There are 16 possible move sequences for the frog.
The possible moves that the frog can make.
The frog can move to either the closest point with a greater integer coordinate that is a multiple of 3, or to the closest point with a greater integer coordinate that is a multiple of 13.
Let's consider the first type of move, where the frog moves to the closest point with a greater integer coordinate that is a multiple of 3.
If the frog is at the point [tex]$n$[/tex], then the closest point with a greater integer coordinate that is a multiple of 3 is either [tex]$n+3$ or $n+6$[/tex].
Similarly, if the frog is at the point [tex]$n$[/tex] and wants to move to a multiple of 13, then the closest point with a greater integer coordinate that is a multiple of 13 is either[tex]$n+13$[/tex] or [tex]$n+26$[/tex].
Constructing move sequences.
The sequence starts with 0 and ends with 39.
The frog has two choices for its first move: either move to 3 or move to 13.
Let's assume that the frog moves to 3.
From there, the frog has two choices again:
move to 6 or move to 13. If the frog moves to 6, then it has two choices again: move to 9 or move to 13.
If it moves to 13, then it has two choices: move to 26 or move to 16.
We can continue this process until we reach 39.
We can create a tree diagram to help us keep track of the possible move sequences:
0
|
3 or 13
/ \
6 or 13 13 or 26
/ \ / \
9 13 16 26
/ \ / \ / \ / \
... ... ... ... ... ... ... ...
Each branch represents a different move sequence.
We can see that there are 16 possible move sequences in total.
We can also see that some sequences are longer than others.
The longest sequence has 7 moves, while the shortest sequence has only 2 moves.
For similar questions on sequences
https://brainly.com/question/7882626
#SPJ11
In ΔHIJ, the measure of ∠J=90°, HI = 6. 7 feet, and JH = 4. 8 feet. Find the measure of ∠I to the nearest degree
The measure of angle I in the triangle HIJ using given measurements is equal to 46.05 degrees.
In the triangle HIJ,
The measure of angle J is equal to 90 degrees.
This implies ,
HI is the hypotenuse.
JH is the opposite side to angle I.
In triangle HIJ,
Using trigonometric ratio we get,
sin ∠I = Opposite side / Hypotenuse
Substitute the values we have,
⇒ sin ∠I = 4.8 / 6.7
⇒ sin ∠I = 0.72
Now , take sin⁻¹ both the side of the equation we get,
⇒sin⁻¹(sin ∠I) = sin⁻¹( 0.72 )
Here sin⁻¹(sin ∠I) = ∠I
⇒∠I = sin⁻¹( 0.72 )
⇒∠I = 46.05 degrees
Therefore, the measure of angle I is equal to 46.05 degrees.
learn more about measure here
brainly.com/question/21751552
#SPJ4
What is the difference of the fractions? 4/7 - 10/7
Answer:
-6/7
Step-by-step explanation:
A spinner with repeated colors numbered from 1 to 8 is shown. Sections 1 and 8 are purple. Sections 2 and 3 are yellow. Sections 4, 5, and 6 are blue. Section 7 is red. Spinner divided evenly into eight sections with three colored blue, one red, two purple, and two yellow. Determine the theoretical probability of the spinner not landing on red, P. 0.125 0.250 0.675 0.875
The theoretical probability of the spinner not landing on red is 0.875.
How to determine the theoretical probability of the spinner not landing on redThe total number of sections on the spinner is 8, out of which only one section is red. Therefore, the probability of the spinner landing on red is:
P(Red) = 1/8
The probability of the spinner not landing on red would be the probability of landing on any other section, which is:
P(Not Red) = 1 - P(Red) = 1 - 1/8 = 7/8
Therefore, the theoretical probability of the spinner not landing on red is 7/8 or 0.875 in decimal form.
So, the correct answer is: 0.875.
Learn more about probability at https://brainly.com/question/24756209
#SPJ1
Answer:
D
Step-by-step explanation:
how many intervals (or 'bins' or 'classes') should be chosen when creating a histogram? question 1 options: most often, about 8-10. eleven. it can vary - it really depends on the distribution of the variable. a minimum of 5.
"It can vary - it really depends on the distribution of the variable."
