Which segment of copper wire has the highest resistance at room
temperature?
(1) 1.0 m length, 1.0 × 10-6 m² cross-sectional area
(2) 2.0 m length, 1.0 × 10-6 m² cross-sectional area
(3) 1.0 m length, 3.0 x 10-6 m² cross-sectional area
(4) 2.0 m length, 3.0 x 10-6 m² cross-sectional area

Answers

Answer 1

The segment of copper wire with the highest resistance at room temperature is segment (2), which is 2.0 m in length and has a cross-sectional area of 1.0 x [tex]10^{-6}[/tex] m².

What is the resistance?

The resistance of a conductor is given by the formula:

R = (ρL) / A

where R is the resistance, ρ is the resistivity of the material, L is the length of the conductor, and A is the cross-sectional area of the conductor.

Assuming that the resistivity of copper is constant, we can compare the resistance of the different segments of copper wire using the above formula.

We can calculate the resistance of each segment of copper wire as follows:

(1) R = (1.68 x [tex]10^{-8}[/tex] Ωm x 1.0 m) / (1.0 x [tex]10^{-6}[/tex] m²) = 0.017 Ω

(2) R = (1.68 x [tex]10^{-8}[/tex] Ωm x 2.0 m) / (1.0 x [tex]10^{-6}[/tex] m²) = 0.034 Ω

(3) R = (1.68 x [tex]10^{-8}[/tex] Ωm x 1.0 m) / (3.0 x [tex]10^{-6}[/tex] m²) = 0.0056 Ω

(4) R = (1.68 x [tex]10^{-8}[/tex] Ωm x 2.0 m) / (3.0 x [tex]10^{-6}[/tex] m²) = 0.0112 Ω

Therefore, the segment of copper wire with the highest resistance at room temperature is segment (2), which is 2.0 m in length and has a cross-sectional area of 1.0 x [tex]10^{-6}[/tex] m².

To know more about the resistance, visit:

https://brainly.com/question/30799966

#SPJ1

Complete question is: The segment of copper wire with the highest resistance at room temperature is segment (2), which is 2.0 m in length and has a cross-sectional area of 1.0 x [tex]10^{-6}[/tex] m².


Related Questions

which term defines the distance from rest to crest, or from rest to trough?responsesamplitudeamplitudefrequencyfrequencyperiodperiodspeed

Answers

Amplitude is not measured from peak to trough, but from rest to peak or rest to trough.

The highest and lowest points on the surface of a wave are called crests and troughs respectively. The vertical distance between the peak and the trough is the height of the waves. The horizontal distance between two successive peaks or troughs is called the wavelength.

The amplitude of a wave is the maximum displacement of a particle on a medium with respect to its position of rest.

The amplitude can be thought of as the distance between rest and the peak. The amplitude from the rest position to the dip position can be measured in a similar manner.

To know more about Crest and trough, visit,

https://brainly.com/question/17778036

#SPJ4

a 1-kg rock that weighs 10 n is thrown straight upward at 20 m/s. neglecting air resistance, the net force that acts on it when it is half way to the top of its path is

Answers

A net force of 10 N acts on the rock when it is halfway to the top of its path.

The net force acting on the rock can be calculated using the following equation:

Fnet = ma

Where Fnet is the net force, m is the mass, and a is the acceleration.

When the rock is halfway to the top of its path, its velocity is zero since it momentarily stops at the top of its motion. As a result, its acceleration is equal to the acceleration due to gravity, which is -10 m/s² since it is acting in the opposite direction to the upward direction. This is the gravitational force acting on the rock.

We can now calculate the net force acting on the rock at this point in its motion:

Fnet = ma

Fnet = (1 kg)(-10 m/s²)

Fnet = -10 N

Since the acceleration due to gravity is acting downward and the rock is moving upward, the net force is equal to the force of gravity, which is 10 N.

Therefore, the net force that acts on the rock when it is halfway to the top of its path is -10 N or 10 N in the downward direction. This net force is equal in magnitude to the weight of the rock.

Learn more about gravity:

https://brainly.com/question/940770

#SPJ11

a student used the setup below to investigate electric current and fields. which action will increase the current in the wire

Answers

The final answer are current is directly proportional to the potential difference and inversely proportional to the wire's resistance. Therefore, decreasing the resistance of the wire increases the current in the wire.

To increase the current in the wire of an electric current and field investigating setup, the action to be taken is to decrease the resistance of the wire. What is an electric current? The flow of electrons in a conductor is known as an electric current. To complete an electric circuit, the electrons must flow continuously in a circular pattern.

The electron movement is generated by a power supply, such as a battery. Electrons are pushed out of one end of the battery by a voltage differential between the battery terminals (the potential difference). Electrons enter the other end of the battery and complete the circuit.

