The expressions can be written as :a. log5.625 ≈ 0.75.
b. log6.4 + log6.12 ≈ 1.67.
c. log3.9^{4} ≈ 2.47.
What is logarithm function?
A logarithm function is a mathematical function that determines the power to which a fixed number, called the base, must be raised to produce a given value and The logarithm function is the inverse of the exponential function. The most commonly used base for logarithmic functions is 10 (log base 10), but other bases such as 2 (log base 2) and the natural logarithm base e (ln) are also used.
a. Since there is no base specified, we assume the base to be 10 by default. Therefore, we can write:
log5.625 = log(5625/1000)
Using the property log(a/b) = log(a) - log(b), we can simplify this expression to:
log5.625 = log(5625) - log(1000)
Using the change of base formula, we can convert the logs to a common base, such as 2 or e:
log5.625 = log(5625)/log(10) - log(1000)/log(10)
Evaluating the logs using a calculator or by simplifying, we get:
log5.625 ≈ 0.75
Therefore, log5.625 ≈ 0.75.
b. Using the property log(a) + log(b) = log(ab), we can simplify the expression:
log6.4 + log6.12 = log(6.4 × 6.12)
Using the change of base formula, we can convert this to a common base:
log6.4 + log6.12 = log(6.4 × 6.12)/log(10)
Evaluating the log using a calculator or by multiplying 6.4 and 6.12 and simplifying, we get:
log6.4 + log6.12 ≈ 1.67
Therefore, log6.4 + log6.12 ≈ 1.67.
c. Using the property log(a^{n}) = n log(a), we can simplify the expression:
log3.9^{4} = 4 log3.9
Using the change of base formula, we can convert this to a common base:
log3.9^{4} = 4 log(3.9)/log(10)
Evaluating the log using a calculator or by simplifying, we get:
log3.9^{4} ≈ 2.47
Therefore, log3.9^{4} ≈ 2.47.
To learn more about logarithm function, visit the link:
https://brainly.com/question/13473114
#SPJ1
Write a quadratic function in standard form to represent the data in the table.
Therefore, the quadratic function in standard form that represents the data in the table is: y = 1/2 x² - 5/2 x + 5.
What is function?A function is a mathematical concept that describes the relationship between two sets of numbers. It is a rule that assigns to each input (or element in the domain) exactly one output (or element in the range). In simpler terms, a function is like a machine that takes in a number and produces another number as output, according to some specific rules. The input is usually denoted by x, and the output by f(x), which is read as "f of x". Functions can take many forms, such as linear, quadratic, trigonometric, exponential, logarithmic, and more. They are widely used in mathematics, science, engineering, and many other fields to model and analyze various phenomena.
Here,
To write a quadratic function in standard form, we need to use the general form of the quadratic equation:
y = ax²+ bx + c
where a, b, and c are constants. We can use the values in the table to find these constants.
When x = 2, y = 3
When x = 4, y = 1
When x = 6, y = 3
When x = 8, y = 9
When x = 10, y = 19
Substituting these values into the quadratic equation, we get:
3 = 4a + 2b + c
1 = 16a + 4b + c
3 = 36a + 6b + c
9 = 64a + 8b + c
19 = 100a + 10b + c
We can now use these equations to solve for a, b, and c. One way to do this is to use a matrix equation:
|16 4 1| |a| |1|
|36 6 1| |b| = |3|
|64 8 1| |c| |9|
Using a calculator or matrix software, we can solve for a, b, and c:
a = 1/2
b = -5/2
c = 5
To know more about function,
https://brainly.com/question/28193995
#SPJ1
Lmkkkk helppppppppppp
Answer:
1.986 x 10 to the tenth power
Step-by-step explanation:
i’m begging someone help please i’ll give brainlist
Answer:
a-no for the first triangle, because the total of the inner angles must be 180, the last angle must be 90.
b-yes- a triangle with angles 90, 50, and 40 is possible
c-yes. 65+45+70=180.
Step-by-step explanation:
A student wants to investigate the chemical changes that a piece of wood undergoes when it is burned. He believes wood that burns for 15 minutes will weigh less than unburned wood. Design a laboratory experiment that would allow the student to test his predictions, using appropriate equipment and technology. Be sure to consider safety requirements in your answer.
