2) (10) Sue has a total of $20,000 to invest. She deposits some of her money in an account that returns 12% and the rest in a second account that returns 20%. At the end of the first year, she earned $3460 a) Give the equation that arises from the total amount of money invested. b) give the equation that results from the amount of interest she earned. c) Convert the system or equations into an augmented matrix d) Solve the system using Gauss-Jordan Elimination. Show row operations for all steps e) Answer the question: How much did she invest in each account?

Answers

Answer 1

From the solution, we can determine that Sue invested $1,750 in the account that returns 12% and $18,250 in the account that returns 20%.

a) Let x represent the amount of money invested in the account that returns 12% and y represent the amount of money invested in the account that returns 20%. The equation that arises from the total amount of money invested is:

x + y = 20,000

b) The interest earned from the account that returns 12% is given by 0.12x, and the interest earned from the account that returns 20% is given by 0.20y. The equation that arises from the amount of interest earned is:

0.12x + 0.20y = 3,460

c) Converting the system of equations into an augmented matrix:

[1 1 | 20,000]

[0.12 0.20 | 3,460]

d) Solving the system using Gauss-Jordan Elimination:

Row 2 - 0.12 * Row 1:

[1 1 | 20,000]

[0 0.08 | 1,460]

Divide Row 2 by 0.08:

[1 1 | 20,000]

[0 1 | 18,250]

Row 1 - Row 2:

[1 0 | 1,750]

[0 1 | 18,250]

Know more about augmented matrix here:

https://brainly.com/question/30403694

#SPJ11


Related Questions

help if you can asap pls an thank you!!!!

Answers

Answer: SSS

Step-by-step explanation:

The lines on the triangles say that 2 of the sides are equal. Th triangles also share a 3rd side that is equal.

So, a side, a side and a side proves the triangles are congruent through, SSS

Find the values of x, y, and z in the triangle to the right. X= 4 11 N (3x+4)0 K to ܕܘ (3x-4)°

Answers

The values of x, y, and z in the triangle are x = 4, y = 11, and z = 180 - (3x + 4) - (3x - 4).

In the given problem, we are asked to find the values of x, y, and z in a triangle. The information provided states that angle X is equal to 4 degrees and angle N is equal to 11 degrees. Additionally, we have two expressions involving x: (3x + 4) degrees and (3x - 4) degrees.

To find the value of y, we can use the fact that the sum of the interior angles in a triangle is always 180 degrees. In this case, we have x + y + z = 180. Plugging in the given values, we get 4 + 11 + z = 180. Solving for z, we find that z = 180 - 4 - 11 = 165 degrees.

To find the values of x and y, we can use the fact that the sum of the angles in a triangle is always 180 degrees. In this case, we have angle X + angle N + angle K = 180. Plugging in the given values, we get 4 + 11 + K = 180. Solving for K, we find that K = 180 - 4 - 11 = 165 degrees.

Therefore, the values of x, y, and z in the triangle are x = 4, y = 11, and z = 165 degrees.

Learn more about triangle

brainly.com/question/2773823

#SPJ11

3. Given f(x) = 2x-3 and g(x) = 5x + 4, use composite (f° g)(x) = f(g(x)) in the following.
A. Find composite (f° g)(x) =
B. Find composite (g° f)(x) =
C. Find composite (f° g)(-3)=
4. Given f(x) = x2 - 8x - 9 and g(x) = x^2+6x + 5, use composite (f° g)(x) = f(g(x)) in the following.
A. Find composite (fog)(0) =
B. Find composite (fog)(1) =
C. Find composite (g° f)(1) =
5. An envelope is 4 cm longer than it is wide. The area is 96 cm². Find the length & width.
6. Three consecutive even integers are such that the square of the third is 76 more than the square of the second. Find the three integers.

Answers

The three consecutive even integers are -38, -36, and -34.

Given f(x) = 2x-3 and g(x) = 5x + 4, the composite of f° g(x) = f(g(x)) can be calculated as follows:

Solution: A. Composite (f° g)(x):f(x) = 2x - 3 and g(x) = 5x + 4

Let's substitute the value of g(x) in f(x) to obtain the composite of f° g(x) = f(g(x))f(g(x))

= f(5x + 4)

= 2(5x + 4) - 3

= 10x + 5

B. Composite (g° f)(x):f(x)

= 2x - 3 and g(x)

= 5x + 4

Let's substitute the value of f(x) in g(x) to obtain the composite of g° f(x) = g(f(x))g(f(x))

= g(2x - 3)

= 5(2x - 3) + 4

= 10x - 11

C. Composite (f° g)(-3):

Let's calculate composite of f° g(-3)

= f(g(-3))f(g(-3))

= f(5(-3) + 4)

= -10 - 3

= -13

Given f(x) = x² - 8x - 9 and

g(x) = x²+ 6x + 5,

the composite of f° g(x) = f(g(x)) can be calculated as follows:

Solution: A. Composite (fog)(0):f(x) = x² - 8x - 9 and g(x)

= x² + 6x + 5

Let's substitute the value of g(x) in f(x) to obtain the composite of f° g(x) = f(g(x))f(g(x))

= f(x² + 6x + 5)

= (x² + 6x + 5)² - 8(x² + 6x + 5) - 9

= x⁴ + 12x³ - 31x² - 182x - 184

B. Composite (fog)(1):

Let's calculate composite of f° g(1) = f(g(1))f(g(1))

= f(1² + 6(1) + 5)= f(12)

= 12² - 8(12) - 9

= 111

C. Composite (g° f)(1):

Let's calculate composite of g° f(1) = g(f(1))g(f(1))

= g(2 - 3)

= g(-1)

= (-1)² + 6(-1) + 5= 0

The length and width of an envelope can be calculated as follows:

Solution: Let's assume the width of the envelope to be x.

The length of the envelope will be (x + 4) cm, as per the given conditions.

The area of the envelope is given as 96 cm².