The number of intervals, or bins, to choose when creating a histogram can vary depending on the distribution of the variable.
Most often, about 8-10 intervals are used, but there is no set rule. It is generally recommended to have at least 5 intervals, but if the data is highly skewed or has outliers, more intervals may be needed to accurately represent the distribution.
Ultimately, the goal is to choose a number of intervals that provides a clear visual representation of the data without oversimplifying or overcomplicating the histogram.
The number of intervals or bins to be chosen when creating a histogram can vary and it really depends on the distribution of the variable.
While most often, about 8-10 bins are used, there is no hard and fast rule for the number of bins to be used in a histogram.
In general, the number of bins should be large enough to display the shape of the distribution clearly, but not so large that it obscures important features of the distribution or leads to overfitting.
A minimum of 5 bins is recommended to display the basic shape of the distribution, but more bins may be necessary for complex or multi-modal distributions.
Depending on the distribution of the variable, a histogram's number of intervals or bins can be altered.
There is no established guideline, however 8–10 intervals are typically utilized.
A minimum of five intervals are often advised, however if the data is extremely skewed or contains outliers, more intervals could be required to correctly depict the distribution.
For similar questions on variable.
https://brainly.com/question/27894163
#SPJ11
Subtract the sum of -52 and - 638 from the sum of - 29 and 303 the value is
The solution of the expression is 964.
To start solving this problem, let's find the sum of -29 and 303. The sum of two numbers is the result when you add them together. So,
-29 + 303 = 274
The sum of -29 and 303 is 274.
Now, let's find the sum of -52 and -638. To add two negative numbers, you just add their absolute values and put a negative sign in front of the result. So,
-52 + (-638) = -690
The sum of -52 and -638 is -690.
Finally, the problem asks us to subtract the sum of -52 and -638 from the sum of -29 and 303. To subtract one sum from another, we just subtract the second sum from the first. So,
( -29 + 303 ) - ( -52 + -638 )
We can simplify the expression by rearranging the terms:
274 - (-690)
When we subtract a negative number, it's the same as adding its absolute value. So,
274 + 690 = 964
To know more about sum here
https://brainly.com/question/4196546
#SPJ4
Use the functions f(x)=√x+1, g(x)=2x-5, and h(x) = 3x² - 3 to complete the table.
x
4
10
20
34
52
f(g(x))
Answer:
To find the values of f(g(x)) for the given values of x, we need to first evaluate g(x) for each value of x, and then plug the result into f(x).
Using the given functions:
g(x) = 2x - 5
f(x) = √(x+1)
Therefore, we have:
f(g(x)) = √(g(x) + 1) = √(2x - 5 + 1) = √(2x - 4) = 2√(x - 2)
So, we can complete the table as follows:
x f(g(x))
4 2
10 4
20 6
34 8
52 10
Therefore, the completed table is:
x f(g(x))
4 2
10 4
20 6
34 8
52 10
your laundry basket contains 4 plain socks: a red one, a blue one, a yellow one and a green one. the basket also contains 4 striped socks: a red striped one, a blue striped one, a yellow stripped one and a green stripped one. if you want to wear a plain sock on your left foot and a stripped sock on your right foot, how many options do you have?
The total number of probability options will be 8 options.
1. Red plain and Red striped.
2. Blue plain and Blue striped.
3. Yellow plain and Yellow striped.
4. Green plain and Green striped.
5. Red plain and Blue striped.
6. Blue plain and Yellow striped.
7. Yellow plain and Green striped.
8. Green plain and Red striped.
There are 8 socks in the basket, and you can choose 1 plain sock and 1 striped sock.
This means that there are 8 possible combinations of socks you could choose.
Count the number of socks in the basket. There are 8 total socks (4 plain and 4 striped).
The number of options: There are 8 possible combinations of socks you could choose, so you have 8 options for wearing a plain sock on your left foot and a striped sock on your right foot.
Therefore,
You have 8 options for wearing a plain sock on your left foot and a striped sock on your right foot.
For similar question on probability:
brainly.com/question/30034780
#SPJ11
Quilt squares are cut on the diagonal to form triangular quilt pieces. The hypotenuse of the resulting triangles is 20 inches long. What is the side length of each piece?