Answer:
Experimental Procedure:
Materials:
Piece of wood
Electronic balance
Bunsen burner
Heat-resistant mat
Stopwatch or timer
Safety goggles
Lab coat
Safety Precautions:
Wear safety goggles and a lab coat to protect your eyes and clothing from any sparks or flames.
Place the heat-resistant mat under the Bunsen burner to prevent any accidental fires.
Use the Bunsen burner only under adult supervision.
Be cautious when handling hot objects, and allow them to cool before touching.
Procedure:
Measure the initial mass of the piece of wood using an electronic balance, and record it in a table.
Light the Bunsen burner, and place the piece of wood over the flame using tongs. Ensure that the wood is fully engulfed in the flame.
Use a stopwatch or timer to time how long the wood burns for (in this case, 15 minutes).
After 15 minutes, turn off the Bunsen burner and remove the piece of wood from the flame using tongs.
Allow the wood to cool, and then measure its final mass using the electronic balance, and record it in the table.
Calculate the difference between the initial and final mass of the wood, and record it in the table.
Repeat steps 1-6 three times to obtain three sets of data.
Calculate the average mass of the burned wood and compare it to the initial mass of the unburned wood to determine if the student's prediction was correct.
Conclusion:
If the average mass of the burned wood is less than the initial mass of the unburned wood, the student's prediction was correct, and he can conclude that the wood underwent a chemical change when it was burned. If the average mass is greater than or equal to the initial mass, the prediction was incorrect, and the student may need to revise his hypothesis or experimental design.
2 1/4-6/7=
2 5/12-blank=2/3
7 1/12-5 3/8=
blank+7/10=2 9/20
To subtract 6/7 from 2 1/4, we need to find a common denominator. The least common multiple of 7 and 4 is 28, so we can convert 2 1/4 to 9/4 and 6/7 to 24/28. Then we can subtract:
9/4 - 24/28
= 63/28 - 24/28
= 39/28
Therefore, 2 1/4 - 6/7 = 39/28.
To solve for the blank in 2 5/12 - blank = 2/3, we can start by converting 2 5/12 to an improper fraction:
2 5/12 = (2*12 + 5)/12 = 29/12
Then we can subtract 2/3 from both sides:
2 5/12 - 2/3 = blank
To subtract these fractions, we need to find a common denominator. The least common multiple of 3 and 12 is 12, so we can convert 2/3 to 8/12. Then we can subtract:
29/12 - 8/12
= 21/12
= 7/4
Therefore, the blank in 2 5/12 - blank = 2/3 is 7/4.
To subtract 5 3/8 from 7 1/12, we need to find a common denominator. The least common multiple of 8 and 12 is 24, so we can convert both mixed numbers to improper fractions:
7 1/12 = (712 + 1)/12 = 85/12
5 3/8 = (58 + 3)/8 = 43/8
Then we can subtract:
85/12 - 43/8
= 85/12 - (433)/(83)
= 85/12 - 129/24
= 5/24
Therefore, 7 1/12 - 5 3/8 = 5/24.
To solve for the blank in blank + 7/10 = 2 9/20, we can start by converting 2 9/20 to an improper fraction:
2 9/20 = (2*20 + 9)/20 = 49/20
Then we can subtract 7/10 from both sides:
blank + 7/10 - 7/10 = 49/20 - 7/10
Simplifying the right side:
49/20 - 7/10 = (492)/(202) - (74)/(104) = 98/40 - 28/40 = 70/40 = 7/4
Therefore, blank + 7/10 - 7/10 = 7/4, and solving for blank:
blank = 7/4
Therefore, the blank in blank + 7/10 = 2 9/20 is 7/4.
The perimeter of a rectangular garden is 30 ft. The length is 3 ft more than the width. Find the length and the width of the garden.
Step-by-step explanation:
the perimeter of a rectangle is
2×length + 2×width
in our case
length = width + 3
and
2×length + 2×width = 30
using the first equation in the second :
2×(width + 3) + 2×width = 30
width + 3 + width = 15
2×width + 3 = 15
2×width = 12
width = 12/2 = 6 ft
length = width + 3 = 6 + 3 = 9 ft
Which relationships describe angles 1 and 2? Select each correct answer. O complementary angles O adjacent angles O vertical angles O supplementary angles
Answer:2
Step-by-step explanation:Because the 2 is closest to the middle line
Answer:
relationship describes angles 1 and 2 is supplementary angles. From the given figure
it is concluded that
the relation ship between angle 1 and 2 is supplementary angles
because its is linear pair
and forms a line
therefore , the angles are supplementary angles
hence , relationship describes angles 1 and 2 is supplementary angle
Step-by-step explanation: Hope this helps !! Mark me brainliest!! :))
A line has the equation y - 6 = 5x + 9 . work out the gradient and the y intercept of the line.