So, the equation for the area of the envelope can be written as: x(x + 4) = 96x² + 4x - 96

= 0(x + 12)(x - 8) = 0

Thus, the width of the envelope is 8 cm and the length of the envelope is (8 + 4) = 12 cm.

Three consecutive even integers whose square difference is 76 can be calculated as follows:

Solution: Let's assume the three consecutive even integers to be x, x + 2, and x + 4.

The square of the third integer is 76 more than the square of the second integer.x² + 8x + 16

= (x + 2)² + 76x² + 8x + 16

= x² + 4x + 4 + 76x² + 4x - 56

= 0x² + 38x - 14x - 56

= 0x(x + 38) - 14(x + 38)

= 0(x - 14)(x + 38)

= 0x = 14 or

x = -38

To know more about integers visit:

https://brainly.com/question/490943

#SPJ11

Which of the following lines is parallel to the line 3x+6y=5?
A. y=2x+6
B. y=3x-2
C. y= -2x+5
D. y= -1/2x-5
E. None of the above

Answers

The correct answer is B. y=3x-2.

The slope of a line determines its steepness and direction. Parallel lines have the same slope, so for a line to be parallel to 3x+6y=5, it should have a slope of -1/2. Since none of the given options have this slope, none of them are parallel to the line 3x+6y=5. This line has the same slope of 3 as the given line, which makes them parallel.

Learn more about Parallel lines here

https://brainly.com/question/19714372

#SPJ11

4. ((4 points) Diamond has an index of refraction of 2.42. What is the speed of light in a diamond?

Answers

The speed of light in diamond is approximately 1.24 x 10⁸ meters per second.

The index of refraction (n) of a given media affects how fast light travels through it. The refractive is given as the speed of light divided by the speed of light in the medium.

n = c / v

Rearranging the equation, we can solve for the speed of light in the medium,

v = c / n

The refractive index of the diamond is given to e 2.42 so we can now replace the values,

v = c / 2.42

Thus, the speed of light in diamond is approximately 1.24 x 10⁸ meters per second.

To know more about refractive index, visit,

https://brainly.com/question/83184

#SPJ4

If the graph of f(x) = x², how will the graph be affected if the coefficient of x² is changed to? The une ale willlL

Answers

If the coefficient of x² in the equation f(x) = 3x² is changed to 3, the graph will be affected if the coefficient of x² is changed to the parabola will be narrower. Thus, option A is correct.

A. The parabola will be narrower.

The coefficient of x² determines the "steepness" or "narrowness" of the parabola. When the coefficient is increased, the parabola becomes narrower because it grows faster in the upward direction.

B. The parabola will not be wider.

Increasing the coefficient of x² does not result in a wider parabola. Instead, it makes the parabola narrower.

C. The parabola will not be translated down.

Changing the coefficient of x² does not affect the vertical translation (up or down) of the parabola. The translation is determined by the constant term or any term that adds or subtracts a value from the function.

D. The parabola will not be translated up.

Similarly, changing the coefficient of x² does not impact the vertical translation of the parabola. Any translation up or down is determined by other terms in the function.

In conclusion, if the coefficient of x² in the equation f(x) = x² is changed to 3, the parabola will become narrower, but there will be no translation in the vertical direction. Thus, option A is correct.

To know more about parabola refer here:

https://brainly.com/question/21685473#

#SPJ11

Complete Question:

If the graph of f(x) = x², how will the graph be affected if the coefficient of x² is changed to 3?

A. The parabola will be narrower.

B. The parabola will be wider.

C. The parabola will be translated down.

D. The parabola will be translated up.

Let UCR be the Q vector space: U = { a+b√2b+c√3+d√6|a,b,c,d € Q} Exercise 15. It turns out that dim(U) = 4. Using this result, show that every elementy EU must be the root of some rational polynomial P(x) = Q[x] with deg(P) ≤ 4.

Answers

Since dim(U) = 4, which means the dimension of the vector space U is 4, it implies that any element y in U can be represented as the root of a rational polynomial P(x) = Q[x] with a degree less than or equal to 4.

The vector space U is defined as U = {a + b√2 + c√3 + d√6 | a, b, c, d ∈ Q}, where Q represents the field of rational numbers. We are given that the dimension of U is 4, which means that there exist four linearly independent vectors that span the space U.

Since every element y in U can be expressed as a linear combination of these linearly independent vectors, we can represent y as y = a + b√2 + c√3 + d√6, where a, b, c, d are rational numbers.

Now, consider constructing a rational polynomial P(x) = Q[x] such that P(y) = 0. Since y belongs to U, it can be written as a linear combination of the basis vectors of U. By substituting y into P(x), we obtain P(y) = P(a + b√2 + c√3 + d√6) = 0.

By utilizing the properties of polynomials, we can determine that the polynomial P(x) has a degree less than or equal to 4. This is because the dimension of U is 4, and any polynomial of higher degree would result in a linearly dependent set of vectors in U.

Therefore, every element y in U must be the root of some rational polynomial P(x) = Q[x] with a degree less than or equal to 4.

Learn more about: vector space

brainly.com/question/30531953

#SPJ11

Consider a radioactive cloud being carried along by the wind whose velocity is

v(x, t) = [(2xt)/(1 + t2)] + 1 + t2.

Let the density of radioactive material be denoted by rho(x, t).

Explain why rho evolves according to

∂rho/∂t + v ∂rho/∂x = −rho ∂v/∂x.

If the initial density is

rho(x, 0) = rho0(x),

show that at later times

rho(x, t) = [1/(1 + t2)] rho0 [(x/ (1 + t2 ))− t]

Answers

we have shown that the expression ρ(x,t) = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - t] satisfies the advection equation ∂ρ/∂t + v ∂ρ/∂x = -ρ ∂v/∂x.