The potential difference between the battery terminals drives the electrons around the circuit. This generates an electric current. The formula for current is: I = Q/t Where I is the current, Q is the amount of charge transferred, and t is the time taken.

What is the relationship between electric current and fields? When a charged particle moves through a magnetic field, a force is exerted on it. This force is proportional to the particle's velocity, as well as the magnetic field strength and the charge's magnitude.

The mathematical equation that describes this relationship is: F = qvB sinθ Where F is the force on the charged particle, q is the charge, v is the velocity, B is the magnetic field strength, and θ is the angle between the velocity vector and the magnetic field vector.

In the wire, the current is directly proportional to the potential difference and inversely proportional to the wire's resistance. Therefore, decreasing the resistance of the wire increases the current in the wire.

To know more about electric current refer here:

https://brainly.com/question/2264542#

#SPJ11

while the general equations for the first and second law are written in terms of how the universe changes, dr. laude's preference is that we quickly rewrite them to reflect changes in what?

Answers

This is due to the fact that the first and second laws of thermodynamics are universally applicable fundamental principles that can be utilised to examine particular systems and processes.

How do chemical processes relate to the first and second laws of thermodynamics?

The part of thermodynamics that deals with chemical reactions is called chemical thermodynamics. The first law states that energy is conserved and cannot be created or destroyed. Second law: When natural processes in a closed system result in a rise in entropy, they are spontaneous.

The second law of thermodynamics is what?

According to the second rule of thermodynamics, an isolated system that is out of equilibrium over time must increase in entropy until it reaches the ultimate equilibrium value.

To know more about thermodynamics visit:-

https://brainly.com/question/15591590

#SPJ1

lo4 pos what advantages does the hubble space telescope (hst) have over ground-based telescopes? list some disadvantages

Answers

The Hubble Space Telescope offers clear and stable views of the cosmos without atmospheric distortion but has disadvantages including aging infrastructure, limited sensitivity to certain wavelengths, and difficulty with maintenance.

Advantages of Hubble Space Telescope:

Clearer and more stable view of the cosmos, and its sensitivity to a wider range of light. Not affected by atmospheric distortions.It can see far more clearly than a ground-based telescope.

The following are the disadvantages of the Hubble Space Telescope:

Aging infrastructure, which has resulted in frequent maintenance and repairs. Its sensitivity to UV and IR radiation was also limited by its design. Not as easy to maintain as ground-based telescopes. The HST's images are often subject to light pollution, which can make it difficult to see faint objects.

While the Hubble Space Telescope has revolutionized astronomy and made many groundbreaking discoveries, it also faces challenges and limitations that must be addressed as new space-based observatories are developed to continue advancing our understanding of the universe.

To know more about Hubble Space Telescope click here:

https://brainly.com/question/30246219

#SPJ11

you are sitting in a closed room with no windows. the only light in the room originates from two identical bare, incandescent light bulbs. one is located on the wall to your left; and the other is located on the wall to your right. bored, you look up at the ceiling and realize there is no interference pattern. why is there no interference pattern?

Answers

No stable interference pattern is formed on the ceiling.

Instead, you would see a simple combination of the light emitted by both bulbs, creating a uniformly lit ceiling.

The absence of an interference pattern in the scenario you described is due to the nature of the light sources and the way they emit light.

Incandescent light bulbs emit incoherent light, which means the light waves from these bulbs are not in phase with each other.
An interference pattern is created when two coherent light sources, like lasers, emit light waves that are in phase with each other.

When these light waves meet, they create a pattern of constructive and destructive interference.

Constructive interference occurs when the crests (or high points) of two light waves align, resulting in a brighter area, while destructive interference occurs when the crest of one wave aligns with the trough (or low point) of another wave, resulting in a darker area.

This alternating pattern of bright and dark areas is known as an interference pattern.
However, in your scenario with two incandescent light bulbs, the light waves emitted by each bulb are incoherent, meaning they have random phases and do not align consistently.

For similar question on interference.

https://brainly.com/question/2166481

#SPJ11

a different guitar string makes 7680 oscillations in 30 seconds. what is the frequency of the sound waves that it creates?

Answers

The frequency of the sound waves created by the guitar string is 256 Hz.

The number of oscillations of the guitar string in 30 seconds is 7680.

The frequency of the guitar string is defined as the number of oscillations per second, so we can calculate the frequency by dividing the total number of oscillations by the time it took to make them:

frequency = number of oscillations / time

frequency = 7680 / 30 seconds = 256 Hz

Therefore, the frequency of the sound waves created by the guitar string is 256 Hz.

To know more about frequency click here:

https://brainly.com/question/15403215

#SPJ11

a space traveler weighs 682 n on earth. what will the traveler weigh on another planet whose radius is 3 times that of earth and whose mass is 2 times that of earth?