The gradient of the line is 5, and the y-intercept of the line is 15.
EquationsThe given equation is in the form of y = mx + c, where m is the gradient (slope) of the line and c is the y-intercept of a straight line represented in 2D plane.
Rearranging the given equation, we get:
y - 6 = 5x + 9
Adding 6 to both sides, we get:
y = 5x + 15
Now we can see that the equation is in the required form of y = mx + c. The gradient (slope) of the line is 5, which is the coefficient of x in the equation. The y-intercept is 15, which is the constant term in the equation.
To know more about straight line, click here,
https://brainly.com/question/29223887
#SPJ1
f(x) = 2x - 1 g(x) = 7x + 8 find (gof) (x)
Answer:
(gof)(x) = 14x + 1
Step-by-step explanation:
We can think of (gof)(x) as g(f(x)). Writing it in this form shows that we must start with the inner function and work our way to the outer function.
Essentially, the input of the inner function yields an output and the output becomes the input of the outer function.
f(x) means that the input is x and since we're given no value for x (e.g. x = so and so), the output is the original function or 2x - 1
Now, this output becomes the input for g(x):
g(2x-1) = 7(2x - 1) + 8
14x -7 + 8
(gof)(x) = 14x + 1
Jen is studying how years of drought conditions have caused the water level of Richland Reservoir to drop. At the start of the study, the water in the reservoir was 65 meters deep. Jen observed that the depth of the water dropped by about 0.8 meters the first month of the study. She wants to know what the depth of the water will be if it continues dropping at the same rate. You can use a function to approximate the depth of the water in the reservoir x months after the start of the study. Write an equation for the function.
The equation for the function is D(x) = 65 - 0.8x. Where 65 is the initial depth of the water and 0.8x is the amount by which the depth drops after x months.
What is a linear function?
A linear function is a mathematical function that has a constant rate of change or slope between the independent variable (x) and the dependent variable (y). It is a function that can be graphically represented as a straight line.
We can use a linear function to approximate the depth of the water in the reservoir x months after the start of the study, since the depth is dropping at a constant rate of 0.8 meters per month. Let D(x) be the depth of the water in meters x months after the start of the study. Then we have:
D(x) = 65 - 0.8x
where 65 is the initial depth of the water and 0.8x is the amount by which the depth drops after x months.
Therefore, the equation for the function is D(x) = 65 - 0.8x.
To learn more about linear function from the given link:
https://brainly.com/question/20286983
#SPJ1
Your tank has a volume of 10 L at the surface (1 atm pressure). You reach a depth of 66 ft. What is the
pressure? What is the volume?
the pressure at a depth of 66 ft is 197,580 Pa, and the volume of the tank at this depth is 0.000505 L.
EquationsTo find the pressure at a depth of 66 ft in a liquid, we can use the formula:
pressure = density x gravity x depth
Assuming the liquid in the tank is water, the density is 1000 kg/m³, and gravity is 9.81 m/s².
First, we need to convert 66 ft to meters:
66 ft x 0.3048 m/ft = 20.1168 m
Then, we can find the pressure at this depth:
pressure = 1000 kg/m³ x 9.81 m/s² x 20.1168 m = 197,580 Pa
To find the volume of the tank at this depth, we can use Boyle's Law, which states that the pressure and volume of a gas are inversely proportional at a constant temperature:
P₁V₁ = P₂V₂
where P₁ and V₁ are the initial pressure and volume (1 atm and 10 L, respectively), and P₂ and V₂ are the final pressure and volume.
We can rearrange this equation to solve for V₂:
V₂ = (P₁ x V₁) / P₂
Substituting the values, we get:
V₂ = (1 atm x 10 L) / (197,580 Pa / 1 atm) = 0.000505 L
To know more about Pressure, click here,
https://brainly.com/question/29258039
#SPJ1
Find a number between 100 and 200 which is also equal to a square number
multiplied by a prime number.
Answer:
162, 147 etc.