The density of radioactive material, denoted by ρ(x,t), evolves according to the equation:

∂ρ/∂t + v ∂ρ/∂x = -ρ ∂v/∂x

This equation describes the transport of a substance by a moving medium, where the rate of movement of the radioactive material is influenced by the velocity of the wind, determined by the function v(x,t).

To solve the equation, we use the method of characteristics. We define the characteristic equation as:

x = ξ(t)

and

ρ(x,t) = f(ξ)

where f is a function of ξ.

Using the method of characteristics, we find that:

∂ρ/∂t = (∂f/∂t)ξ'

∂ρ/∂x = (∂f/∂ξ)ξ'

where ξ' = dξ/dt.

Substituting these derivatives into the original equation, we have:

(∂f/∂t)ξ' + v(∂f/∂ξ)ξ' = -ρ ∂v/∂x

Dividing by ξ', we get:

(∂f/∂t)/(∂f/∂ξ) = -ρ ∂v/∂x / v

Letting k(x,t) = -ρ ∂v/∂x / v, we can integrate the above equation to obtain f(ξ,t). Since f(ξ,t) = ρ(x,t), we can express the solution ρ(x,t) in terms of the initial value of ρ and the function k(x,t).

Now, let's solve the advection equation using the method of characteristics. We define the characteristic equation as:

x = x(t)

Then, we have:

dx/dt = v(x,t)

ρ(x,t) = f(x,t)

We need to find the function k(x,t) such that:

(∂f/∂t)/(∂f/∂x) = k(x,t)

Differentiating dx/dt = v(x,t) with respect to t, we have:

dx/dt = (2xt)/(1 + t^2) + 1 + t^2

Integrating this equation with respect to t, we obtain:

x = (x(0) + 1)t + x(0)t^2 + (1/3)t^3

where x(0) is the initial value of x at t = 0.

To determine the function C(x), we use the initial condition ρ(x,0) = ρ0(x).

Then, we have:

ρ(x,0) = f(x,0) = F[x - C(x), 0]

where F(ξ,0) = ρ0(ξ).

Integrating dx/dt = (2xt)/(1 + t^2) + 1 + t^2 with respect to x, we get:

t = (2/3) ln|2xt + (1 + t^2)x| + C(x)

where C(x) is the constant of integration.

Using the initial condition, we can express the solution f(x,t) as:

f(x,t) = F[x - C(x),t] = ρ0 [(x - C(x))/(1 + t^2)]

To simplify this expression, we introduce A(x,t) = (2/3) ln|2xt + (1 + t^2)x|/(1 + t^2). Then, we have:

f(x,t) = [1/(1 +

t^2)] ρ0 [(x - C(x))/(1 + t^2)] = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - A(x,t)]

Finally, we can write the solution to the advection equation as:

ρ(x,t) = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - A(x,t)]

where A(x,t) = (2/3) ln|2xt + (1 + t^2)x|/(1 + t^2).

Learn more about advection equation here :-

https://brainly.com/question/32107552

#SPJ11

Find the general solution of the differential equation. y^(5) −8y^(4) +16y′′′ −8y′′ +15y′ =0. NOTE: Use c1, c2. c3. c4, and c5 for the arbitrary constants. y(t)= ___

Answers

The general solution of the differential equation is: y(t) = c1e^t + c2te^t + c3t²e^t + c4e^(2t) + c5e^(3t)

Thus, c1, c2, c3, c4, and c5 are arbitrary constants.

To find the general solution of the differential equation y⁵ − 8y⁴ + 16y′′′ − 8y′′ + 15y′ = 0, we follow these steps:

Step 1: Substituting y = e^(rt) into the differential equation, we obtain the characteristic equation:

r⁵ − 8r⁴ + 16r³ − 8r² + 15r = 0

Step 2: Solving the characteristic equation, we factor it as follows:

r(r⁴ − 8r³ + 16r² − 8r + 15) = 0

Using the Rational Root Theorem, we find that the roots are:

r = 1 (with a multiplicity of 3)

r = 2

r = 3

Step 3: Finding the solution to the differential equation using the roots obtained in step 2 and the formula y = c1e^(r1t) + c2e^(r2t) + c3e^(r3t) + c4e^(r4t) + c5e^(r5t).

Therefore, the general solution of the differential equation is:

y(t) = c1e^t + c2te^t + c3t²e^t + c4e^(2t) + c5e^(3t)

Thus, c1, c2, c3, c4, and c5 are arbitrary constants.

Learn more about differential equation

https://brainly.com/question/32645495

#SPJ11

For a continuous data distribution, 10 - 20 with frequency 3,20−30 with frequency 5, 30-40 with frequency 7and 40-50 with frequency 1 , the value of quartile deviation is Select one: a. 2 b. 6.85 C. 6.32 d. 10 For a continuous data distribution, 10-20 with frequency 3,20−30 with frequency 5,30−40 with frequency 7and 40-50 with frequency 1 , the value of Q−​1 is Select one: a. 10.5 b. 22 c. 26 d. 24

Answers

For the given continuous data distribution with frequencies, we need to determine the quartile deviation and the value of Q-1.

To calculate the quartile deviation, we first find the cumulative frequencies for the given intervals: 3, 8 (3 + 5), 15 (3 + 5 + 7), and 16 (3 + 5 + 7 + 1). Next, we determine the values of Q1 and Q3.

Using the cumulative frequencies, we find that Q1 falls within the interval 20-30. Interpolating within this interval using the formula Q1 = L + ((n/4) - F) x (I / f), where L is the lower limit of the interval, F is the cumulative frequency of the preceding interval, I is the width of the interval, and f is the frequency of the interval, we obtain Q1 = 22.

For the quartile deviation, we calculate the difference between Q3 and Q1. However, since the options provided do not include the quartile deviation, we cannot determine its exact value.

In summary, the value of Q1 is 22, but the quartile deviation cannot be determined without additional information.