Answers

The traveler's weight on another planet whose radius is 3 times that of Earth and whose mass is 2 times that of Earth is 21.647 N

The following is the solution to the given problem:

Mass and gravity are related to one another. Gravity is generated by the planet's mass, and the magnitude of the gravitational force is determined by the mass of the planet on which the object is situated, as well as the mass of the object.

Mass, distance, and gravity are all factors that influence the gravitational force. Mass is directly proportional to the gravitational force and inversely proportional to the square of the distance from the gravitational force's center.

Here is the formula: Force of gravity = G(M1M2)/d²where, G is the gravitational constant 6.67 x 10^{-11} N(m/kg)^2, M1 is the mass of the first body, M2 is the mass of the second body, d is the distance between the centers of two bodies.

On earth, the traveler weighs 682 N. On another planet whose radius is 3 times that of Earth and whose mass is 2 times that of Earth, we have to calculate the traveler's weight.

Mass of Earth is 5.972 × 10^24 kg2,

Radius of Earth is 6.371 x 10^63.

The mass of the planet whose radius is 3 times that of Earth and whose mass is 2 times that of Earth.

Mass of the planet = 2 x mass of Earth = 2 x 5.972 × 10^24 kg = 1.1944 × 10^25 kg4.

The radius of the planet whose radius is 3 times that of Earth,

Radius of the planet = 3 x radius of Earth = 3 x 6.371 x 10^6 m = 1.9113 × 10^7 m5.

The distance between the two planets.

Distance between two planets = radius of planet + radius of Earth

= 1.9113 × 10^7 m + 6.371 x 10^6 m

= 2.54813 x 10^7 m

= 2.54813 x 10^10 cm.

Putting all the values in the formula.

Force of gravity = G (M1 M2) / d²

Where, Mass of the traveler on the other planet is m.

Mass of the Earth is M1 = 5.972 × 10^24 kg.

Mass of the other planet is M2 = 2 x 5.972 × 10^24 kg = 1.1944 × 10^25 kg.

Radius of the Earth is r1 = 6.371 x 10^6 m.

Radius of the other planet is r2 = 3 x 6.371 x 10^6 m = 1.9113 × 10^7 m.

Distance between the two planets is d = 2.54813 x 10^10 cm.682

= G (M1 M2)/d²

G = 6.674 × 10^-11 N m² / kg²

Force of gravity on other planet = G(mM2)/r² where m is the mass of the traveler on the other planet

= 6.674 × 10^-11 × (m × 1.1944 × 10^25)/(1.9113 × 10^7)²

Weight on another planet = force of gravity on another planet × mass of the traveler on another planet

= (6.674 × 10^-11 × (m × 1.1944 × 10^25)/(1.9113 × 10^7)²) × m

= 21.647 N (approximately)

Therefore, the traveler's weight on another planet whose radius is 3 times that of Earth and whose mass is 2 times that of Earth is 21.647 N (approximately).

To know more about Earth, refer here:

https://brainly.com/question/29054751#

#SPJ4

if the frequency of the incoming light is decreased, will the energy of the ejected electrons increase, decrease, or stay the same?

Answers

If the frequency of the incoming light is decreased, the energy of the ejected electrons will decrease.

The frequency of the incoming light will affect the energy of the ejected electrons. This is because the energy of the ejected electrons is proportional to the frequency of the incoming light.

The energy of the electrons can be determined using the equation:

E = h * f,

where E is the energy, h is Planck’s constant, and f is the frequency of the incoming light. This equation shows that the energy of the electrons is directly proportional to the frequency of the incoming light.


Therefore, if the frequency of the incoming light is decreased, the energy of the ejected electrons will also decrease.

To know more about frequency, refer here:

https://brainly.com/question/14316711#

#SPJ11

calculate the amount of heat removed from a fermenter within 24 hours. assuming rate of cooling is 50 btu/hr.m2.f. the size of heat exchange surface is 10 m by 8 m. the temperature difference is 20f

Answers

The amount of heat removed from a fermenter within 24 hours can be calculated using the rate of cooling, size of heat exchange surface, and temperature difference.

The rate of cooling is defined as the amount of heat removed or exchanged (in BTU) per hour per square foot or meter per degree Fahrenheit (BTU/hr.m2.F). In this case, the rate of cooling is 50 BTU/hr.m2.F.

The size of the heat exchange surface is 10 m by 8 m, and the temperature difference is 20F. Multiplying the rate of cooling (50 BTU/hr.m2.F) by the size of the heat exchange surface (80 m2) by the temperature difference (20F) yields the amount of heat removed in 24 hours: 80 m2 x 50 BTU/hr.m2.F x 20F = 80,000 BTU/24 hours. Thus, the amount of heat removed from the fermenter within 24 hours is 80,000 BTU.

Know more about fermenter here

https://brainly.com/question/13050729#

#SPJ11

g what is the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit?