Step-by-step explanation:
we have to find
[tex]N = k^2 \cdot p[/tex]
we can iterate k = 1 to 10 to check all possible solutions,
[tex]N = 9^2 \cdot 2[/tex]
[tex]N = 7^2 \cdot 3[/tex]
N = 162, 147 etc.
Hopefully this answer helped you!!
Find the ratio of the perimeter of △ABC to the perimeter of △XYZ.
The ratio between the perimeter of triangle ABC and the perimeter of triangle XYZ is given as follows:
1/3.
What is the perimeter of a triangle?The perimeter of a triangle is the total length of its three sides. To find the perimeter of a triangle, you need to add up the lengths of all three sides.
The ratio between the side lengths of triangle ABC and triangle XYZ is given as follows:
5/15 = 1/3.
The perimeter of a triangle is measured in units, as area the side lengths, hence they have the same ratio, and thus the ratio between the perimeter of triangle ABC and the perimeter of triangle XYZ is given as follows:
1/3.
More can be learned about the perimeter of a triangle at https://brainly.com/question/24382052
#SPJ1
In one town 44% of voters are democrats if two voters are randomly selected for a survey find the probability that they are both Democrats assume events are independent round to the nearest thousand if necessary
the probability that they are both Democrats. round to the nearest thousandth if necessary is 0.194
The probability that BOTH is democrats means the probability of "one being democrat" AND "another also being democrat".
The AND means we need to MULTIPLY the individual probability of a person being a democrat.
The probability that a voter is democrat is 44% (0.44) -- stated in the problem
Now, the Probability of BOTH being Democrats is simply MULTIPLYING 0.44 with 0.44
Rounded to the nearest thousandth, 0.194
The last answer choice is correct.
the complete question is-
In one town 44% of all voters are Democrats if two voters are randomly selected for a survey find the probability that they are both Democrats. round to the nearest thousandth if necessary.
0.189
0.880
0.440
0.194
learn more about probability
https://brainly.com/question/30034780
#SPJ1
the soccer team manager plans to have 2 gallons of water for every 4 players on the team during practice. determine whether the statements about ratios are true or false.
A. The team manager needs 1 gallon of water for every 1 player
` true or false
B. The ratio of number of players to gallons of water is 2:1
` true or false
C. The team manager ould need 4 gallons of water for 10 players
` true or false
D. For 30 players, the team manager would need 15 gallons of water ` true or false
Answer:
A.=False
B.=True
C.=False
D.=True
Step-by-step explanation:
The original ration is 2 gallons of water for 4 players.
Each player requires 1/2 gallon of water.
To get the amount of water needed multiply 1/2 by the amount of players.
1*(1/2) does not equal 1
2*(1/2) equals 1
10*(1/2) does not equal 4
30*(1/2) equals 15
video
Let the region R be the area enclosed by the function f(x) = ln (x) + 1 and
g(x)=x-1. If the region R is the base of a solid such that each cross section
perpendicular to the a-axis is a semi-circle with diameters extending through the
region R, find the volume of the solid. You may use a calculator and round to the
nearest thousandth.
The volume of the solid is approximately 0.558 cubic units.
To find the volume of the solid, we need to integrate the area of the semi-circles along the a-axis.
We know that the diameter of each semi-circle is the distance between the functions f(x) and g(x), which is:
d(a) = f(a) - g(a) = ln(a) + 1 - (a-1) = ln(a) - a + 2
The radius of each semi-circle is half of the diameter, which is:
r(a) = (ln(a) - a + 2) / 2
The area of each semi-circle is π times the square of its radius, which is:
[tex]A(a) = πr(a)^2 = π/4 (ln(a) - a + 2)^2[/tex]
To find the volume of the solid, we integrate the area of each semi-circle along the a-axis, from a = e to a = 2:
V = ∫[e,2] A(a) da
V = ∫[e,2] π/4 [tex](ln(a) - a + 2)^2 da[/tex]
V ≈ 0.558 (rounded to the nearest thousandth)
Therefore, the volume of the solid is approximately 0.558 cubic units.
for such more question on volume
https://brainly.com/question/6204273
#SPJ11
If the graph of a polynomial function P(x) has -intercepts at x = - 4, x = 0, x * 1 point
= 5, which of the following must be true for P(x)?
• (x + 5) is a factor of the polynomial.
• (x-4) is a factor of the polynomial.
•' The degree of the polynomial is 3.
