a 2.4 nc charge is at the origin and a -4.0 nc charge is at 1.3 cm. at what x-coordinate could you place a proton so that it would experience no net force? would the net force be zero for an electron placed at the same position? explain.

Answers

Answer 1

F1 will be in the direction of negative x-axis)F2 = kQ2q/(0.013 - x)² (as Q2 is negative, therefore F2 will be in the direction of positive x-axis)As F1 = F2, we can equate both equations,kQ1q/x² = kQ2q/(0.013 - x)². For an electron, the charge is negative, It will experience force in the direction of the positive x-axis. Therefore, the net force will not be zero if an electron is placed at x = 8.7 mm.

Given that A 2.4 n C charge is at the origin and a -4.0 n C charge is at 1.3 cm. At what x-coordinate could you place a proton so that it would experience no net force? Would the net force be zero for an electron placed at the same position? The given charges are,Q1 = 2.4 n C (positive charge) placed at the origin.Q2 = -4.0 nC (negative charge) placed at 1.3 cm (this can be converted to meters, which is 0.013m).Let's assume that a proton is placed at x distance from the origin at which it experiences no net force. If F1 is the force due to Q1 and F2 is the force due to Q2 then the net force on the proton will be, F net = F1 + F2

As we know that F1 and F2 are in opposite directions, the net force will be zero, therefore,F1 = F2If we apply Coulomb's law, then; F1 = kQ1q/x² (as both charges are positive, therefore F1 will be in the direction of negative x-axis)F2 = kQ2q/(0.013 - x)² (as Q2 is negative, therefore F2 will be in the direction of positive x-axis)As F1 = F2, we can equate both equations,kQ1q/x² = kQ2q/(0.013 - x)²Solving this equation for x, we get, x = 0.0087 m or 8.7 mm (approximately)Therefore, if a proton is placed at x = 8.7 mm, it will experience no net force. Would the net force be zero for an electron placed at the same position? For an electron, the charge is negative, therefore it will experience force in the direction of the positive x-axis. Therefore, the net force will not be zero if an electron is placed at x = 8.7 mm.

Learn more about X-coordinate

brainly.com/question/16634867

#SPJ11


Related Questions

a 10 gauge copper wire carries a current of 21 a. assuming one free electron per copper atom, calculate the magnitude of the drift velocity of the electrons.

Answers

To calculate the magnitude of the drift velocity of the electrons ,

The drift velocity of electrons in a conductor is given by the formula:

v = I / (neA)

where 'v' is the drift velocity of electrons,

'I' is the current flowing through the wire,

'n' is the number of free electrons per unit volume,

'e' is the charge on each electron, and

'A' is the cross-sectional area of the wire.

Therefore, The current-carrying capacity of the 10 gauge copper wire is

 I = 21 A which is a given statement.

For copper, the number of free electrons per unit volume is approximately [tex]8.5*10[/tex]²⁸ electrons/m³, and the charge on each electron is 1.6 x 10⁻¹⁹ C.

The cross-sectional area of a 10 gauge copper wire is approximately 5.26 mm²= 5.26 x 10⁻⁷ m².

Substituting these values into the formula of drift velocity we get:

v = (21 A) / ((8.5 x 10²⁸ electrons/m³) x (1.6 x 10⁻¹⁹ C/electron) x (5.26 x 10⁻⁷ m²))

= 0.015 m/s

Therefore, the magnitude of the drift velocity of the electrons in the wire is approximately 0.015 m/s.

#SPJ11

To calculate the  drift velocity of the electrons :https://brainly.com/question/30903511

if your mass, the mass of earth, and the mass of everything in the solar system were twice as much as it is now, yet everything stayed the same size, your weight on earth would

Answers

If your mass, the mass of earth, and the mass of everything in the solar system were twice as much as it is now, yet everything stayed the same size, your weight on earth would be twice as much as it is now.

The weight of an object is equal to the force of gravity acting on its mass. When the mass of an object increases, the force of gravity on it also increases. So, if your mass, the mass of the earth, and the mass of everything in the solar system were twice as much as it is now, yet everything stayed the same size, the force of gravity would be twice as much as it is now.

As a result, your weight on earth would be twice as much as it is now. Therefore, the correct answer is twice as much as it is now. Weight is the measure of the force of gravity acting on the mass of an object. The unit of weight is Newtons (N), and its value depends on the mass of the object and the gravitational field it is in. Weight is a vector quantity, meaning it has both magnitude and direction.

Learn more about gravitational field at:

https://brainly.com/question/8843426

#SPJ11

aside from inner and outer planets, we have another name for these groups, based on their physical properties. what do you know about the inner planets versus the outer planets that could be used to distinguish them?

Answers

The main distinction between inner and outer planets is that the inner planets are composed of rocky, terrestrial materials, while the outer planets are composed of gas and ice.