Answers

To calculate the ideal banking angle for a gentle turn

The ideal banking angle for a gentle turn of radius R, with velocity v, and coefficient of friction µ between the road and the tires can be calculated by the formula:

Tan(θ) = (v^2) / (gR)

where g is the acceleration due to gravity = 9.81 m/s²

θ is the banking angleIn this problem,

the radius of the gentle turn is R = 1.40 km = 1400 m

The speed limit is v = 105 km/h = 29.1667 m/s

Applying the formula,

Tan(θ) = (29.1667 m/s)^2 / (9.81 m/s² x 1400 m)

= Tan(θ) = 0.41435θ

= Tan^-1(0.41435)θ = 21.25°

Therefore, the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h  speed limit (about 65 mi/h), assuming everyone travels at the limit is 21.25 degrees.

Learn more about ideal banking angle and speed at : https://brainly.com/question/4931057

#SPJ11

a 10 gauge copper wire carries a current of 21 a. assuming one free electron per copper atom, calculate the magnitude of the drift velocity of the electrons.

Answers

To calculate the magnitude of the drift velocity of the electrons ,

The drift velocity of electrons in a conductor is given by the formula:

v = I / (neA)

where 'v' is the drift velocity of electrons,

'I' is the current flowing through the wire,

'n' is the number of free electrons per unit volume,

'e' is the charge on each electron, and

'A' is the cross-sectional area of the wire.

Therefore, The current-carrying capacity of the 10 gauge copper wire is

 I = 21 A which is a given statement.

For copper, the number of free electrons per unit volume is approximately [tex]8.5*10[/tex]²⁸ electrons/m³, and the charge on each electron is 1.6 x 10⁻¹⁹ C.

The cross-sectional area of a 10 gauge copper wire is approximately 5.26 mm²= 5.26 x 10⁻⁷ m².

Substituting these values into the formula of drift velocity we get:

v = (21 A) / ((8.5 x 10²⁸ electrons/m³) x (1.6 x 10⁻¹⁹ C/electron) x (5.26 x 10⁻⁷ m²))

= 0.015 m/s

Therefore, the magnitude of the drift velocity of the electrons in the wire is approximately 0.015 m/s.

#SPJ11

To calculate the  drift velocity of the electrons :https://brainly.com/question/30903511

photo effect: the photo emitting electrode in a photo effect experiment has a work function of 3.56 ev. what is the longest wavelength the light can have for a photo current to occur? state the wavelength in nm units

Answers

The longest wavelength of the light required to cause photoelectric effect is 349 nm (in nm units).

A photoelectric effect occurs when light falls on a metal surface, causing electrons to be emitted from the metal surface. It's a phenomenon that demonstrates the particle-like nature of light, which is made up of photons, as well as the wave-like nature of light.

Einstein first proposed the idea of the photoelectric effect, which eventually helped him win the Nobel Prize in Physics in 1921.Photoelectric Effect’s Formula

The photoelectric effect's formula is as follows:

Kinetic Energy = Energy of Photon - Work Function

KE = hf - Φ

For this question, we have work function, and we will use it to find the longest wavelength.

The formula of work function is given as Φ= hf0

Where f0 is the threshold frequency (frequency of the incoming light, below which the photoelectric effect does not occur).h = Planck’s constant = 6.626 x 10^-34 J s = 4.136 x 10^-15 eV s

The longest wavelength of the light required to cause photoelectric effect is given asλ = c / f

Here, λ is the wavelength of the incoming light, c is the speed of light, and f is the frequency of the incoming light.

We have to solve the work function equation to find the threshold frequency.

The formula is given asf0 = Φ/h

Substituting the values, we get:f0 = 3.56 eV / 4.136 x 10^-15 eV s = 8.60 x 10^14 Hz

To find the longest wavelength, we use the following formula:

λmax = c / f0 = (3 x 10^8 m/s) / (8.60 x 10^14 Hz) = 3.49 x 10^-7 m = 349 nm

For more question on photoelectric effect click on

https://brainly.com/question/1408276

#SPJ11

A stopped object starts moving. After 3.2 s, it’s moving 18 m/s. The net force acting on it is 328 N. What is its mass?

Answers

The mass of the object would be 58.4 kg.

Mass/force problem

The problem can be solved using Newton's second law of motion, which states that the net force (F_net) acting on an object is equal to the mass (m) of the object multiplied by its acceleration (a):

F_net = m*a

We are given that the net force acting on the object is 328 N, and we know the object's acceleration from the change in velocity over time:

a = (final velocity - initial velocity) / time

a = (18 m/s - 0 m/s) / 3.2 s

a = 5.625 m/s^2

Substituting these values into the equation for Newton's second law, we get:

328 N = m * 5.625 m/s^2

Solving for m, we get:

m = 328 N / 5.625 m/s^2

m ≈ 58.4 kg

Therefore, the mass of the object is approximately 58.4 kg.