1. 10√2
2. 20√2
3. 10√3
4. 20√3
Answer:
The correct answer is:
10√2
Explanation:
In a right triangle, the hypotenuse is the side opposite the right angle and is also the longest side. The other two sides are called the legs.
In this problem, the hypotenuse of the resulting triangles is given as 20 inches. Since the quilt squares are cut on the diagonal to form triangular quilt pieces, the hypotenuse of each triangle is formed by the diagonal cut of a square.
Let's denote the side length of each square as "s" inches.
According to the Pythagorean Theorem, which relates the sides of a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two legs.
In this case, the hypotenuse is 20 inches, so we have:
20^2 = s^2 + s^2 (since the two legs of the right triangle are the sides of the square)
400 = 2s^2
Dividing both sides by 2, we get:
200 = s^2
Taking the square root of both sides, we get:
s = √200
Since we are looking for the side length of each piece in simplified radical form, we can further simplify √200 as follows:
√200 = √(100 x 2) = 10√2
So, the side length of each quilt piece is 10√
The side length of each piece of the triangular pieces of quilt cut from squares will be 10√2 inches.
This is a simple mathematics problem that can be solved using the Pythagoras theorem. This theorem states that in a right-angled triangle, the square root of the sum of the two perpendicular sides (p,b) is equal to the longest side, called the hypotenuse (h).
[tex]h = \sqrt{p^2 + b^2}[/tex]
Since the triangle pieces have been cut from a square, they will be right-angled triangles, and the two perpendicular sides will be equal, i.e., p = b.
20 = √2p² (since p and b are equal, b can be taken as p)
On squaring both sides,
400 = 2p²
p² = 400/2
p² = 200
p = √200
p = 10√2 = b
To know more about Pythagoras theorem,
https://brainly.com/question/28981380
tim wants his mean quiz score to be 90. his first 3 quiz scores were 86, 92, and 94. what score should he make on the 4th quiz in order to have a mean quiz score of exactly 90?
The score to be made on the 4th quiz in order to have a mean quiz score of exactly 90 is equal to 88.
Let us consider the score that Tim needs to get on his fourth quiz be x.
Score he needs to get in order to have a mean quiz score of 90,
Set up an equation using the formula for the mean ,
(mean score) = (sum of scores) / (number of scores)
If Tim wants his mean quiz score to be 90, then we have,
⇒ 90 = (86 + 92 + 94 + x) / 4
Multiplying both sides by 4, we get,
⇒360 = 86 + 92 + 94 + x
Simplifying this equation, we get,
⇒ x = 360 - 272
⇒ x = 88
Therefore, Tim needs to get a score of 88 on his fourth quiz in order to have a mean quiz score of exactly 90.
Learn more about score here
brainly.com/question/31177688
#SPJ4
The Olympic record for the men's 50-meter freestyle is 21.91 seconds. Express this speed in meters per second
Answer:
50 meters/21.91 seconds = 2.282 m/sec
Which function has real zeros at x = 3 and x = 7?f(x) = x2 4x – 21f(x) = x2 – 4x – 21f(x) = x2 – 10x 21f(x) = x2 – 10x – 21
Answer: The function that has real zeros at x = 3 and x = 7 is:
f(x) = (x - 3)(x - 7)
Expanding this function using FOIL (First, Outer, Inner, Last) method:
f(x) = x^2 - 10x + 21
Therefore, the answer is:
f(x) = x^2 - 10x + 21
Step-by-step explanation:
In art class students are mixing blue and red paint to make purple paint. Hawa mixes 1 cup of blue paint and 5 cups of red paint. Jacob mixes 4 cups of blue paint and 13 cups of red paint. Use Hawa and Jacob’s percent of red paint to determine whose purple paint will be redder.
Hawa percent of red paint (to nearest whole number) =
%
Jacob percent of red paint (to nearest whole number) =
%
Hawa ’s purple paint will be redder.
Jacob’s purple paint will be redder.