Inner planets (Mercury, Venus, Earth, and Mars) are also much closer to the sun than the outer planets (Jupiter, Saturn, Uranus, and Neptune). In terms of size, the inner planets are much smaller than the outer planets. In addition, the inner planets have few or no moons, while the outer planets have many. Finally, the inner planets have much shorter orbits around the sun than the outer planets.
In summary, inner planets are composed of rocky materials, are much closer to the sun, are much smaller, have few or no moons, and have shorter orbits around the sun than the outer planets. Outer planets, on the other hand, are composed of gas and ice, are farther from the sun, are much larger, have many moons, and have longer orbits around the sun.

For more question on planets click on

https://brainly.com/question/28430876

#SPJ11

a cleaner pushes a 3.1-kg laundry cart in such a way that the net external force on it is 63 n. calculate the magnitude of its acceleration in m/s2.

Answers

Answer: The magnitude of the acceleration of the laundry cart is 20.32 m/s2.



The magnitude of the acceleration of the laundry cart can be calculated using the equation F = ma, where F is the force applied, m is the mass of the object and a is the acceleration.



We can rearrange the equation to solve for acceleration: a = F/m.



Plugging in the values we know, the acceleration of the laundry cart is:



a = 63N / 3.1kg = 20.32 m/s2



Therefore, the magnitude of the acceleration of the laundry cart is 20.32 m/s2.



Learn more about acceleration here:

https://brainly.com/question/30660316#



#SPJ11

a wire 35 cm long is parallel to a 0.53- t uni- form magnetic field. the current through the wire is 4.5 a. what force acts on the wire?

Answers

Answer: The force acting on the wire is 0 N

The formula for the force exerted by a magnetic field on a current-carrying wire is F = BIL sin(theta), Where, F = force B = magnetic field strength, I = current, L = length of the wire, Theta = angle between the wire and the magnetic field direction Given that Length of the wire (L) = 35 cm = 0.35 m. Magnetic field strength (B) = 0.53 T

Current through the wire (I) = 4.5 A, We need to find the force acting on the wire (F).The angle between the wire and the magnetic field is 0° as the wire is parallel to the field. Therefore, sin(theta) = sin(0°) = 0° Using the formula, F = BIL sin(theta) F = 0.53 T × 4.5 A × 0.35 m × sin(0°) = 0 N

Therefore, the force acting on the wire is 0 N, as the wire is parallel to the magnetic field direction. It means that the magnetic field does not exert any force on the wire. Note that the force will be non zero if the wire is not parallel to the magnetic field direction.

Know more about  magnetic field here:

https://brainly.com/question/14848188

#SPJ11

an old-fashioned single-play vinyl record rotates on a turntable at 45 rpm. what are (a) the angular velocity in rad/s and (b) the period of the motion in seconds?

Answers

(a) The angular velocity is 4.71 rad/s

(b) The period of motion is 0.013 seconds.

(a) The angular velocity (ω) of an object rotating at a certain speed can be calculated using the formula:

ω = (2π × frequency)/number of revolutions

Here, the record is rotating at 45 revolutions per minute (RPM), which is equivalent to 0.75 revolutions per second. Therefore, the angular velocity can be calculated as:

ω = (2π × 0.75 rev/s)/1 = 4.71 rad/s

(b) The period (T) of the motion is the time it takes for the record to make one complete revolution. It can be calculated using the formula:

T = 1/frequency

Here, the frequency is 45 RPM, which is equivalent to 0.75 Hz. Therefore, the period can be calculated as:

T = 1/0.75 Hz = 0.013 seconds

Therefore, the angular velocity of the record is 4.71 rad/s and the period of the motion is 0.013 seconds.


To know more about angular velocity click here:

https://brainly.com/question/30885221

#SPJ11

100 POINTS AMD BRAINLIEST

Look at the image for the question, I really need help :(

The first blank is either:
Rachel! Brett

Second blank is:
greater, lesser

Third blank is either:
greater the masses of the two objects, the more the attraction between the objects
greater the masses of the two objects, the less attraction between the objects
smaller the masses of the two objects, the more the attraction between objects

Answers

Answer:

1. Rachel

2. greater

3. greater the masses of the two objects, the more the attraction between the objects

Which reaction illustrates conservation of mass?
A.
2 Cu + O2 → 2 CuO
B.
Fe + H2O → Fe3O4 + H2
C.
CH4 + Br2 → CBr4 + HBr

Answers

Answer:

A. 2 Cu + O2 → 2 CuO illustrates conservation of mass, as the total mass of the reactants (copper and oxygen) equals the total mass of the products (copper oxide). This is because in a chemical reaction, the total mass of the reactants must be equal to the total mass of the products.

A, B, and C all illustrate conservation of mass because the number of atoms of each element is the same on both sides of the chemical equation, which means that the total mass of the reactants equals the total mass of the products. Therefore, the correct answer is all of the above.

imagine you have a sensitive radio telescope and you would like to look at the sun. is it reasonable to expect that you would see it?

Answers

Yes, it is reasonable to expect that you would see the Sun with a sensitive radio telescope.

Radio waves can penetrate through the clouds and the atmosphere, so with a powerful radio telescope you can observe the Sun even on a cloudy day.