More on Newton's second law can be found here: https://brainly.com/question/13447525

#SPJ1

A billiard ball of mass m = 0.150 kg hits the cushion of a billiard table at an angle of θ1 = 60.0 degrees at a speed of v1 = 2.50 m/s. It bounces off at an angle of θ2 = 47.0 degrees and a speed of v2 = 2.20 m/s.
a) What is the magnitude of the change in the momentum of the billiard ball?
b) In which direction does the change of momentum vector point? (Take the x-axis along the cushion and specify your answer in degrees.)

Answers

The magnitude of the change in the momentum of the billiard ball is 0.268 kg⋅m/s. The direction of the change of momentum vector points at 59.6 degrees, measured counterclockwise from the x-axis along the cushion.

This result can be found by using the equation for conservation of momentum, which states that both the magnitude and the direction of the momentum before and after the collision must be the same.

Since the mass and the speed of the ball changed, the direction of the vector must have changed as well. In this case, the vector changed direction from 60 degrees to 47 degrees, a difference of 13 degrees.

This means that the vector must have rotated counterclockwise by 13 degrees, or in other words, the change of momentum vector points at 59.6 degrees, measured counterclockwise from the x-axis along the cushion.

Know more about momentum here

https://brainly.com/question/30487676#

#SPJ11

a cleaner pushes a 3.1-kg laundry cart in such a way that the net external force on it is 63 n. calculate the magnitude of its acceleration in m/s2.

Answers

Answer: The magnitude of the acceleration of the laundry cart is 20.32 m/s2.



The magnitude of the acceleration of the laundry cart can be calculated using the equation F = ma, where F is the force applied, m is the mass of the object and a is the acceleration.



We can rearrange the equation to solve for acceleration: a = F/m.



Plugging in the values we know, the acceleration of the laundry cart is:



a = 63N / 3.1kg = 20.32 m/s2



Therefore, the magnitude of the acceleration of the laundry cart is 20.32 m/s2.



Learn more about acceleration here:

https://brainly.com/question/30660316#



#SPJ11

find the force between charges of +10.0 x 10*C and -50.0 x 10*C located 20>0cm apart

Answers

20 cm apart, the charges of +1.0 x 10⁻⁶ C and –1.0 x 10⁻⁶ C exert a force of 449.5 N on one another. This force is directed from the negative charge to the positive charge.

How can the force between two charges be determined?

According to Coulomb's law, the force F between two point charges, q1 and q2, that are separated by a distance r, is computed as F=k|q1q2|r2.

It is possible to determine the force between two point charges using Coulomb's law:

F = k*(q1*q2)/r²

In this case, we have[tex]q1 = +10.0 x 10^-6 C, q2 = -50.0 x 10^-6 C, and r = 20 cm = 0.2 m.[/tex]

Plugging in these values, we get:

[tex]F = (8.99 x 10^9 N m^2/C^2) * [(+10.0 x 10^-6 C) * (-50.0 x 10^-6 C)] / (0.2 m)^2[/tex]

Simplifying, we get:

F = -449.5 N.

To know more about Charge visit:-

https://brainly.com/question/9194793

#SPJ1

imagine you have a sensitive radio telescope and you would like to look at the sun. is it reasonable to expect that you would see it?

Answers

Yes, it is reasonable to expect that you would see the Sun with a sensitive radio telescope.

Radio waves can penetrate through the clouds and the atmosphere, so with a powerful radio telescope you can observe the Sun even on a cloudy day.

Gather the necessary components of the radio telescope, such as a dish and receiver. Point the radio telescope towards the Sun. Tune the receiver to the proper frequency. Take a look at the results from the telescope and observe the Sun.

Therefore, you can expect that you would see the Sun with a sensitive radio telescope.

To know more about radio telescope click here:

https://brainly.com/question/3964280

#SPJ11

how does matter affect your daily lives?

Answers

Matter affects our daily lives in the sense all is composed of matter and energy.

What are matter and energy in the Universe and daily life?

Matter and energy in the Universe and daily life are two basic elements that characterize the physic system and allow us to understand the world. In regard to matter, it is something that occupies space and has mass, while energy can perform work.

Therefore, with this data, we can see that matter and energy in the Universe and daily life are fundamental to understanding the universe.

Learn more about matter and energy here:

https://brainly.com/question/481479

#SPJ1

a hard drive rotates at 7200 rpm. the disk has a diameter of 5.1 in 13 cm. what is the speed of a point 6.0 cm. from the center axle? what is the acceleration of this point on the disk.

Answers

The speed of a point 6.0 cm from the center axle is approximately 4.524 cm/s, and the acceleration of this point on the disk is approximately 3.408 cm/s².