The two purple paints will be equally red.
attempt 1 out of 2
Miracle Jackson
Which is more? (Percent Comparison)
Apr 10, 6:51:14 PM
Watch help video
In art class students are mixing blue and red paint to make purple paint. Hawa mixes 1 cup of blue paint and 5 cups of red paint. Jacob mixes 4 cups of blue paint and 13 cups of red paint. Use Hawa and Jacob’s percent of red paint to determine whose purple paint will be redder.
Answer:
Step-by-step explanation:
If s(d) represents the number of songs downloaded in a year d, what is the interpretation of s(2020) = 5,220,000.
A. 5,220,000 songs were downloaded in the year 2020.
B. There is not enough information to interpret the information.
C. In the year 2020 $5,220,000 was earned from downloaded songs.
D. 2,020 songs were downloaded at a cost of $5,220,000.
Answer: A. 5,220,000 songs were downloaded in the year 2020.
Step-by-step explanation: The interpretation of s(2020) = 5,220,000 is that in the year 2020, 5,220,000 songs were downloaded. The function s(d) represents the number of songs downloaded in a year d, so plugging in 2020 for d gives us the specific number of songs downloaded in that year.
Phil is baking a pie with cranberries and apples. Apples cost $0.60/cup and cranberries cost $0.40/cup. Phil wants to spend no more than $4.20 on the fruit for his pie.
Question
What is an inequality that represents the combinations he can use?
Himpunan penyelesaian dari :
18 - 2x < 3.(2x - 1) - 3
adalah ….
Step-by-step explanation:
18-2x<3(2x-1)-3
21-2x<6x-3
24<8x
3<x
Interval notation
(3, ∞)
<
1. Decide if each quadrilateral is a paranciogram. Explain
1 Pt
105
DOOOO
B
A
75
DE
1 Pt
OO
A B
4/7 -
11
65°
E
1 Pt.
For what value of x must the quadrilateral be a parallelogram?
A
O
B
с D E
A. Yes the quadrialateral is a parallelogram, because consecutive angle are supplementary.
B. Yes the quadrialateral is a parallelogram, because one pair of opposites sides is both
parallel and congruent
C. Yes the quadrialateral is a parallelogram, because opposite angles are congruent.
D. Yes the quadrialateral is a parallelogram, because diagonals bisect each other.
E. No we do not have enough information to prove this is a parallelogram.
IF YOU CAN HELP WITH SCHOOL FOR $ PLEASE ASK FOR MY CONTACT IN COMMENTS
For all given Quadrilaterals none has enough information provided in the problem to definitively say - if they are a parallelogram.Hence, option E is correct for all.
How to determine if Quadrilateral is a parallelogram?If a quadrilateral is a parallelogram, it satisfies the following properties:
Opposite sides are parallel.Opposite sides are equal in length.Opposite angles are equal.Diagonals bisect each other.It is important to note that in order to definitively conclude that a quadrilateral is a parallelogram, all four properties must be satisfied. If only one or some of the properties are met, it does not necessarily guarantee that the quadrilateral is a parallelogram.
Figure 1-: Adjacent angles are 105 and 75 degrees, which satify the condition of opposite angles being equal but except this no other information is provided, Hence, we don't have enough information to say figure 1 is a parallelogram.
Figure 2-: Diagonals bisect each other and make angle 65 degree with each other. Given that Diagonal 1 bisects Diagonal 2 and the opposite sides of the quadrilateral are equal, by using SAS criterion, the congruency of triangles formed by the diagonals can be derived to say that the opposite angles of the quadrilateral are also equal . However, we still need more information about parallelism of sides to definitively say given quadrilateral is a parallelogram.
Figure 3-: One pair of opposite side is equal in length ,while other pair of line is parallel to each other.This information is insufficient to determine if given quadrilateral is a parallelogram.
Learn more about parallelogram here:
https://brainly.com/question/29147156
#SPJ1
See image. If you can show work please do so otherwise thank u in advanced
From the figures, AB is a tangent to the C because they make a right angles (90⁰)
What is a tangent to a circle?Recall that in n Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs.