Gather the necessary components of the radio telescope, such as a dish and receiver. Point the radio telescope towards the Sun. Tune the receiver to the proper frequency. Take a look at the results from the telescope and observe the Sun.

Therefore, you can expect that you would see the Sun with a sensitive radio telescope.

To know more about radio telescope click here:

https://brainly.com/question/3964280

#SPJ11

Two parallel wires are near each other as shown in the figure. Wire 1 carries current i, and wire 2 carries current 2i. Which statement about the magnetic forces that the two wires exert on each other is correct?a. Wire 1 exerts a stronger force on wire 2 than wire 2 exerts on wire 1b. The two wires exert no force on each otherc. Wire 2 exerts a stronger force on wire 1 than wire 1 exerts on wire 2d. The two wires exert attractive forces of the same magnitude on each othere. The two wires exert repulsive forces of the same magnitude on each other

Answers

If two parallel wires, wire 1 carries current i, and wire 2 carries current 2i then the two wires exert repulsive forces of the same magnitude on each other. The correct answer is option e.

When two current-carrying wires are placed near each other, they create magnetic fields that interact with each other. The magnetic field created by wire 1 exerts a force on the current-carrying particles in wire 2, and the magnetic field created by wire 2 exerts a force on the current-carrying particles in wire 1. These forces are given by the formula:

[tex]F = (\mu _0 \times (I_1) \times (I_2) \times L) / (2\pi  \times d)[/tex]

where F is the force between the wires, [tex]\mu_0[/tex] is the permeability of free space, [tex]I_1[/tex] and [tex]I_2[/tex] are the currents in wires 1 and 2, L is the length of the wires, and d is the distance between the wires.

Let us assume the currents in the wires is flowing in opposite direction.

In this case, the currents in the two wires are i and 2i, respectively. Therefore, the force exerted by wire 1 on wire 2 is:

[tex]F_{12} = (\mu _0 \times i \times 2i \times L) / (2\pi  \times d)[/tex]

And the force exerted by wire 2 on wire 1 is:

[tex]F_{21} = (\mu _0 \times 2i \times i \times L) / (2\pi  \times d)[/tex]

Since the currents in wire 2 are twice as large as those in wire 1, the force exerted by wire 2 on wire 1 is also twice as large as the force exerted by wire 1 on wire 2. However, these forces are equal and opposite in direction, so the two wires exert repulsive forces of the same magnitude on each other.

Therefore option e is the correct answer.

Learn more about magnetic fields:

https://brainly.com/question/26257705

#SPJ11

a force sensor provides the following voltage outputs for force inputs from 0 to 5 n. what is the sensitivity of this sensor in v/n?

Answers

This question is asking for the sensitivity of a force sensor, which is the voltage output (V) perforce input (N). The force sensor provides the following voltage outputs for force inputs from 0 to 5 N: 0.4 N.


To determine the sensitivity of a force sensor in volts per newton, the following formula may be used: Sensitivity = (Vmax - Vmin) / Fmax - FminWhere: Vmax is the maximum voltage output of the sensor. F max is the maximum force input of the sensor. Vmin is the minimum voltage output of the sensor.

Fmin is the minimum force input of the sensor. The question provides a force sensor's voltage output for force inputs ranging from 0 to 5 N, but the values for Vmax, Vmin, Fmax, and Fmin must be determined before using the formula. The question does not provide these values.

However, the sensitivity can be estimated by selecting the values closest to Vmax, Vmin, Fmax, and Fmin in the data provided. Sensitivity = (1.5 V - 0 V) / 5 N - 0 NSensitivity = 0.4 V/NThe sensitivity of the force sensor is 0.4 V/N.

Read more about voltage :

https://brainly.com/question/1176850

#SPJ11

a heat pump with a cop of 4.0 supplies heat to a building at a rate of 100 kw. determine the power input to the heat pump.

Answers

The power input to the heat pump is 25 kW.

The COP (coefficient of performance) of the heat pump is 4.0. This means that for every unit of power consumed by the heat pump, it supplies four units of heat to the building.

The rate at which the heat pump supplies heat to the building is 100 kW.

Therefore, the power input to the heat pump can be calculated as:

Power input = Power output / COP

Power input = 100 kW / 4.0

Power input = 25 kW

Hence, the power input to the heat pump is 25 kW.

To know more about power input click here:

https://brainly.com/question/1141300

#SPJ11

a 1-kg rock that weighs 10 n is thrown straight upward at 20 m/s. neglecting air resistance, the net force that acts on it when it is half way to the top of its path is

Answers

A net force of 10 N acts on the rock when it is halfway to the top of its path.

The net force acting on the rock can be calculated using the following equation:

Fnet = ma

Where Fnet is the net force, m is the mass, and a is the acceleration.

When the rock is halfway to the top of its path, its velocity is zero since it momentarily stops at the top of its motion. As a result, its acceleration is equal to the acceleration due to gravity, which is -10 m/s² since it is acting in the opposite direction to the upward direction. This is the gravitational force acting on the rock.