Learn more about continuous data distribution: brainly.in/question/34678706

#SPJ11

Find the inverse function of y = (x-3)2 + 7 for x > 3..
a. y¹ = 7+ √x-3
b. y¹=3-√x+7
c. y¹=3+ √x - 7
d. y¹=3+ (x − 7)²

Answers

The correct option is:

c. y¹ = 3 + √(x - 7)

To find the inverse function of y = (x - 3)^2 + 7 for x > 3, we can follow these steps:

Step 1: Replace y with x and x with y in the given equation:

x = (y - 3)^2 + 7

Step 2: Solve the equation for y:

x - 7 = (y - 3)^2

√(x - 7) = y - 3

y - 3 = √(x - 7)

Step 3: Solve for y by adding 3 to both sides:

y = √(x - 7) + 3

So, the inverse function of y = (x - 3)^2 + 7 for x > 3 is y¹ = √(x - 7) + 3.

Therefore, the correct option is:

c. y¹ = 3 + √(x - 7)

Learn more about inverse function here

https://brainly.com/question/29141206

#SPJ11

Help me please worth 30 points!!!!

Answers

The roots of the equation are;

a. (n +2)(n -8)

b. (x-5)(x-3)

How to determine the roots

From the information given, we have the expressions as;

f(x) = n² - 6n - 16

Using the factorization method, we have to find the pair factors of the product of the constant and x square, we have;

a. n² -8n + 2n - 16

Group in pairs, we have;

n(n -8) + 2(n -8)

Then, we get;

(n +2)(n -8)

b. y = x² - 8x + 15

Using the factorization method, we have;

x² - 5x - 3x + 15

group in pairs, we have;

x(x -5) - 3(x - 5)

(x-5)(x-3)

Learn more about factorization at: https://brainly.com/question/25829061

#SPJ1

Determine whether each of the following sequences converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE)
An = 9 + 4n3 / n + 3n2 nn = an n3/9n+4 xk = xn = n3 + 3n / an + n4

Answers

The sequences are:1. Divergent2. Convergent (limit = 4/9)3. Convergent (limit = 1/4)

The following sequences are:

Aₙ = 9 + 4n³/n + 3n²  

Nₙ = Aₙ / N = (9 + 4n³/n + 3n²) / n³/9n+4  

Xₖ = Xₙ = n³ + 3n/Aₙ + n⁴

Let us determine whether each of the given sequences converges or diverges:

1. The first sequence is given by Aₙ = 9 + 4n³/n + 3n²Aₙ = 4n³/n + 3n² + 9 / 1

We can say that 4n³/n + 3n² → ∞ as n → ∞

So, the sequence diverges.

2. The second sequence is  

Nₙ = Aₙ / N = (9 + 4n³/n + 3n²) / n³/9n+4

Nₙ = (4/9)(n⁴)/(n⁴) + 4/3n → 4/9 as n → ∞

So, the sequence converges and its limit is 4/9.3. The third sequence is  

Xₖ = Xₙ = n³ + 3n/Aₙ + n⁴Xₖ = Xₙ = (n³/n³)(1 + 3/n²) / (4n³/n³ + 3n²/n³ + 9/n³) + n⁴/n³

The first term converges to 1 and the third term converges to 0. So, the given sequence converges and its limit is 1 / 4.

You can learn more about Convergent at: brainly.com/question/31756849

#SPJ11

We consider the non-homogeneous problem y" = 12(2x² + 6x) First we consider the homogeneous problem y" = 0: 1) the auxiliary equation is ar² + br + c = 2) The roots of the auxiliary equation are 3) A fundamental set of solutions is complementary solution y C13/1C2/2 for arbitrary constants c₁ and c₂. Next we seek a particular solution yp of the non-homogeneous problem y" coefficients (See the link below for a help sheet) = 4) Apply the method of undetermined coefficients to find p 0. 31/ (enter answers as a comma separated list). (enter answers as a comma separated list). Using these we obtain the the 12(2x² +62) using the method of undetermined We then find the general solution as a sum of the complementary solution ye V=Vc+Up. Finally you are asked to use the general solution to solve an IVP. 5) Given the initial conditions y(0) = 1 and y'(0) 2 find the unique solution to the IVP C131023/2 and a particular solution:

Answers

The unique solution to the initial value problem is: y = 1 + x + 6x².

To solve the non-homogeneous problem y" = 12(2x²), let's go through the steps:

1) Homogeneous problem:

The homogeneous equation is y" = 0. The auxiliary equation is ar² + br + c = 0.

2) The roots of the auxiliary equation:

Since the coefficient of the y" term is 0, the auxiliary equation simplifies to just c = 0. Therefore, the root of the auxiliary equation is r = 0.

3) Fundamental set of solutions:

For the homogeneous problem y" = 0, since we have a repeated root r = 0, the fundamental set of solutions is Y₁ = 1 and Y₂ = x. So the complementary solution is Yc = C₁(1) + C₂(x) = C₁ + C₂x, where C₁ and C₂ are arbitrary constants.

4) Particular solution:

To find a particular solution, we can use the method of undetermined coefficients. Since the non-homogeneous term is 12(2x²), we assume a particular solution of the form yp = Ax² + Bx + C, where A, B, and C are constants to be determined.

Taking the derivatives of yp, we have:

yp' = 2Ax + B,

yp" = 2A.

Substituting these into the non-homogeneous equation, we get:

2A = 12(2x²),

A = 12x² / 2,

A = 6x².

Therefore, the particular solution is yp = 6x².

5) General solution and initial value problem:

The general solution is the sum of the complementary solution and the particular solution:

y = Yc + yp = C₁ + C₂x + 6x².

To solve the initial value problem y(0) = 1 and y'(0) = 1, we substitute the initial conditions into the general solution:

y(0) = C₁ + C₂(0) + 6(0)² = C₁ = 1,

y'(0) = C₂ + 12(0) = C₂ = 1.

Therefore, the unique solution to the initial value problem is:

y = 1 + x + 6x².