We shall be determining the angle at C to see if it gives 90⁰
Using trigonometrical ratios of tangent
TanB = Opposite/Adjacent
Tan B. = 4.8/7.2
Tan B = 0.6667
B = Tan⁻¹0.6667
<B = 33.69⁰
Also in the same manner,
TanS = opp/Adj
Tan S = 7.2/4.8
Tan S = 1.5
S = Tan⁺¹1.5
< S = 56.31⁰
Npw <S + <B = 56.32 + 33.69 = 89.9999247 = 90⁰
Therefore AB makes tangent at C
20.
Tan C = Opp/Adj
Tan C = 15/11.2
Tan C = 1.3393
C = Tan⁺¹1.3393
< C = 53.25
Also, Tan B = 11.2/15
Tan B = 0.7467
B = 36.75
<B + <C = 36.75 + 53.25 = 89.9986 = 90⁰
Therefore AB makes a tangent at C
Learn more about tangent of angles on https://brainly.com/question/10053881
#SPJ1
a report claims that the proportion of all adults who are vegetarians is 0.12. believing this claimed value is incorrect, a researcher surveys a large random sample of 1,000 adults and finds that 140 of the adults in the sample are vegetarians. what will the test statistic be equal to in this example? as you are engaging in calculations, try not to do a lot of rounding until you get to the very end, and choose the answer below that is closest to what you calculate. a. 2.5 b. 1.4 c. 1.9 d. 0.3 d. less than 0.1
The correct answer is (c) 1.9
How to calculate the test statistic?To calculate the test statistic in this example, we can use the formula for a z-test for proportions:
[tex]z = (p - P) / \sqrt{[P(1-P) / n][/tex]
where:
p is the sample proportion of vegetarians (140/1000 = 0.14)
P is the hypothesized population proportion of vegetarians (0.12)
n is the sample size (1000)
Substituting these values into the formula, we get:
[tex]z = (0.14 - 0.12) / \sqrt{[0.12(1-0.12) / 1000][/tex]
z = 0.02 / 0.0110
z = 1.818 (rounded to three decimal places)
Therefore, the test statistic in this example will be approximately equal to 1.818. The answer closest to this value is (c) 1.9
Learn more about test statistic
brainly.com/question/14128303
#SPJ11
Solve for x. -7.6 -1.2 + X 0.5
Steven read that the actual distance between Memphis and Chicago is about 525 miles. On a map, the distance between the two cities is about 10 inches. Which is most likely the scale used to make the map?
Answer:About 1,012 Inches
Step-by-step explanation:
A ( x + 3 ) < 5x + 15 - x
find the value for a for which the solution of the inequality is all real numbers
The value of a for which the solution of the inequality is all real numbers is a = 5.
We have to first simplify the inequality:
A(x + 3) < 5x + 15 - x
Ax + 3A < 4x + 15
Ax - 4x < 15 - 3A
Simplifying further:
x(A - 4) < 15 - 3A
Now, we need the inequality to hold for all real values of x. This means that the coefficient of x, (A - 4), must have a fixed sign, and that the right-hand side, 15 - 3A, must be unbounded.
For the coefficient of x to have a fixed sign, we need either A - 4 < 0 or A - 4 > 0. This means that A must be less than 4 or greater than 4.
For the right-hand side to be unbounded, we need 15 - 3A to be equal to positive or negative infinity. Since 15 - 3A is a linear function of A, this only occurs when A = 5.
So, the solution to the inequality for all real numbers is:
if A < 4, then the solution is x < (15 - 3A) / (4 - A)
if A > 5, then the solution is x > (15 - 3A) / (4 - A)
if A = 5, then the solution is all real numbers.
To know more about inequality
https://brainly.com/question/30231190
#SPJ4
Given this snippet of code, what is the value of x after executing the last statement? int x = 10, *y; y = &x; y = y + 1; *y = 100;
The value of x after executing the last statement is still 10.
After executing the last statement, the value of x is still 10. The snippet of code declares an integer variable x and a pointer variable y that points to the address of x. Then, y is incremented by 1 (which means it now points to the next memory location after x). Finally, the value 100 is assigned to the memory location pointed to by y, which is actually beyond the memory allocated for variable x. This can lead to unexpected behavior, but since the value of x is never modified directly, its value remains unchanged at 10.
Learn more about snippet of code here: brainly.com/question/28650328
#SPJ11
2. Which sequence of transformations takes the graph of y = k(x) to the graph of
y=-k(x + 1)?