We can now calculate the net force acting on the rock at this point in its motion:

Fnet = ma

Fnet = (1 kg)(-10 m/s²)

Fnet = -10 N

Since the acceleration due to gravity is acting downward and the rock is moving upward, the net force is equal to the force of gravity, which is 10 N.

Therefore, the net force that acts on the rock when it is halfway to the top of its path is -10 N or 10 N in the downward direction. This net force is equal in magnitude to the weight of the rock.

Learn more about gravity:

https://brainly.com/question/940770

#SPJ11

lo4 pos what advantages does the hubble space telescope (hst) have over ground-based telescopes? list some disadvantages

Answers

The Hubble Space Telescope offers clear and stable views of the cosmos without atmospheric distortion but has disadvantages including aging infrastructure, limited sensitivity to certain wavelengths, and difficulty with maintenance.

Advantages of Hubble Space Telescope:

Clearer and more stable view of the cosmos, and its sensitivity to a wider range of light. Not affected by atmospheric distortions.It can see far more clearly than a ground-based telescope.

The following are the disadvantages of the Hubble Space Telescope:

Aging infrastructure, which has resulted in frequent maintenance and repairs. Its sensitivity to UV and IR radiation was also limited by its design. Not as easy to maintain as ground-based telescopes. The HST's images are often subject to light pollution, which can make it difficult to see faint objects.

While the Hubble Space Telescope has revolutionized astronomy and made many groundbreaking discoveries, it also faces challenges and limitations that must be addressed as new space-based observatories are developed to continue advancing our understanding of the universe.

To know more about Hubble Space Telescope click here:

https://brainly.com/question/30246219

#SPJ11

a hard drive rotates at 7200 rpm. the disk has a diameter of 5.1 in 13 cm. what is the speed of a point 6.0 cm. from the center axle? what is the acceleration of this point on the disk.

Answers

The speed of a point 6.0 cm from the center axle is approximately 4.524 cm/s, and the acceleration of this point on the disk is approximately 3.408 cm/s².

The first step to solving this problem is to convert the rotational speed from revolutions per minute (rpm) to radians per second (rad/s):

ω = (7200 rpm) * (2π rad/rev) / (60 s/min) ≈ 753.98 rad/s

The speed of a point 6.0 cm from the center axle can be found using the formula:

v = r * ω

where r is the distance from the center axle to the point of interest. Substituting the given values, we get:

v = (6.0 cm) * 0.75398 rad/s ≈ 4.524 cm/s

To find the acceleration of this point on the disk, we can use the formula for centripetal acceleration:

a = r * ω²

where r is the distance from the center axle to the point of interest, and ω is the angular velocity in radians per second. Substituting the given values, we get:

a = (6.0 cm) * (0.75398 rad/s)² ≈ 3.408 cm/s²

Learn more about the rotational speed: https://brainly.com/question/17025846

#SPJ11

what is the calculus way to find potential energy from force? what is the relationship between force and potential energy?

Answers

The relationship between force and potential energy can be found using: calculus and examining the graph of the equation PE = Fd

Potential energy is a form of stored energy that results from the force of gravity or from a conservative force. The relationship between force and potential energy is described by the equation PE = Fd, where PE is potential energy, F is force, and d is displacement.

To calculate potential energy using calculus, start by taking the integral of force with respect to displacement. This will give you the work done by the force, which is equal to the potential energy. Mathematically, this is represented as PE = ∫Fd. This equation can be used to find the potential energy of an object if you know the force and the displacement.

The relationship between force and potential energy can also be determined by examining the graph of the equation PE = Fd. This graph is a straight line with a slope of d and a y-intercept of zero. The slope of the line represents the displacement, while the y-intercept represents the potential energy.

As the force increases, the potential energy increases by the same amount as the force multiplied by the displacement. In summary, the relationship between force and potential energy can be found using calculus. The equation PE = Fd can be used to calculate potential energy from force and displacement.

The graph of this equation is a straight line with a slope of d and a y-intercept of zero, and it shows that as the force increases, the potential energy increases by the same amount as the force multiplied by the displacement.

To know more about potential energy refer here:

https://brainly.com/question/24284560#

#SPJ11

A stopped object starts moving. After 3.2 s, it’s moving 18 m/s. The net force acting on it is 328 N. What is its mass?

Answers

The mass of the object would be 58.4 kg.

Mass/force problem

The problem can be solved using Newton's second law of motion, which states that the net force (F_net) acting on an object is equal to the mass (m) of the object multiplied by its acceleration (a):

F_net = m*a

We are given that the net force acting on the object is 328 N, and we know the object's acceleration from the change in velocity over time:

a = (final velocity - initial velocity) / time

a = (18 m/s - 0 m/s) / 3.2 s

a = 5.625 m/s^2

Substituting these values into the equation for Newton's second law, we get:

328 N = m * 5.625 m/s^2

Solving for m, we get:

m = 328 N / 5.625 m/s^2

m ≈ 58.4 kg

Therefore, the mass of the object is approximately 58.4 kg.