The first step to solving this problem is to convert the rotational speed from revolutions per minute (rpm) to radians per second (rad/s):

ω = (7200 rpm) * (2π rad/rev) / (60 s/min) ≈ 753.98 rad/s

The speed of a point 6.0 cm from the center axle can be found using the formula:

v = r * ω

where r is the distance from the center axle to the point of interest. Substituting the given values, we get:

v = (6.0 cm) * 0.75398 rad/s ≈ 4.524 cm/s

To find the acceleration of this point on the disk, we can use the formula for centripetal acceleration:

a = r * ω²

where r is the distance from the center axle to the point of interest, and ω is the angular velocity in radians per second. Substituting the given values, we get:

a = (6.0 cm) * (0.75398 rad/s)² ≈ 3.408 cm/s²

Learn more about the rotational speed: https://brainly.com/question/17025846

#SPJ11

the period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of m; a restoring force constant k with dimensions of ml2t2 , and the amplitude a, with dimensions of l. dimensional analysis shows that the period of oscillation should be proportional to

Answers

The correct option is C, The period of oscillation should be proportional to A^-1 square root of m/k.

mass m, with dimensions of M

force constant k with dimensions of ML^-2T^-2

amplitude A, with dimensions of L

To find the relation for period of oscillation with dimension T

To get the dimension T from m,k and A

[tex]1/A*\sqrt{(m/k)} = 1/L*\sqrt{(M/ML^{-2}T^{-2}) }= 1/L*LT = T[/tex]

Oscillation refers to the repetitive variation of a physical quantity around a central value or equilibrium position. It is a common phenomenon in many natural and man-made systems, ringing from simple pendulums and springs to complex electrical circuits and biological processes.

In an oscillating system, the physical quantity, such as displacement, velocity, or current, continuously changes between maximum and minimum values with a fixed frequency and amplitude. The frequency of oscillation is the number of cycles per unit time, usually measured in Hertz (Hz), while the amplitude is the maximum deviation from the equilibrium position. Oscillations can be periodic, where the motion repeats itself exactly over a fixed time interval, or non-periodic, where the motion is irregular and unpredictable.

To learn more about Oscillation visit here:

brainly.com/question/30111348

#SPJ4

Complete Question: -

The period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of M; a restoring force constant k with dimensions of ML^-2T^-2 and the amplitude A, with dimensions of L. Dimensional analysis shows that the period of oscillation should be proportional to

a) A square root of m/k b) A^2 m/k c) A^-1 square root of m/k d) (A^2k^3)/m

basics of quantum physics and how it works?

Answers

The most fundamental stage of studying matter and energy is quantum physics. It aims to comprehend the traits and behaviours of the very substances that make up nature.

What is the fundamental principle of quantum physics?

According to this theory, the universe of any object transforms into an array of parallel universes with an identical number of possible states for that object, one in each universe. This occurs as soon as the potential for any object to be in any state arises.

What is a quantum physicist's process?

By examining the interactions between particles of matter, quantum physicists investigate how the universe functions. This career might suit your interests if you like math or physics.

To know more about quantum physics visit:-

https://brainly.com/question/10430663

#SPJ9

What Enlightenment idea is represented by the headline

Answers

The headline "Enlightenment ideas of freedom, equality, and justice for all" represents the idea of the Enlightenment that human beings are rational, capable of determining right from wrong, and deserving of rights and freedoms, such as freedom of speech, freedom of religion, and equality before the law.

These ideas were a major factor in the shift away from absolute monarchies, and towards governments of the people, by the people, and for the people. The Enlightenment period also saw the development of democracy and of the rule of law, where the government is subject to a set of laws, rather than relying on the whims of the ruler. Enlightenment thinkers sought to empower the individual, giving people the freedom to think and act as they pleased, rather than relying on the decisions of rulers.

For such more questions on Enlightenment idea :

brainly.com/question/11185091

#SPJ11

what must the tension in each cable be in the diagram in order to order to support the cargo in static equilibrium?

Answers

The tension in each cable must be equal to the mass of the cargo multiplied by the acceleration due to gravity, and divided by the number of cables.

In order to determine the tension in each cable required to support the cargo in static equilibrium, we can use Newton's Second Law of Motion.

This law states that the sum of the forces acting on an object must be equal to the object's mass multiplied by its acceleration.
The tension in each cable (T) must be equal to the weight of the cargo (W) divided by the number of cables (n).

So the equation would be:  

T = W/n.
To find the value of T, we can use the formula

W = mg

where m is the mass of the cargo and g is the acceleration due to gravity.

Plugging this into the equation for T, we have:

T = mg/n.

for such more question on tension

https://brainly.com/question/24994188

#SPJ11

if a bag has a mass of 25 kg, how much force must you apply vertically to lift it off of a baggage cart?

Answers

A force of 245 N must be applied vertically to lift the bag off the baggage cart.