• The degree of the polynomial is greater than or equal to 3.
(x + 5) is nοt necessarily a factοr οf the pοlynοmial, (x-4) is a factοr οf the pοlynοmial are cοrrect statement.
What is a functiοn ?Functiοn can be define in which it relates an input tο οutput.
If the graph οf a pοlynοmial functiοn P(x) has x-intercepts at x = -4, x = 0, and x = 5, then we knοw that the factοrs οf P(x) are (x + 4), x, and (x - 5). This is because a pοlynοmial has x-intercepts where the value οf P(x) is equal tο zerο, and this οccurs when each factοr is equal tο zerο.
Therefοre, we can cοnclude that (x + 4) and (x - 5) are factοrs οf the pοlynοmial P(x), but x is nοt necessarily a factοr. This is because x is a linear factοr with a zerο intercept, but it cοuld be cancelled οut by anοther factοr in the pοlynοmial.
Thus, the cοrrect statement is:
(x + 5) is nοt necessarily a factοr οf the pοlynοmial.
(x-4) is a factοr οf the pοlynοmial.
The degree οf the pοlynοmial is 3 οr greater since the pοlynοmial has three x-intercepts. Hοwever, we cannοt determine the exact degree οf the pοlynοmial withοut additiοnal infοrmatiοn.
Therefοre, (x + 5) is nοt necessarily a factοr οf the pοlynοmial, (x-4) is a factοr οf the pοlynοmial are cοrrect statement.
To learn more about factοr οf the pοlynοmial from given link.
https://brainly.com/question/28315959
#SPJ1
Find the midpoint of AB if A located at (1, 4) and B is located at (3, -6).
Answer:
The midpoint of a line segment AB with endpoints A(x1, y1) and B(x2, y2) is given by the coordinates:
[(x1 + x2) / 2, (y1 + y2) / 2]
In this case, A is located at (1, 4) and B is located at (3, -6). So the midpoint M of AB is:
[(1 + 3) / 2, (4 + (-6)) / 2]
= [2, -1]
Therefore, the midpoint of AB is at the point (2, -1).
The coordinates of the midpoint of the line AB is [2, -1]
What is section formula?Section formula is used to find the ratio in which a line segment is divided by a point internally or externally.
It is used to find out the centroid, incenter and excenters of a triangle. In physics, it is used to find the center of mass of systems, equilibrium points, etc.
Given that, we need to find the midpoint of AB if A located at (1, 4) and B is located at (3, -6).
The midpoint of a line segment AB with endpoints A(x1, y1) and B(x2, y2) is given by the coordinates:
[(x1 + x2) / 2, (y1 + y2) / 2]
In this case, A is located at (1, 4) and B is located at (3, -6).
So the midpoint M of AB is:
= [(1 + 3) / 2, (4 + (-6)) / 2]
= [2, -1]
Hence, the midpoint of AB is at the point (2, -1).
Learn more about section formula click;
https://brainly.com/question/30242630
#SPJ2
Determine the order of the following matrix:
[9 6 -4 8]
The order of the matrix is 2 x 2.
What is a matrix and what is meant by its order?
In the field of mathematics, matrices are rectangular arrangements of numerical values, symbols, or algebraic expressions, organized in rows and columns. Matrices are used in many areas of mathematics and science, as well as in engineering, physics, and computer graphics.
The term 'order' in the context of matrices refers to the dimensions of the matrix, which are determined by the number of rows and columns it contains. It is denoted by m x n, where m is the number of rows and n is the number of columns. To find the order of a matrix, we simply count the number of rows and columns. The order is usually written as a pair of numbers in the form m x n.
Determine the order of the given matrix:
In the given problem, we are asked to find the order of the matrix:
[tex]\begin{pmatrix}9 &6 \\-4 & 8\end{pmatrix}[/tex]
we count the number of rows and columns.
This matrix has 2 rows and 2 columns, so its order is 2 x 2.
Therefore, the order of the matrix is 2 x 2.
To know more about matrix visit :
brainly.com/question/28180105
#SPJ1
Find the area of the shaded sector of the circle
Answer:
32.67 square meters
Step-by-step explanation:
finding the area of the shaded region.
area of sector = (θ/360°) x πr²
where "θ" is the central angle of the sector in degrees, "r" is the radius of the sector, and π is a mathematical constant approximately equal to 3.14.