More on Newton's second law can be found here: https://brainly.com/question/13447525

#SPJ1

An ice skater is spinning about a vertical axis with arms fully extended. If the arms are pulled in closer to the body, in which of the following ways are the angular momentum and kinetic energy of the skater affected?
Angular Momentum Kinetic Energy
(A) Increases Increases
(B) Increases Remains Constant
(C) Remains Constant Increases
(D) Remains Constant Remains Constant
(E) Decreases Remains Constant

Answers

An ice skater is spinning about a vertical axis with arms fully extended. If the arms are pulled closer to the body, the angular momentum of the skater will remain constant while the kinetic energy of the skater increases. The correct option is C.

The angular momentum of the skater is given by

[tex]L = I\omega[/tex],

where I is the moment of inertia of the skater and ω is the angular velocity.

When the skater pulls their arms in, their moment of inertia decreases due to the decreased distance between their body and the axis of rotation.

According to the conservation of angular momentum, the product of the moment of inertia and angular velocity must remain constant. Therefore, if the moment of inertia decreases, the angular velocity must increase to keep the angular momentum constant.

The kinetic energy of the skater is given by

[tex]K = (1/2)I\omega^2[/tex]

As the moment of inertia decreases and the angular velocity increases, the kinetic energy of the skater also increases because it is proportional to the square of the angular velocity.

Therefore, the correct answer is: (C) Remains Constant Increases. The angular momentum remains constant, while the kinetic energy increases due to the increased angular velocity.

Learn more about angular momentum:

https://brainly.com/question/4126751

#SPJ11

9. a basketball whose mass is 0.540 kg falls from rest through a height of 5.65 m, and then bounces back. on its way up it, passes by a height of 3.25 m with a speed of 2.35 m/s. how much energy is lost during the bounce?

Answers

A basketball whose mass is 0.540 kg falls from rest through a height of 5.65 m and then bounces back. on its way up it, passes by a height of 3.25 m with a speed of 2.35 m/s. The energy lost during the bounce is: 28.67 Joules

When a basketball is dropped from rest through a certain height and rebounds, it loses energy due to friction, deformation, and air resistance. In this situation, a basketball falls from rest from a height of 5.65 meters and rebounds, passing a height of 3.25 meters with a speed of 2.35 meters per second.

We know that work done W = mgh,

where, m = mass of the ball g = acceleration due to gravity h = height of the ball.

Energy lost during the bounce can be calculated by subtracting the kinetic energy of the ball after the bounce from its initial potential energy. When a ball falls from a certain height, it has initial potential energy due to its position in the earth's gravitational field.

When the ball rebounds, it has a certain kinetic energy that can be calculated using the conservation of energy equation. Therefore, the difference between the ball's initial potential energy and its rebound kinetic energy is the energy lost during the bounce.

Conservation of energy is applicable in this situation because the total energy before and after the bounce must remain constant if no external work is done on the ball. Therefore, we can apply the law of conservation of energy to this situation. The Kinetic Energy of the ball after rebounding can be calculated as:

K.E. = 1/2 mv²

Where, m = mass of the ball, v = velocity of the ball

The potential energy of the ball before rebounding can be calculated as: P.E. = mgh, Where, m = mass of the ball, g = acceleration due to gravity, h = height of the ball

Therefore, the initial potential energy of the ball can be calculated as: [tex]P.E. = 0.540 kg x 9.8 m/s² x 5.65 mP.E. = 30.2 Joules[/tex]

The ball rebounds and reaches a height of 3.25 m with a speed of 2.35 m/s.

Kinetic Energy of the ball after rebounding can be calculated as:

K.E. = 1/2 mv²

K.E. = 0.5 x 0.540 kg x (2.35 m/s)²

K.E. = 1.53 Joules.

Energy lost during the bounce = Initial Potential Energy - Rebound Kinetic Energy.

Energy lost during the bounce = 30.2 J - 1.53 J

Energy lost during the bounce = 28.67 J

Therefore, the energy lost during the bounce is 28.67 Joules.

To know more about energy refer here:

https://brainly.com/question/1932868#

#SPJ11

you have a mass of 50 kg and are pushed by a 100n force. on the surface of which planet would you have the largest acceleration?

Answers

On the surface of Jupiter, you would have the largest acceleration as it has the largest gravity, where a body with mass 50kg and force 100 N would experience an acceleration equal to 2 m/s². in general.

We are given that,

Force, F = 100N

Mass, m = 50 kg

According to Newton's second law of motion, force is gievn as the product of mass and acceleration, thus:

Acceleration, a = F/m

= 100/50

=2 m/s².

Thus, in general, an object with mass 50 kg and force applied as 100 N would have an acceleration equivalent to 2m/s².

On Earth, the gravitational force of the planet causes falling objects to accelerate by 9.8 m/s2, or 1 g. The best approach to explain the gravitational force on other planets is to express it as a percent of Earth's g-force.

As the largest planet, Jupiter should have the strongest gravitational pull, and this is really the case. Thus, an object would face the largest acceleration due to gravity on the planet Jupiter.