Learn more about unique solution from this link:

https://brainly.com/question/9201878

#SPJ11

A coin is tossed four times. What is the probability of getting one tails? A. 1/4
​B. 3/8 C. 1/16
D. 3/16

Answers

he probability of getting one tail when a coin is tossed four times is A.

1/4

When a coin is tossed, there are two possible outcomes: heads (H) or tails (T). Since we are interested in getting exactly one tail, we can calculate the probability by considering the different combinations.

Out of the four tosses, there are four possible positions where the tail can occur: T _ _ _, _ T _ _, _ _ T _, _ _ _ T. The probability of getting one tail is the sum of the probabilities of these four cases.

Each individual toss has a probability of 1/2 of landing tails (T) since there are two equally likely outcomes (heads or tails) for a fair coin. Therefore, the probability of getting exactly one tail is:

P(one tail) = P(T _ _ _) + P(_ T _ _) + P(_ _ T _) + P(_ _ _ T) = (1/2) * (1/2) * (1/2) * (1/2) + (1/2) * (1/2) * (1/2) * (1/2) + (1/2) * (1/2) * (1/2) * (1/2) + (1/2) * (1/2) * (1/2) * (1/2) = 4 * (1/16) = 1/4.

Therefore, the probability of getting one tail when a coin is tossed four times is 1/4, which corresponds to option A.

Learn more about probability in coin toss experiments visit:

https://brainly.com/question/30588999

#SPJ11

Select the correct answer from each drop-down menu.
Consider quadrilateral EFGH on the coordinate grid.


Graph shows a quadrilateral plotted on a coordinate plane. The quadrilateral is at E(minus 4, 1), F(minus 1, 4), G(4, minus 1), and H(1, minus 4).
In quadrilateral EFGH, sides
FG

and
EH

are because they . Sides
EF

and
GH

are . The area of quadrilateral EFGH is closest to square units.
Reset Next

Answers

Answer: 30 square units

Step-by-step explanation: In quadrilateral EFGH, sides FG ― and EH ― are parallel because they have the same slope. Sides EF ― and GH ― are parallel because they have the same slope. The area of quadrilateral EFGH is closest to 30 square units.

In triangle ABC the angle bisectors drawn from vertices A and B intersect at point D. Find m
m

Answers

The measure of angle ADB is equal to the square root of ([tex]AB \times BA[/tex]).

In triangle ABC, let the angle bisectors drawn from vertices A and B intersect at point D. To find the measure of angle ADB, we can use the angle bisector theorem. According to this theorem, the angle bisector divides the opposite side in the ratio of the adjacent sides.

Let AD and BD intersect side BC at points E and F, respectively. Now, we have triangle ADE and triangle BDF.

Using the angle bisector theorem in triangle ADE, we can write:

AE/ED = AB/BD

Similarly, in triangle BDF, we have:

BF/FD = BA/AD

Since both angles ADB and ADF share the same side AD, we can combine the above equations to obtain:

(AE/ED) * (FD/BF) = (AB/BD) * (BA/AD)

By substituting the given angle bisector ratios and rearranging, we get:

(AD/BD) * (AD/BD) = (AB/BD) * (BA/AD)

AD^2 = AB * BA

Note: The solution provided assumes that points A, B, and C are non-collinear and that the triangle is non-degenerate.

For more such questions on angle

https://brainly.com/question/25770607

#SPJ8

185 said they like dogs
170 said they like cats
86 said they liked both cats and dogs
74 said they don't like cats or dogs.
How many people were surveyed?
Please explain how you got answer

Answers

185 said they like dogs, 170 said they like cats, 86 said they liked both cats and dogs, and 74 said they don't like cats or dogs. The number of people who were surveyed is 515.

The number of people who were surveyed can be found by adding the number of people who liked dogs, the number of people who liked cats, the number of people who liked both, and the number of people who did not like either. So, the total number of people surveyed can be found as follows:

Total number of people who like dogs = 185

Total number of people who like cats = 170

Total number of people who like both = 86

Total number of people who do not like cats or dogs = 74

The total number of people surveyed = Number of people who like dogs + Number of people who like cats + Number of people who like both + Number of people who do not like cats or dogs

= 185 + 170 + 86 + 74= 515

You can learn more about the survey at: brainly.com/question/31624121

#SPJ11

3 Conditional and independent probability The probability of Monday being dry is 0-6. If Monday is dry the probability of Tuesday being dry is 0-8. If Monday is wet the probability of Tuesday being dry is 0-4. 1 2 3 4 Show this in a tree diagram What is the probability of both days being dry? What is the probability of both days being wet? What is the probability of exactly one dry day?

Answers

The probability of both days being dry is 0.48 (48%), the probability of both days being wet is 0.08 (8%), and the probability of exactly one dry day is 0.44 (44%).

What is the probability of both days being dry, both days being wet, and exactly one dry day based on the given conditional and independent probabilities?

In the given scenario, we have two events: Monday being dry or wet, and Tuesday being dry or wet. We can represent this situation using a tree diagram:

```

         Dry (0.6)

       /         \

  Dry (0.8)    Wet (0.2)

    /               \

Dry (0.8)       Wet (0.4)

```

The branches represent the probabilities of each event occurring. Now we can answer the questions:

1. The probability of both days being dry is the product of the probabilities along the path: 0.6 ˣ 0.8 = 0.48 (or 48%).

2. The probability of both days being wet is the product of the probabilities along the path: 0.4ˣ  0.2 = 0.08 (or 8%).

3. The probability of exactly one dry day is the sum of the probabilities of the two mutually exclusive paths: 0.6 ˣ  0.2 + 0.4 ˣ  0.8 = 0.12 + 0.32 = 0.44 (or 44%).

By using the tree diagram and calculating the appropriate probabilities, we can determine the likelihood of different outcomes based on the given conditional and independent probabilities.