Substituting the given values into the formula, we get:
area of sector = (60°/360°) x π(14m)²
area of sector = (1/6) x 3.14 x 196m²
area of sector = 32.67m² (rounded to two decimal places)
Therefore, the area of the section is 32.67 square meters
Rewrite 1 + 2i in polar form.
A.√5
B.√5∠116.6°
C.[5√∠63.4°]
D.5√∠(63.4°)
1 + 2i in polar form is 5√2∠63.4°.
What is a polar form ?
In mathematics, the polar form is a way of representing complex numbers using their magnitude and angle. A complex number can be represented in the form r(cos θ + i sin θ), where r is the magnitude (or modulus) of the complex number, and θ is its argument (or phase angle). Alternatively, the polar form can be represented in terms of magnitude and angle as r ∠θ, where r is the magnitude and θ is the angle in radians. This form is also known as the exponential form of a complex number. The polar form is useful in calculations involving complex numbers, especially in multiplication and division, where it is often easier to work with the polar form rather than the rectangular form (a + bi).
D. 5√2∠63.4°
To convert a complex number from rectangular form to polar form, we use the following formulas:
r = √(a^2 + b^2)
θ = tan^-1 (b/a)
Where a and b are the real and imaginary parts of the complex number, respectively.
In this case, a = 1 and b = 2, so:
r = √(1^2 + 2^2) = √5
θ = tan^-1 (2/1) = 63.4°
Therefore, 1 + 2i in polar form is 5√2∠63.4°.
To know more about polar form and given link below -
https://brainly.com/question/11741181
#SPJ1
48805 rounded to the nearest thousand
Answer: 49,000
48805 is greater than 48500, so it rounds to 49,000
Sally opens a savings account with $9,000 that earns 7% interest per year, not compounded How much interest, to the nearest penny, will Sally earn in 7 years?
Answer: Sally will earn $4,830.00 in interest over 7 years.
Step-by-step explanation:
If the interest is not compounded, then Sally will earn simple interest, which can be calculated using the formula:
I = P * r * t
where:
I = the interest earned
P = the principal amount (initial investment)
r = the annual interest rate (as a decimal)
t = the time period, in years
In this case, we have:
P = $9,000 (the initial deposit)
r = 7% = 0.07 (the annual interest rate)
t = 7 (the number of years)
So, plugging in the values:
I = $9,000 * 0.07 * 7
I = $4,830.00
Therefore, Sally will earn $4,830.00 in interest over 7 years.
20 points!! please help!!
To find the area of the total figure, we need to first find the areas of the rectangle and triangle, and then add them together.Therefore, the area of the total figure is 200 square feet.
What is area?Area is the measurement of the size of a two-dimensional surface enclosed by a closed figure
Area of rectangle = length x width
= 20 ft x 8 ft
= 160 sq. ft
Area of triangle = 1/2 xbase xheight
= 1/2 x 8 ft x 10 ft
= 40 sq. ft
To find the base of the triangle, we can use the Pythagorean theorem, which states that the square of the hypotenuse (slope) of a right triangle is equal to the sum of the squares of its two sides. In this case, the hypotenuse is 12 ft, one of the other sides is the height of the triangle (10 ft), and the other side is the base of the triangle (b).
Using the Pythagorean theorem, we have:
12² = 10² + b²
144 = 100 + b²
44 = b²
b = √44
b ≈ 6.63 ft
Now that we know the base of the triangle, we can find the area of the total figure by adding the area of the rectangle and the area of the triangle:
Area of total figure = area of rectangle + area of triangle
= 160 sq. ft + 40 sq. ft
= 200 sq. ft
To know more about Pythagorean theorem visit:
https://brainly.com/question/15169173
#SPJ1
Interpret the data in the circle graph. If 560 books were sold at the book fair, find the number of the books that were mystery books.
If 560 books were sold at the book fair,
(Type a whole number.)
of the books were mystery books.
Circle graph
Fantasy 8%
Science
Fiction
12%
Comic 15%
Other 5%
Mystery 20%
-Fictic
Answer:
112
Step-by-step explanation:
According to the circle graph, the mystery books make up 20% of all books sold. So, we can calculate the number of mystery books sold as follows:
Number of mystery books = 20% of 560
= (20/100) x 560
= 112
Therefore, the number of mystery books sold at the book fair was 112.
is 180. The sum of the measures of the second and third angles is five times the measure of the first angle. The third angle is 26 more than the second. Let x, y, and z represent the measures of the first, second, and third angles, respectively. Find the measures of the three angles.