To know more about acceleration, refer:

https://brainly.com/question/25256383

#SPJ4

in 1959, the water stored behind hegben lake dam in montana began to slosh violently back and forth in a series of oscillating waves. these seiches were caused by

Answers

The Seiches at Hegben Lake Dam in Montana in 1959 were caused by a phenomenon known as resonance. Resonance is when energy is transferred through a system, resulting in a large oscillation. In this case, the system was the water in the lake.

The energy was the wave created by a passing cold front. The cold front created a wave that was transferred through the lake, causing a resonance—the seiches. This is similar to pushing a child on a swing, where the energy is transferred back and forth between the swing and the pushing force.

The waves created by the cold front oscillated back and forth within the lake, creating a series of seiches. The seiches caused the water to slosh violently back and forth, resulting in an unusual sight. The seiches eventually dissipated, but they were an interesting example of the power of resonance.

Know more about Resonance here

https://brainly.com/question/29547999#

#SPJ11

which term defines the distance from rest to crest, or from rest to trough?responsesamplitudeamplitudefrequencyfrequencyperiodperiodspeed

Answers

Amplitude is not measured from peak to trough, but from rest to peak or rest to trough.

The highest and lowest points on the surface of a wave are called crests and troughs respectively. The vertical distance between the peak and the trough is the height of the waves. The horizontal distance between two successive peaks or troughs is called the wavelength.

The amplitude of a wave is the maximum displacement of a particle on a medium with respect to its position of rest.

The amplitude can be thought of as the distance between rest and the peak. The amplitude from the rest position to the dip position can be measured in a similar manner.

To know more about Crest and trough, visit,

https://brainly.com/question/17778036

#SPJ4

a student used the setup below to investigate electric current and fields. which action will increase the current in the wire

Answers

The final answer are current is directly proportional to the potential difference and inversely proportional to the wire's resistance. Therefore, decreasing the resistance of the wire increases the current in the wire.

To increase the current in the wire of an electric current and field investigating setup, the action to be taken is to decrease the resistance of the wire. What is an electric current? The flow of electrons in a conductor is known as an electric current. To complete an electric circuit, the electrons must flow continuously in a circular pattern.

The electron movement is generated by a power supply, such as a battery. Electrons are pushed out of one end of the battery by a voltage differential between the battery terminals (the potential difference). Electrons enter the other end of the battery and complete the circuit.

The potential difference between the battery terminals drives the electrons around the circuit. This generates an electric current. The formula for current is: I = Q/t Where I is the current, Q is the amount of charge transferred, and t is the time taken.

What is the relationship between electric current and fields? When a charged particle moves through a magnetic field, a force is exerted on it. This force is proportional to the particle's velocity, as well as the magnetic field strength and the charge's magnitude.

The mathematical equation that describes this relationship is: F = qvB sinθ Where F is the force on the charged particle, q is the charge, v is the velocity, B is the magnetic field strength, and θ is the angle between the velocity vector and the magnetic field vector.

In the wire, the current is directly proportional to the potential difference and inversely proportional to the wire's resistance. Therefore, decreasing the resistance of the wire increases the current in the wire.

To know more about electric current refer here:

https://brainly.com/question/2264542#

#SPJ11

calculate the amount of heat removed from a fermenter within 24 hours. assuming rate of cooling is 50 btu/hr.m2.f. the size of heat exchange surface is 10 m by 8 m. the temperature difference is 20f

Answers

The amount of heat removed from a fermenter within 24 hours can be calculated using the rate of cooling, size of heat exchange surface, and temperature difference.

The rate of cooling is defined as the amount of heat removed or exchanged (in BTU) per hour per square foot or meter per degree Fahrenheit (BTU/hr.m2.F). In this case, the rate of cooling is 50 BTU/hr.m2.F.

The size of the heat exchange surface is 10 m by 8 m, and the temperature difference is 20F. Multiplying the rate of cooling (50 BTU/hr.m2.F) by the size of the heat exchange surface (80 m2) by the temperature difference (20F) yields the amount of heat removed in 24 hours: 80 m2 x 50 BTU/hr.m2.F x 20F = 80,000 BTU/24 hours. Thus, the amount of heat removed from the fermenter within 24 hours is 80,000 BTU.

Know more about fermenter here

https://brainly.com/question/13050729#

#SPJ11

the wreck skids along the ground and comes to a stop. the coefficient of kinetic friction while the wreck is skidding is 0.55. assume that the acceleration is constant. how far does the wreck skid?

Answers

The given coefficient of kinetic friction is 0.55. Assuming that the acceleration is constant, so the wreck skids a distance of 0 meters.

The distance that the wreck skids while coming to a stop is calculated below.