The force that must be applied vertically to lift a bag off a baggage cart, given that the bag has a mass of 25 kg, can be determined using the formula F = m*g

where F is force, m is mass, and g is acceleration due to gravity. The value of g is 9.8 m/s².So, F = 25 kg x 9.8 m/s² = 245 N. Therefore, a force of 245 N must be applied vertically to lift the bag off the baggage cart.

The mass of the bag = 25 kg.The formula used is, F = m*gwhereF = Force required to lift the bagm = Mass of the bagg = Acceleration due to gravityF = 25 kg x 9.8 m/s² = 245 N.

Therefore, a force of 245 N must be applied vertically to lift the bag off the baggage cart.

to know more about Force refer here:

https://brainly.com/question/13191643#

#SPJ11

what is the calculus way to find potential energy from force? what is the relationship between force and potential energy?

Answers

The relationship between force and potential energy can be found using: calculus and examining the graph of the equation PE = Fd

Potential energy is a form of stored energy that results from the force of gravity or from a conservative force. The relationship between force and potential energy is described by the equation PE = Fd, where PE is potential energy, F is force, and d is displacement.

To calculate potential energy using calculus, start by taking the integral of force with respect to displacement. This will give you the work done by the force, which is equal to the potential energy. Mathematically, this is represented as PE = ∫Fd. This equation can be used to find the potential energy of an object if you know the force and the displacement.

The relationship between force and potential energy can also be determined by examining the graph of the equation PE = Fd. This graph is a straight line with a slope of d and a y-intercept of zero. The slope of the line represents the displacement, while the y-intercept represents the potential energy.

As the force increases, the potential energy increases by the same amount as the force multiplied by the displacement. In summary, the relationship between force and potential energy can be found using calculus. The equation PE = Fd can be used to calculate potential energy from force and displacement.

The graph of this equation is a straight line with a slope of d and a y-intercept of zero, and it shows that as the force increases, the potential energy increases by the same amount as the force multiplied by the displacement.

To know more about potential energy refer here:

https://brainly.com/question/24284560#

#SPJ11

a variable speed motor with an unbalanced is observed to have a displacement of 0.6 inches at resonance and 0.15 at a very high rpm. what is the damping ratio of the system?

Answers

The damping ratio of the system can be calculated as 0.13.

What is displacement?

Displacement at resonance, Xn = 0.6 inches

Displacement at very high RPM, Xv = 0.15 inches

Natural frequency of a system is:

f = (1/2π) * √(k/m)

where k is the stiffness of the system and m is its mass.

Let's assume the mass of the system as m and k is the stiffness of the system.

When the motor is at resonance, the frequency of the system is: n = f

where n is the frequency of the system.

When the motor is running at very high rpm, the frequency of the system is given as:v = f

where v is the frequency of the system.

Now, let's assume the damping coefficient of the system as c.

The displacement of the system:

X = [Xn * exp(-ζωnt)] * sin(ωdt)

where X is the displacement of the system, ζ is the damping ratio of the system, ωn is the natural frequency of the system and ωd is the frequency of the applied force.

The maximum value of the displacement is:

Xmax = Xn / (2ζ * √(1 - ζ²))

Here, Xmax = 0.6 inches when the motor is at resonance Xmax = 0.15 inches

when the motor is running at very high RPM, putting the given values of Xmax in the above equation, we can find the value of the damping ratio, ζ.

For resonance:0.6 = Xn / (2ζ * √(1 - ζ²))

=> 2ζ * √(1 - ζ²)

= Xn / 0.6=> 4ζ² * (1 - ζ²)

= Xn² / 0.36=> 4ζ⁴ - 4ζ² + 0.26244

= 0

Solving this quadratic equation gives us the value of ζ as 0.32.

For high RPM:

0.15 = Xn / (2ζ * √(1 - ζ²))

=> 2ζ * √(1 - ζ²)

= Xn / 0.15=> 4ζ² * (1 - ζ²)

= Xn² / 0.0225

=> 4ζ⁴ - 4ζ² + 1.728 = 0

Solving this quadratic equation gives us the value of ζ as 0.13.

To know more about displacement:

https://brainly.com/question/29769926

#SPJ11

kim holds a 2.0 kg air rifle loosely and fires a bullet of mass 1.0 g. the muzzle velocity of the bullet is 150 m/s. calculate the recoil speed of the rifle.

Answers

The recoil speed of the rifle is 0.075 m/s in the opposite direction to the direction of the bullet.

To calculate the recoil speed of the rifle, we can use the conservation of momentum principle. According to this principle, the total momentum of the system (bullet + rifle) is conserved before and after the firing of the bullet.

