.com/question/14427111
#SPJ1
Worked Calculate the number of electrons that a positively charged object gains if its charge decreases by 3,2 x 10-18 C.
The positively charged object gains 20 electrons when its charge decreases by 3.2 x 10^-18 C.
What is Positive Charge?
A positive charge is an electrical property of matter that describes the presence of more positively charged protons than negatively charged electrons in an atom or molecule. In other words, an object with a positive charge has lost one or more electrons, resulting in a net charge that is greater than zero.
We know that the charge on a single electron is 1.602 x 10^-19 C.
To calculate the number of electrons gained by a positively charged object when its charge decreases by 3.2 x 10^-18 C, we can use the formula:
number of electrons = (magnitude of charge lost) / (charge on a single electron)
number of electrons = (3.2 x 10^-18 C) / (1.602 x 10^-19 C)
number of electrons = 20
Therefore, the positively charged object gains 20 electrons when its charge decreases by 3.2 x 10^-18 C.
Learn more about Positive Charge from given link
https://brainly.com/question/18102056
#SPJ1