Data Coefficient of kinetic friction = 0.55

Conversion of acceleration to m/s²0.55 coefficient of kinetic friction can be written as 0.55 times acceleration to calculate the distance that the wreck skids. We know that the acceleration due to gravity is 9.8 m/s². Hence the acceleration due to gravity can be written as follows.

a = 9.8 m/s² × 0.55a

= 5.39 m/s²

Calculation of the distance that the wreck skids is calculated by using the formula below:

d = (v² - u²)/2as = distance = initial velocity = final velocity a = acceleration

The wreck is coming to stop, so the final velocity is 0. Hence the formula can be written as:

d = (v² - u²)/2a

= (0 - u²)/2×5.39d

= -u²/10.78d

= -0.093u²

Calculation of velocity can be calculated by using the following formula below.

v² = u² + 2asv²

= u² - 2u²/10.78v²

= (8.78u²)/10.78v²

= (2u²)/2.45v

= (u²)/1.56

The final velocity is zero. Hence we can write the formula as :

0 = (u²)/1.56u² = 0

The initial velocity of the wreck is zero. Hence the wreck is moving from rest condition.

Calculation of the distance that the wreck skids is calculated by using the formula below:

d = -u²/10.78d

= 0 meters.

You can learn more about kinetic friction at: brainly.com/question/30886698

#SPJ11

basics of quantum physics and how it works?

Answers

The most fundamental stage of studying matter and energy is quantum physics. It aims to comprehend the traits and behaviours of the very substances that make up nature.

What is the fundamental principle of quantum physics?

According to this theory, the universe of any object transforms into an array of parallel universes with an identical number of possible states for that object, one in each universe. This occurs as soon as the potential for any object to be in any state arises.

What is a quantum physicist's process?

By examining the interactions between particles of matter, quantum physicists investigate how the universe functions. This career might suit your interests if you like math or physics.

To know more about quantum physics visit:-

https://brainly.com/question/10430663

#SPJ9

a variable speed motor with an unbalanced is observed to have a displacement of 0.6 inches at resonance and 0.15 at a very high rpm. what is the damping ratio of the system?

Answers

The damping ratio of the system can be calculated as 0.13.

What is displacement?

Displacement at resonance, Xn = 0.6 inches

Displacement at very high RPM, Xv = 0.15 inches

Natural frequency of a system is:

f = (1/2π) * √(k/m)

where k is the stiffness of the system and m is its mass.

Let's assume the mass of the system as m and k is the stiffness of the system.

When the motor is at resonance, the frequency of the system is: n = f

where n is the frequency of the system.

When the motor is running at very high rpm, the frequency of the system is given as:v = f

where v is the frequency of the system.

Now, let's assume the damping coefficient of the system as c.

The displacement of the system:

X = [Xn * exp(-ζωnt)] * sin(ωdt)

where X is the displacement of the system, ζ is the damping ratio of the system, ωn is the natural frequency of the system and ωd is the frequency of the applied force.

The maximum value of the displacement is:

Xmax = Xn / (2ζ * √(1 - ζ²))

Here, Xmax = 0.6 inches when the motor is at resonance Xmax = 0.15 inches

when the motor is running at very high RPM, putting the given values of Xmax in the above equation, we can find the value of the damping ratio, ζ.

For resonance:0.6 = Xn / (2ζ * √(1 - ζ²))

=> 2ζ * √(1 - ζ²)

= Xn / 0.6=> 4ζ² * (1 - ζ²)

= Xn² / 0.36=> 4ζ⁴ - 4ζ² + 0.26244

= 0

Solving this quadratic equation gives us the value of ζ as 0.32.

For high RPM:

0.15 = Xn / (2ζ * √(1 - ζ²))

=> 2ζ * √(1 - ζ²)

= Xn / 0.15=> 4ζ² * (1 - ζ²)

= Xn² / 0.0225

=> 4ζ⁴ - 4ζ² + 1.728 = 0

Solving this quadratic equation gives us the value of ζ as 0.13.

To know more about displacement:

https://brainly.com/question/29769926

#SPJ11

you are sitting in a closed room with no windows. the only light in the room originates from two identical bare, incandescent light bulbs. one is located on the wall to your left; and the other is located on the wall to your right. bored, you look up at the ceiling and realize there is no interference pattern. why is there no interference pattern?

Answers

No stable interference pattern is formed on the ceiling.

Instead, you would see a simple combination of the light emitted by both bulbs, creating a uniformly lit ceiling.

The absence of an interference pattern in the scenario you described is due to the nature of the light sources and the way they emit light.

Incandescent light bulbs emit incoherent light, which means the light waves from these bulbs are not in phase with each other.
An interference pattern is created when two coherent light sources, like lasers, emit light waves that are in phase with each other.

When these light waves meet, they create a pattern of constructive and destructive interference.

Constructive interference occurs when the crests (or high points) of two light waves align, resulting in a brighter area, while destructive interference occurs when the crest of one wave aligns with the trough (or low point) of another wave, resulting in a darker area.

This alternating pattern of bright and dark areas is known as an interference pattern.
However, in your scenario with two incandescent light bulbs, the light waves emitted by each bulb are incoherent, meaning they have random phases and do not align consistently.

For similar question on interference.

https://brainly.com/question/2166481

#SPJ11

g what is the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit?