Learn more about probability

brainly.com/question/31828911

#SPJ11

What are some researchable areas of Mathematics
Teaching? Answer briefly in 5 sentences. Thank you!

Answers

Mathematics is an interesting subject that is constantly evolving and changing. Researching different areas of Mathematics Teaching can help to advance teaching techniques and increase the knowledge base for both students and teachers.

There are several researchable areas of Mathematics Teaching. One area of research is in the development of new teaching strategies and methods.

Another area of research is in the creation of new mathematical tools and technologies.

A third area of research is in the evaluation of the effectiveness of existing teaching methods and tools.

A fourth area of research is in the identification of key skills and knowledge areas that are essential for success in mathematics.

Finally, a fifth area of research is in the exploration of different ways to engage students and motivate them to learn mathematics.

Overall, there are many different researchable areas of Mathematics Teaching.

By exploring these areas, teachers and researchers can help to advance the field and improve the quality of education for students.

To learn more on Researching :

https://brainly.com/question/25257437

#SPJ11

let the ratio of two numbers x+1/2 and y be 1:3 then draw the graph of the equation that shows the ratio of these two numbers.

Answers

Step-by-step explanation:

since there is no graph it's a bit hard to answer this question, but I'll try. I can help solve the equation that represents the ratio of the two numbers:

(x + 1/2)/y = 1/3

This can be simplified to:

x + 1/2 = y/3

To graph this equation, you would need to plot points that satisfy the equation. One way to do this is to choose a value for y and solve for x. For example, if y = 6, then:

x + 1/2 = 6/3

x + 1/2 = 2

x = 2 - 1/2

x = 3/2

So one point on the graph would be (3/2, 6). You can choose different values for y and solve for x to get more points to plot on the graph. Once you have several points, you can connect them with a line to show the relationship between x and y.

(Like I said, it was a bit hard to answer this question, so I'm not 100℅ sure this is the correct answer, but if it is then I hoped it helped.)

B=[1 2 3 4 1 3; 3 4 5 6 3 4]
Construct partition of matrix into 2*2 blocks

Answers

The partition of matrix B into 2x2 blocks is:

B = [1 2 | 3 4 ;

3 4 | 5 6 ;

------------

1 3 | 4 1 ;

3 4 | 6 3]

To construct the partition of the matrix B into 2x2 blocks, we divide the matrix into smaller submatrices. Each submatrix will be a 2x2 block. Here's how it would look:

B = [B₁ B₂;

B₃ B₄]

where:

B₁ = [1 2; 3 4]

B₂ = [3 4; 5 6]

B₃ = [1 3; 3 4]

B₄ = [4 1; 6 3]

Know more about matrix here:

https://brainly.com/question/29132693

#SPJ11

In the figure, the square ABCD and the AABE are standing on the same base AB and between the same parallel lines AB and DE. If BD = 6 cm, find the area of AEB.​

Answers

To find the area of triangle AEB, we use base AB (6 cm) and height 6 cm. Applying the formula (1/2) * base * height, the area is 18 cm².

To find the area of triangle AEB, we need to determine the length of the base AB and the height of the triangle. Since both square ABCD and triangle AABE is standing on the same base AB, the length of AB remains the same for both.

We are given that BD = 6 cm, which means that the length of AB is also 6 cm. Now, to find the height of the triangle, we can consider the height of the square. Since AB is the base of both the square and the triangle, the height of the square is equal to AB.

Therefore, the height of triangle AEB is also 6 cm. Now we can calculate the area of the triangle using the formula: Area = (1/2) * base * height. Plugging in the values, we get Area = (1/2) * 6 cm * 6 cm = 18 cm².

Thus, the area of triangle AEB is 18 square centimeters.

For more questions on the area of a triangle

https://brainly.com/question/30818408

#SPJ8

4. Which is not an example of contributing to the common good?
A family goes on vacation every summer to Southern California.
A father and son serve food to the homeless every weekend.
A person donates her time working in a church thrift shop.
A couple regularly donates money to various charities.

Answers

A common God would be a car or a phone

A bag contains 24 green marbles, 22 blue marbles, 14 yellow marbles, and 12 red marbles. Suppose you pick one marble at random. What is each probability? P( not blue )

Answers

A bag contains 24 green marbles, 22 blue marbles, 14 yellow marbles, and 12 red marbles. The probability of randomly picking a marble that is not blue is 25/36.

Given,

Total number of marbles = 24 green marbles + 22 blue marbles + 14 yellow marbles + 12 red marbles = 72 marbles
We have to find the probability that we pick a marble that is not blue.

Let's calculate the probability of picking a blue marble:

P(blue) = Number of blue marbles/ Total number of marbles= 22/72 = 11/36

Now, probability of picking a marble that is not blue is given as:

P(not blue) = 1 - P(blue) = 1 - 11/36 = 25/36

Therefore, the probability of selecting a marble that is not blue is 25/36 or 0.69 (approximately). Hence, the correct answer is P(not blue) = 25/36.

To know more about probability, refer here:

https://brainly.com/question/13957582

#SPJ11

Can someone make me a design on desmos on the topic "zero hunger" using at least one of each functions below:
Polynomial function of even degree (greater than 2)
Polynomial function of odd degree (greater than 1)
Exponential function
Logarithmic function
Trigonometric function
Rational function
A sum/ difference/ product or quotient of two of the above functions
A composite function

Answers

A. Yes, someone can create a design on Desmos on the topic "zero hunger" using at least one of each of the listed functions.

B. To create a design on Desmos related to "zero hunger" using the specified functions, you can follow these steps:

1. Start by creating a set of points that form the outline of a plate or a food-related shape using a polynomial function of an even degree (greater than 2).

For example, you can use a quadratic function like y = ax^2 + bx + c to shape the plate.