A. Translate 1 to the right, reflect over the x-axis, then scale vertically by a factor of 1/2
B. Translate 1 to the left, scale vertically by 1/2 , then reflect over the y-axis.
C. Translate left by 1/2, then translate up 1.
D. Scale vertically by 1/2, reflect over the x-axis, then translate up 1.
The correct answer is option B. Translate 1 to the left, scale vertically by 1/2, then reflect over the y-axis.
What does term "transformation of a graph" means?The process of modifying the shape, location, or features of a graph is often referred to as graph transformation. Graphs are visual representations of mathematical functions or data point connections, often represented on a coordinate plane.
Translations, reflections, rotations, dilations, and other changes to the look of a graph are examples of graph transformations.
For the given problem, Transformation to get the desired result can be carried out as:
Translate '1' to the left: The transformation "x + 1" in "-k(x + 1)" shifts the graph horizontally to the left by 1 unit.Scale vertically by '1/2' : The 1/2 factor in "-k(x + 1)" vertically scales the graph, compressing it vertically.Reflect over the y-axis: The minus sign before "k" in "-k(x + 1)" reflects the graph over the y-axis, flipping it horizontally.Hence, to convert the graph of "y = k(x)" to the graph of "y = -k(x + 1)," the correct sequence of transformations is to translate 1 unit to the left, scale vertically by 1/2, and then reflect across the y-axis, which is option B.
Learn more about Graph Transformation here:
https://brainly.com/question/10059147
#SPJ1
the graph below displays the amount of time to the nearest hour spent on homework per week for a sample of students. which measures of center and variability would be most appropriate to describe the given distribution?
The measures of center and variability that would be most appropriate to describe the given distribution is D) Median and IQR.
What is median and IQR?The middle value in a set of data is represented by the median, a measure of central tendency. It is the value that, when a dataset's values are ranked from lowest to highest, distinguishes the lower from the upper half of the dataset.
The middle 50% of a dataset's interquartile range (IQR) is a measure of variability that captures this dispersion. It is the difference between the data's first (Q1) and third (Q3) quartiles. The number that divides the lowest 25% of the data from the remaining data is known as the first quartile, and the value that separates the highest 25% of the data from the remaining data is known as the third quartile.
Learn more about median here:
https://brainly.com/question/28060453
#SPJ1
The complete question is:
PLEASE HELP DUE TODAY
Answer:
y=-1/12x+61/12
Step-by-step explanation:
y=-1/12x+61/12
the profit p (in dollars) generated by selling x units of a certain commodity is given by the function p ( x ) = - 1500 + 12 x - 0.004 x ^ 2 What is the maximum profit, and how many units must be sold to generate it?
The profit (p) is $7500 generated by selling 1500 units of a certain commodity is given by the function p ( x ) = - 1500 + 12 x - 0.004 x²
To maximize our profit, we must locate the vertex of the parabola represented by this function. The x-value of the vertex indicates the number of units that must be sold to maximize profit.
We may use the formula for the x-coordinate of a parabola's vertex:
x = -b/2a
where a and b represent the coefficients of the quadratic function ax² + bx + c. In this situation, a = -0.004 and b = 12, resulting in:
x = -12 / 2(-0.004) = 1500
This indicates that when 1,500 units are sold, the profit is maximized.
To calculate the greatest profit, enter x = 1500 into the profit function:
P(1500) = -1500 + 12(1500) - 0.004(1500)^2
P(1500) = -1500 + 18000 - 9000
P(1500) = $7500
Therefore, the maximum possible profit is $7,500 and it is generated when 1,500 units are sold.
Learn more about Profit maximization:
https://brainly.com/question/30436087
#SPJ4
To achieve this maximum profit, exactly 1500 units must be sold.
To find the maximum profit and the number of units needed to generate it, we can use the given profit function p(x) = -1500 + 12x - 0.004x^2. We need to find the vertex of the parabola represented by this quadratic function, as the vertex will give us the maximum profit and the corresponding number of units.
Step 1: Identify the coefficients a, b, and c in the quadratic function.