Initially, the total momentum of the system is zero because the rifle and bullet are at rest. After firing the bullet, the total momentum of the system is given by:

m1v1 + m2v2 = 0

where m1 and v1 are the mass and velocity of the bullet, and m2 and v2 are the mass and recoil velocity of the rifle, respectively.

Substituting the given values, we get:

(0.001 kg)(150 m/s) + (2.0 kg)(v2) = 0

Solving for v2, we get:

v2 = -(0.001 kg)(150 m/s) / (2.0 kg)

v2 = -0.075 m/s

Learn more about recoil speed of the rifle at: https://brainly.com/question/12794487

#SPJ11

suppose a 63-kg gymnast climbs a rope. what is the tension in the rope in newtons if he accelerates upward at a rate of 2.5 m/s2?

Answers

The tension in the rope is 173.55 N.

Using Newton's second law of motion, we know that the force (F) exerted on an object is equal to its mass (m) times its acceleration (a): F = ma. In this case, the gymnast's weight is acting downward, so the tension in the rope must be greater than the weight to provide the necessary upward force to accelerate the gymnast upward.

Thus, we can calculate the tension in the rope as follows:

Tension - Weight = ma

T - mg = ma

where T is the tension in the rope, m is the mass of the gymnast, g is the acceleration due to gravity (9.8 m/s^2), and a is the acceleration of the gymnast upward.

T - (63 kg)(9.8 m/s^2) = (63 kg)(2.5 m/s^2)

T = (63 kg)(9.8 m/s^2 + 2.5 m/s^2) = 173.55 N

Therefore, the tension in the rope is 173.55 N, which is the force required to lift the gymnast upward with an acceleration of 2.5 m/s^2.

To know more about tension click here:

https://brainly.com/question/30794023

#SPJ11

in young's singe slit experiment, if the width of the slit decreases, what happends to the width of the diffracted peaks?

Answers

In Young's single slit experiment, if the width of the slit decreases, the width of the diffracted peaks increases.

Young's experiment involves a single slit that diffracts light and produces a pattern of bright and dark fringes on a screen. The width of the slit affects the diffraction of light through the slit and determines the width of the bright fringes on the screen.

The narrower the slit, the greater the diffraction of light, which causes the bright fringes to become wider.

This is because diffraction causes the light waves to spread out as they pass through the narrow slit, leading to interference and the formation of bright and dark fringes on the screen.

Therefore, if the width of the slit decreases, the width of the diffracted peaks increases.

To know more about diffraction click here:

https://brainly.com/question/16096548

#SPJ11

Other Questions
answer question please but DO NOT ROUND IT . 1 / 3*5 + 2 what did the various treaties signed in the first few years of the united states say about the country? how does matter affect your daily lives? Use informal commands and the word bank to complete the puzzle. Match the letters with the encircled numbers to reveal the first code. in young's singe slit experiment, if the width of the slit decreases, what happends to the width of the diffracted peaks? how many batteries n should be in the package in order for the probability to exceed 1%? give the smallest number n which works. Why do you think that Dr. Mary Walker stated "let future generations know that women in uniform also guaranteed their freedom."? Use specific evidence to support your explanation The textbook names four generalizations about American law enforcement. Identify those four generalizations. the anterior cruciate ligament (acl) is one of the ligaments that help stabilize the knee. surgery is often recommended if the acl is completely torn, and recovery time from the surgery can be lengthy. a medical center developed a new surgical procedure designed to reduce the average recovery time from the surgery. to test the effectiveness of the new procedure, a study was conducted in which 210 patients needing surgery to repair a torn acl were randomly assigned to receive either the standard procedure or the new procedure. (a) based on the design of the study, would a statistical when young adults return after leaving home for some period to live in the homes of their middle-aged parents, they are described as . how many of the seven wonders of the ancient world still exist today? What Enlightenment idea is represented by the headline does the change of environment from the base of the section up to the thick gray shale indicate an advance (transgression) or retreat (regression) of the sea? a counseling service records the number of calls to their hotline for the last year. what is the forecast for august if the forecast for june was 164 and the service uses exponential smoothing with an alpha of 0.7? the emancipation of russian serfs in 1861 [check all that apply] group of answer choices was achieved at the tsar's insistence. brought freedom but few political rights for the peasants. did not significantly increase agricultural production. was intended to avert a revolution. while the general equations for the first and second law are written in terms of how the universe changes, dr. laude's preference is that we quickly rewrite them to reflect changes in what? what must the tension in each cable be in the diagram in order to order to support the cargo in static equilibrium? you have a novel idea. hedge eur 50,000,000 in the forward market and leave the rest unhedged. what will be your revenue if the spot rate in 12 months is usd 1.23/eur? a space traveler weighs 682 n on earth. what will the traveler weigh on another planet whose radius is 3 times that of earth and whose mass is 2 times that of earth? PLEAS HELP!!! Find the volume of the pyramid. Write your answer as a fraction or mixed number.