Certainly! Here's an example design on Desmos related to the topic "zero hunger" using the given functions:

Polynomial function of even degree (greater than 2):

[tex]\(f(x) = x^4 - 2x^2 + 3\)[/tex]

Polynomial function of odd degree (greater than 1):

[tex]\(f(x) = x^3 - 4x\)[/tex]

Exponential function:

[tex]\(h(x) = e^{0.5x}\)[/tex]

Logarithmic function:

[tex]\(j(x) = \ln(x + 1)\)[/tex]

Trigonometric function:

[tex]\(k(x) = \sin(2x) + 1\)[/tex]

Rational function:

[tex]\(m(x) = \frac{x^2 + 2}{x - 1}\)[/tex]

Sum/difference/product/quotient of two functions:

[tex]\(n(x) = f(x) + g(x)\)[/tex]

These equations represent various functions related to zero hunger. You can plug these equations into Desmos and adjust the parameters as needed to create a design that visually represents the topic.

Learn more about Desmos:

brainly.com/question/32377626

#SPJ11

2. Find all solutions to the equation \( x^{2}+3 y^{2}=z^{2} \) with \( x>0, y>0 \). \( z>0 \).

Answers

We have found that the solutions of the given equation satisfying x > 0, y > 0, and z > 0 are (2, 1, 2√2) and (6, 1, 2√3).

The given equation is x² + 3y² = z², and the conditions are x > 0, y > 0, and z > 0. We need to find all the solutions of this equation that satisfy these conditions.

To solve the equation, let's consider odd values of x and y, where x > y.

Let's start with x = 1 and y = 1. Substituting these values into the equation, we get:

1² + 3(1)² = z²

1 + 3 = z²

4 = z²

z = 2√2

As x and y are odd, x² is also odd. This means the value of z² should be even. Therefore, the value of z must also be even.

Let's check for another set of odd values, x = 3 and y = 1:

3² + 3(1)² = z²

9 + 3 = z²

12 = z²

z = 2√3

So, the solutions for the given equation with x > 0, y > 0, and z > 0 are (2, 1, 2√2) and (6, 1, 2√3).

Therefore, the solutions to the given equation that fulfil x > 0, y > 0, and z > 0 are (2, 1, 22) and (6, 1, 23).

Learn more about equation

https://brainly.com/question/29538993

#SPJ11

(a) Find the work done by a force 5 i^ +3 j^ +2 k^ acting on a body which moves from the origin to the point (3,−1,2). (b) Given u =− i^ +2 j^ −1 k^and v = 2l −1 j^​ +3 k^ . Determine a vector which is perpendicular to both u and v .

Answers

a) The work done by the force F = 5i + 3j + 2k on a body moving from the origin to the point (3, -1, 2) is 13 units.

b) A vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k is -6i - 7j - 3k.

a) The work done by a force F = 5i + 3j + 2k acting on a body that moves from the origin to the point (3, -1, 2) can be determined using the formula:

Work done = ∫F · ds

Where F is the force and ds is the displacement of the body. Displacement is defined as the change in the position vector of the body, which is given by the difference in the position vectors of the final point and the initial point:

s = rf - ri

In this case, s = (3i - j + 2k) - (0i + 0j + 0k) = 3i - j + 2k

Therefore, the work done is:

Work done = ∫F · ds = ∫₀ˢ (5i + 3j + 2k) · (ds)

Simplifying further:

Work done = ∫₀ˢ (5dx + 3dy + 2dz)

Evaluating the integral:

Work done = [5x + 3y + 2z]₀ˢ

Substituting the values:

Work done = [5(3) + 3(-1) + 2(2)] - [5(0) + 3(0) + 2(0)]

Therefore, the work done = 13 units.

b) To find a vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k, we can use the cross product of the two vectors:

u × v = |i j k|

|-1 2 -1|

|2 -1 3|

Expanding the determinant:

u × v = (-6)i - 7j - 3k

Therefore, a vector that is perpendicular to both u and v is given by:

u × v = -6i - 7j - 3k.

Learn more about force

https://brainly.com/question/30507236

#SPJ11



b. In Problem 3 , can you use the Law of Sines to find the heights of the triangle? Explain your answer.

Answers

In Problem 3, the Law of Sines can be used to find the heights of the triangle. The Law of Sines relates the lengths of the sides of a triangle to the sines of their opposite angles. The formula for the Law of Sines is as follows:

a/sin(A) = b/sin(B) = c/sin(C)

where a, b, and c are the side lengths of the triangle, and A, B, and C are the opposite angles.

To find the heights of the triangle using the Law of Sines, we need to know the lengths of at least one side and its opposite angle. In the given problem, the lengths of the sides a = 9 and b = 4 are provided, but the angles A, B, and C are not given. Without the measures of the angles, we cannot directly apply the Law of Sines to find the heights.

To find the heights, we would need additional information, such as the measures of the angles or the lengths of another side and its opposite angle. With that additional information, we could set up the appropriate ratios using the Law of Sines to solve for the heights of the triangle.

Learn more about Law of Sines here:

brainly.com/question/30401249

#SPJ11

Find the area of triangle ABC (in the picture) ASAP PLS HELP

Answers

Answer: 33

Step-by-step explanation:

Area ABC = Area of largest triangle - all the other shapes.