In p(x) = -1500 + 12x - 0.004x^2, the coefficients are:
a = -0.004
b = 12
c = -1500
Step 2: Find the x-coordinate of the vertex using the formula x = -b / (2a).
x = -12 / (2 * -0.004) = -12 / -0.008 = 1500
Step 3: Find the maximum profit by substituting the x-coordinate into the profit function p(x).
p(1500) = -1500 + 12 * 1500 - 0.004 * 1500^2
p(1500) = -1500 + 18000 - 0.004 * 2250000
p(1500) = -1500 + 18000 - 9000
p(1500) = 7500
So, the maximum profit is $7,500, and 1,500 units must be sold to generate it.
To learn more about parabola: brainly.com/question/8227487
#SPJ11
Factor.
z squared+18z–19
(z - or + ?)(z- or + ?)
Answer:
(z - 1) (z + 19)
Step-by-step explanation:
z² + 18z - 19
Consider the form x² + bx + c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is −19 and whose sum is 18.
-1, 19
Write the factored form using these integers.
(z - 1) (z + 19)
consider these functions f(x)=3x^3+8x-2 k(x)=4x what is the value of k(f(x)
The value of function k(f(x)) is 12x³ + 32x - 8.
What is Function composition:Function composition is a way to combine two or more functions to form a new function. In this case, we are given two functions f(x) and k(x), and we need to find the value of k(f(x)), which means we need to apply the function k(x) to the output of the function f(x).
Here we have
Functions f(x)= 3x³ +8x -2 and k(x) = 4x
To find k(f(x)), we need to substitute the expression for f(x) into k(x) wherever we see x. So, we have:
k(f(x)) = 4(f(x)) = 4(3x³ + 8x - 2)
We can simplify this expression by distributing the 4:
k(f(x)) = 12x³ + 32x - 8
Therefore,
The value of function k(f(x)) is 12x³ + 32x - 8.
Learn more about Functions at
https://brainly.com/question/23972305
#SPJ1
Mr. Frost worked 37 hours last week. He was paid $17 per hour. How much money did he make last week?
Answer:
$481
Step-by-step explanation:
37×$17=$481
he made $481
In trapezoid ABCD, O is the point of intersection from the diagonals. The area of AOD is 15 ft^2. The altitudes from B and O to the longer base are in a 5:3 ratio. Find the area of ABD and the area of MOC if M is the midpoint of the leg CG
If M is the midpoint of the leg CG, then the
a) Area of ABD = 18.75 ft^2
b) Area of MOC = 15 ft^2
To solve this problem, we need to use the properties of trapezoids and their diagonals. Let's start with finding the area of ABD.
First, notice that ABD and COD are similar triangles because they share angle O. Thus, we can write
AB/CD = AD/CO
Since AD = BC (opposite sides of a trapezoid are parallel), we can simplify to:
AB/CD = BC/CO
We also know that the area of AOD is 15 ft^2
Area of ABD/ Area of COD = AB/CD
We can substitute the ratio AB/CD from the similarity relation above to get
Area of ABD/ Area of COD = BC/CO
Since the bases of the trapezoids are parallel
Area of ABD/ Area of COD = BD/CO
Finally, we can use the fact that the altitudes from B and O to the longer base are in a 5:3 ratio to write
Area of ABD/ Area of COD = 5/3
Area of ABD = 5/8 × Area of COD
We know that the area of AOD is 15 ft^2, so the area of COD is twice that, or 30 ft^2. Therefore
Area of ABD = 5/8 × 30 = 18.75 ft^2
Next, we need to find the area of MOC. To do this, we can use the fact that the diagonals of a trapezoid divide it into four triangles, and the areas of these triangles are proportional to the lengths of the diagonals.
Let x be the length of OC, and let y be the length of OG. Then we have
Area of MOC/ Area of MOG = x/y
Also, since M is the midpoint of CG, we have
x = 2y
Substituting this into the first equation, we get
Area of MOC/ Area of MOG = 2
We know that the area of MOG is half the area of AOD, so
Area of MOG = 15/2 ft^2
Therefore, we have
Area of MOC = 2 × Area of MOG = 15 ft^2
Learn more about area here
brainly.com/question/21025771
#SPJ4