Answers

To calculate the ideal banking angle for a gentle turn

The ideal banking angle for a gentle turn of radius R, with velocity v, and coefficient of friction µ between the road and the tires can be calculated by the formula:

Tan(θ) = (v^2) / (gR)

where g is the acceleration due to gravity = 9.81 m/s²

θ is the banking angleIn this problem,

the radius of the gentle turn is R = 1.40 km = 1400 m

The speed limit is v = 105 km/h = 29.1667 m/s

Applying the formula,

Tan(θ) = (29.1667 m/s)^2 / (9.81 m/s² x 1400 m)

= Tan(θ) = 0.41435θ

= Tan^-1(0.41435)θ = 21.25°

Therefore, the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h  speed limit (about 65 mi/h), assuming everyone travels at the limit is 21.25 degrees.

Learn more about ideal banking angle and speed at : https://brainly.com/question/4931057

#SPJ11

the period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of m; a restoring force constant k with dimensions of ml2t2 , and the amplitude a, with dimensions of l. dimensional analysis shows that the period of oscillation should be proportional to

Answers

The correct option is C, The period of oscillation should be proportional to A^-1 square root of m/k.

mass m, with dimensions of M

force constant k with dimensions of ML^-2T^-2

amplitude A, with dimensions of L

To find the relation for period of oscillation with dimension T

To get the dimension T from m,k and A

[tex]1/A*\sqrt{(m/k)} = 1/L*\sqrt{(M/ML^{-2}T^{-2}) }= 1/L*LT = T[/tex]

Oscillation refers to the repetitive variation of a physical quantity around a central value or equilibrium position. It is a common phenomenon in many natural and man-made systems, ringing from simple pendulums and springs to complex electrical circuits and biological processes.

In an oscillating system, the physical quantity, such as displacement, velocity, or current, continuously changes between maximum and minimum values with a fixed frequency and amplitude. The frequency of oscillation is the number of cycles per unit time, usually measured in Hertz (Hz), while the amplitude is the maximum deviation from the equilibrium position. Oscillations can be periodic, where the motion repeats itself exactly over a fixed time interval, or non-periodic, where the motion is irregular and unpredictable.

To learn more about Oscillation visit here:

brainly.com/question/30111348

#SPJ4

Complete Question: -

The period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of M; a restoring force constant k with dimensions of ML^-2T^-2 and the amplitude A, with dimensions of L. Dimensional analysis shows that the period of oscillation should be proportional to

a) A square root of m/k b) A^2 m/k c) A^-1 square root of m/k d) (A^2k^3)/m

Other Questions
Darlena has started taking photos at amateur dog racing events, later offering the photos for sale to the dog owners by email. The prices she has charged per photo at each of her first three events, and the corresponding number of photos sold and total revenue raised, appear in the table below.Treating revenue as a function of the number of photos sold, a graph of the three data points is also shown. If she uses quadratic regression to fit a curve to the data, what number of photos sold and what price per photo will maximize her revenue? which type of evidence mostly likely include a testimonial if we monitor a point on a wire where there is a current for a certain time interval, which gives the chargef that moves through the point in that interval? Narrative Writing on "A misunderstanding between you and your friend, when you can't go to his farewell because of an assignment" PLEASE HURRY !! I NEED HELP!!! what is the correct syntax of the command to display the alias enter associated with hlq of student? Les _______ et les ____________ sont des animaux aquatiques. A. algues, coraux B. coraux, jacinthes C. mduses, hippocampes D. palmiers, coquilles (figure: the market for chai lattes) use figure: the market for chai lattes. what is the price elasticity of demand between the prices of $2 and $2.50 per cup, computed using the midpoint method? before setting final specifications the product development team has to: group of answer choices generate product concepts select product concepts test product concepts all of the above what could you infer if scientists discover that south america split from africa well before the evolution of the common ancestor of all modern primates? which belief was generally held by the founding fathers at the constitution convention in 1787? when assessing a client who has aortic stenosis and is scheduled for aortic valve replacement, which finding by the nurse is most important to communicate to the health care provider? a key advocate of feminist policies in the 1970s was question 1 options: phyllis schlafly richard nixon gloria steinem eleanor roosevelt all of the above none of the above what are three expected findings the nurse may observe during the assessment of a 6 months old infant with intussusception Solve for the missing angle measures(4x-7)(3x-15)plss help zoe runs a sports media website that caters to fans of many different types of sports. she's starting a display ads campaign and is considering methods to reach her sports-loving audience. what's a compelling reason for zoe to use affinity audiences? The number of boys 7 over 10 of the total number of students in a class if there are 16 more boys than girls in a class how many students are there together Describe the pay at the digital source. Use complete sentences and include at least one specific example from the table that you made for part a discounters, inc., sold $1,000 of merchandise on account with credit terms of 1/7,n/30. the journal entry to record the initial sale will include a blank . (check all that apply.) an emf source with a resistor with and a capacitor with are connected in series. as the capacitor charges, when the current in the resistor is 0.900 a, what is the magnitude of the charge on each plate of the capacitor?