Area of largest = 1/2 bh

Area of largest = 1/2 (6+12)(8+5)

Area of largest = 1/2 (18)(13)

Area of largest = 117

Other shapes:

Area Left small triangle = 1/2 bh

Area Left small triangle = 1/2 (8)(6)

Area Left small triangle = (4)(6)

Area Left small triangle = 24

Area Right small triangle = 1/2 bh

Area Right small triangle = 1/2 (12)(5)

Area Right small triangle =30

Area of rectangle = bh

Area of rectangle = (6)(5)

Area of rectangle = 30

area of ABC = 117 - 24 - 30 - 30

Area of ABC = 33

Other Questions
How the concepts and sense of nationalism is observed in thedifferent measures to address the dispute in ukraine and russia omari's monthly taxable income is ksh 24200. calculate the tax charged on omari's monthly earning A charge of +54 C is placed on the x-axis at x = 0. A second charge of -38 C is placed on the x-axis at x = 50 cm. What is the magnitude of the electrostatic force on a third charge of 4.0 C placed on the x-axis at x = 15 cm? Give your answer in whole numbers. Suppose you have a sample containing 400 nuclei of a radioisotope. If only 25 nuclei remain after one hour, what is the half-life of the isotope? O 45 minutes O 7.5 minutes O 30 minutes O None of the given options. O 15 minutes a. Compute the future value of $2,000 compounded annually for 20 years at 8 percent. (Do not round intermediate calculations and round your final answer to 2 decimal places. (e.g., 32.16)) Future value..... b. Compute the future value of $2,000 compounded annually for 15 years at 11 percent. (Do not round intermediate calculations and round your final answer to 2 decimal places. (e.g., 32.16)) Future value $...... c. Compute the future value of $2,000 compounded annually for 25 years at 8 percent. (Do not round intermediate calculations and round your final answer to 2 decimal places. (e.g., 32.16)) Future value $...... Consider the vectors x() (t) = ( t (4) (a) Compute the Wronskian of x() and x(). W = -2 t D= -[infinity] (b) In what intervals are x() and x() linearly independent? 0 U and x ) (t) = (2) must be discontinuous at to = P(t) = (c) What conclusion can be drawn about coefficients in the system of homogeneous differential equations satisfied by x() and x()? One or more of the coefficients of the ODE in standard form 0 (d) Find the system of equations x': = 9 [infinity] t 2t P(t)x. A 06.30% annual coupon, 20-year bond has a yield to maturity of 03.10%. Assuming the par value is $1,000 and the YTM is expected not to change over the next year:a) what should the price of the bond be today? b) What is bond price expected to be in one year? c) What is the expected Capital Gains Yield for this bond? d) What is the expected Current Yield for this bond for a particle inside 4 2. plot the wave function and energy infinite Square well. A local track coach was informed his student is in an ABA class. He asks the student for advice about how to teach new members of the team to correctly jump hurtles.A) Briefly describe how a behavior analyst would approach this concern using Behavioral languageB) Teach your friend how to address this concern by writing what you would say/write to them (i.e pretend you are talking to them to help them address the concern). Be specific about what your friend should do and use language they would likely understand. The bright-line spectra of four elements, G,J, L, and M, and a mixture of atleast two of these elements are given below.Which elements are present in the mixture?MMixture750750G and JG and LM, J, and GM, J, and L700700650650Bright-Line Spectra600600550 500550Wavelength (nm)500450450400400. Write down all the possible |jm > states if j is the quantum number for J where J = J + J, and j = 3, j2 = 1 For all parts, show the equation you used and the values you substituted into the equation, with units with all numbers, in addition to your answer.Calculate the acceleration rate of the Jeep Grand Cherokee in feet/second/second or ft/s2.Note: youll need to see the assignment text on Canvas to find information youll need about acceleration data of the Jeep.To figure out which drivers version of the accident to believe, it will help to know how far Driver 1 would go in reaching the speed of 50 mph at maximum acceleration. Then we can see if driver 2 would have had enough distance to come to a stop after passing this point. Follow the next steps to determine this.Calculate how much time Driver 1 would take to reach 50 mph (73.3 ft/s) while accelerating at the rate determined in part 1. Remember that the acceleration rate represents how much the speed increases each second.See page 32 of the text for information on how to do this.Next we need to figure out how far the car would travel while accelerating at this rate (part 1) for this amount of time (part 2). You have the data you need. Find the right equation and solve. If you get stuck, ask for help before the assignment is overdue.See page 33 for an example of how to do this.Now its time to evaluate the two driver's stories. If driver 2 passed driver 1 after driver 1 accelerated to 50 mph (73.3 ft/s), he would have to have started his deceleration farther down the road from the intersection than the distance calculated in part 3. Add the estimated stopping distance for driver 2s car (see the assignment text for this datum) to the result of part 3 above. What is this distance?Which drivers account do you believe and why? Question 8 4 pts You have found the home of your dreams. You have negotiated the best price for the home, $265,472. You have $28,729 to pay as a down payment. And the best interest rate you can get is 3.62%. Based on this information, how much will you have to pay in a base monthly payments for a 30 year mortgage? _____ and _____ has made the notion of a forty-hour work week obsolete. A. The globalization of the world economy; the development of e-commerce B. The low performance work system; the team work environment C. The service economy; the low performance work system D. The service economy; the domestic competitive environment Bob makes $8.50 per hour and works a normal 40 hour workweek. Bobbi grosses $350.00 per week. Bob's monthly income: Bobbi's monthly income: Their combined monthly income: 2. Bert and Ernestine Bert and Ernestine are both warehouse supervisors. Bert makes $17.15 per hour and Ernestine makes $18.25. Both work 40 hour work weeks. Bert's monthly income: Ernestine's monthly income: Their combined Monthly income: Read the excerpt from Part 1 of The Odyssey.My men were mutinous,fools, on stores of wine. Sheep after sheep theybutchered by the surf, and shambling cattle,feasting,while fugitives went inland, runningto call to arms the main force of Cicones.This was an army, trained to fight on horsebackor, where the ground required, on foot. They camewith dawn over that terrain like the leavesand blades of spring. who create god? can you tell me? Find one example of a myth about slavery that Frederick Douglass discusses in his Narrative.For example, Douglass explains that there is a myth about slave songs slaves dont sing because theyre happy, he explains, but that theyre sad. A magnetic field strength of 5uA/m is required at a point on 8 = /2, 2 km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is? a. A hertzian dipole of length /25? b. /2 C. /4 Pat Johannsen earns RM35,000 per year and takes home RM2,300 per month after taxes. She has total monthly expenses of RM1,800. How much of an emergency fund should she have? What factors should she consider in deciding how much is necessary?