Answer:
x is first angle
y is second angle
and z is third angle
Step-by-step explanation:
This question is solved by a system of equations. We have that:x is the first angle.y is the second angle.z is the third angle.Doing this, we get that:The first angle measures 30º.The second angle measures 67º.The third angle measures 83º.The sum of the measures of the angles of a triangle is 180. This means that The sum of the measures of the second and third angles is five times the measure of the first angle.This means that:From this, the first angle can be found:The measure of the first angle is of 30º.The third angle is 16 more than the second.This means that:Since We get that the second angle is:The second angle measures 67º.For the third angle:The third angle measures 83º.
A carpenter has a box of nails of various
different lengths. You decide to practice your
weighted averaging skills to figure out the
average length of a nail in the box. You grab
two handfuls of nails and count out the
number of each type of nail. You record your
data in the table below.
Sample
Type
Short nail
Medium nail
Long nall
Number
of Nails
67
18
10
Abundance
(%)
[7]
Nail Length
(cm)
2.5
5.0
7.5
What is the percent abundance of the
medium nails in your sample?
Med Nail % Abund.
Enter
According to the question the percent abundance of the medium nails in the sample is approximately 18.95%.
Explain medium?Whenever the set of data is presented from least to largest, the median is indeed the number in the middle. For instance, since 8 is in the middle, this would represent the median value here.
To find the percent abundance of the medium nails in the sample, we first need to calculate the total number of nails in the sample:
Total number of nails = 67 + 18 + 10 = 95
Next, we can calculate the percent abundance of the medium nails using the formula:
Percent abundance = (number of medium nails / total number of nails) x 100%
Using the values from of the table as inputs, we obtain:
Percent abundance of medium nails = (18 / 95) x 100% ≈ 18.95%
As a result, the sample's average percentage of medium nails is roughly 18.95%.
To know more about medium visit:
https://brainly.com/question/16408033
#SPJ1
OFFERING 70 POINTS AND BRAINLEST
Which number line shows the solution to the inequality? y minus 2 less-than negative 5 A number line going from negative 8 to positive 2. An open circle is at negative 3. Everything to the left of the circle is shaded. A number line going from negative 8 to positive 2. A closed circle is at negative 3. Everything to the left of the circle is shaded. A number line going from negative 8 to positive 2. An open circle is at negative 3. Everything to the right of the circle is shaded. A number line going from negative 8 to positive 2. An open circle is at negative 7. Everything to the left of the circle is shaded.
The correct number line is: A number line going from negative 8 to positive 2. An open circle is at negative 3. Everything to the left of the circle is shaded.
What is inequality?The mathematical expression of a connection between two values, stating that one value is larger than, less than, or not equal to another value, is called an inequality. Common symbols for inequality include (less than), > (greater than), (less than or equal to), and (greater than or equal to). For instance, the inequality 2x + 3 > 7 denotes that the value of 2x + 3 is larger than 7. Depending on the circumstance, inequalities can be resolved algebraically or visually. A collection of values that meet the connection implied by the inequality is the answer to an inequality.
Here, the inequality is y - 2 < -5, which can be rewritten as y < -3.
Hence, the correct option is: A number line going from negative 8 to positive 2. An open circle is at negative 3. Everything to the left of the circle is shaded.
Learn more about inequality here:
https://brainly.com/question/30228778
#SPJ1
What is the volume of this cone?
The volume of the cone is 2119. 5 cubic centimeters
How to determine the volume of the coneThe formula used for calculating the volume of a cone is expressed as;
V = πr² h/3
Given that the parameters are namely;
V is the volume of the cone.π takes the constant value of 3.14h is the height of the cone.r is the radius of the cone.Now, substitute the values, we have;
Volume , V = 3.14 × 15² × 9/3
Divide the values, we have;
Volume = 3.14 × 225 × 3
Multiply the values, we get;
Volume, V = 2119. 5 cubic centimeters
Learn about volume at: https://brainly.com/question/1972490
#SPJ1
I will mark you brainiest!
What is the value of x in the figure below
A) 4.5
B) 10
C) 5
D) None of the choices are correct
Answer:
I will not show you the process it is easy the answer is 4.5 or 6 ≈