A mass loaded spring is displaced 5 cm below its equilibrium position and then released, it travels from the lowest point to the highest point within 0.25 sec. Determine, the maximum time required for the system to oscillate from 5cm below the equilibrium position to 3cm above equilibrium position.​

Answers

Answer 1

Answer:

The maximum time required for the system to oscillate from 5 cm below the equilibrium position to 3 cm above the equilibrium position is approximately 1.309 seconds.

Explanation:

The time period (T) of a mass-spring system is given by:

T = 2π√(m/k)

where m is the mass attached to the spring, and k is the spring constant.

Given that the spring is displaced 5 cm below its equilibrium position and travels from the lowest point to the highest point within 0.25 sec. This means that the time period of the system is:

T = 2(0.25) = 0.5 sec

Now, let's assume that the maximum time required for the system to oscillate from 5 cm below the equilibrium position to 3 cm above the equilibrium position is t seconds.

So, the time taken for the system to move from the lowest point to 3 cm above the equilibrium position is (t/2) seconds.

According to the given problem, the displacement is 5 cm below the equilibrium position, so the amplitude of oscillation is:

A = (5 + 3) / 2 = 4 cm

Now, using the formula for time period, we get:

T = 2π√(m/k) ---- (1)

We know that the maximum displacement (amplitude) of oscillation, A = 4 cm. This can be expressed in terms of mass and spring constant as:

A = (m * g) / k ---- (2)

where g is the acceleration due to gravity.

Squaring equation (2) and solving for m/k, we get:

(m/k) = (A * k) / g)^2 ---- (3)

Substituting equation (3) into equation (1), we get:

T = 2π√[((A * k) / g)^2] ---- (4)

Simplifying equation (4), we get:

T = 2π * (A / g) * √(1/k) ---- (5)

Now, substituting the values of T, A, and g into equation (5), we get:

0.5 = 2π * (4 / 9.8) * √(1/k)

Simplifying this equation, we get:

√(k) = 2π * (4 / 9.8) / 0.5

√(k) = 10.239

k = 105

So, the spring constant is 105 N/m.

Now, substituting the value of k into equation (3), we get:

(m/k) = (A * k / g)^2

(m/k) = (4 * 105 / 9.8)^2

(m/k) = 73.88

So, the mass attached to the spring is:

m = (73.88) * (105)

m = 7757.4 g

m = 7.7574 kg

Now, we know the mass of the system and the spring constant, we can calculate the maximum time required for the system to oscillate from 5 cm below the equilibrium position to 3 cm above the equilibrium position.

The time period (T) of the system is given by:

T = 2π√(m/k)

T = 2π√(7.7574/105)

T = 1.309 sec (approx)

Therefore, the maximum time required for the system to oscillate from 5 cm below the equilibrium position to 3 cm above the equilibrium position is approximately 1.309 seconds.


Related Questions

at a particular instant, a hot air balloon is 210 m in the air and descending at a constant speed of 3.5 m/s. at this exact instant, a girl throws a ball horizontally, relative to herself, with an initial speed of 21 m/s. when she lands, where will she find the ball? ignore air resistance. (find the distance, in meters, from the girl to the ball.)

Answers

The ball which is thrown with a speed of 21 m/s, travels a distance of 129.99 m in the horizontal direction.

Therefore, the vertical component of the ball's motion will be determined by the force of gravity and the initial vertical speed of the balloon.

We can use the following kinematic equation to determine how long it takes for the ball to fall to the ground:

h = ut + 1/2 * g * t^2

where h is the initial height of the ball (equal to the height of the balloon which is 210 m).

u is the initial velocity of the ball in the vertical direction which is 3.5 m/s.

g is the acceleration due to gravity (approximately 9.8 m/s^2),

and t is the time it takes for the ball to fall to the ground.

Plugging in the values we know, we get:

210 = 3.5 * t + 1/2 * 9.8 * t^2

4.9 t^2 + 3.5 t - 210 = 0

t = 6.19 seconds

Now we can use the time it takes for the ball to fall to the ground to determine how far it travels horizontally, given its initial horizontal velocity of 21 m/s. We can use the following equation:

d = v * t

where d is the horizontal distance traveled by the ball, v is its initial horizontal velocity, and t is the time it takes to fall to the ground (which we just calculated).

Plugging in the values we know, we get:

d = 21 * 6.19

d ≈ 129.99 meters

Therefore, the girl will find the ball approximately at a distance of 129.99 meters away from her when she lands after throwing the ball horizontally.

Learn more about the kinematic equation:

https://brainly.com/question/28712225

#SPJ11

if a certain passenger arrives at the station at a time uniformly distributed between 7 and 8 a.m. and then gets on the first train that arrives, what proportion of time does he or she go to destination a?

Answers

The probability that the passenger will get on the first train that arrives is the same as the probability that they will arrive at the station between 7 and 8 a.m., which is 1/2.

The uniform distribution is a type of probability distribution where all outcomes are equally likely. In this case, the passenger arrives at the station at a time that is uniformly distributed between 7 and 8 a.m. Therefore, the probability that the passenger will get on the first train that arrives is the same as the probability that they will arrive at the station between 7 and 8 a.m., which is 1/2.
In other words, the probability that the passenger will go to destination A is 1/2. This is because the probability that they will arrive between 7 and 8 a.m. and get on the first train that arrives is the same as the probability that they will arrive between 7 and 8 a.m., which is 1/2.

Therefore, the proportion of time the passenger goes to destination A is 1/2. This is because the probability of them getting on the first train that arrives is the same as the probability of them arriving between 7 and 8 a.m., which is 1/2.

For more such questions on Probability distribution.

https://brainly.com/question/14210034#

#SPJ11

A load of 100g placed on a spiral spring, A extends it spring by 2cm when the same load is placed on spiral spring, B it extends it by 5cm, which spring has smaller stiffness

Answers

Spring A has smaller stiffness.Stiffness is a measure of the spring's resistance to deformation. The stiffer the spring, the more resistant it is to deformation. When a load is applied to a spring, it experiences deformation. Stiffness is a measure of how much force is required to deform the spring by a certain amount.

Springs with higher stiffness require more force to deform them than springs with lower stiffness.A load of 100g placed on a spiral spring, A extends its spring by 2cm, whereas the same load placed on spiral spring, B extends it by 5cm. The stiffness of a spring is inversely proportional to the amount of deformation it experiences. Spring B will be less stiff because it experiences more deformation than Spring A.Spring stiffness is measured in units of force per unit of length. The spring constant k is a measure of stiffness. It is defined as the amount of force required to extend the spring by one unit of length.The spring constant k can be calculated as follows:F = kxWhere F is the force applied, k is the spring constant, and x is the amount of deformation experienced by the spring. We can use this formula to calculate the spring constants for A and B:kA = F/x = 100g/(2/100) = 5000 N/mkB = F/x = 100g/(5/100) = 2000 N/mSpring A has a higher stiffness (5000 N/m) than spring B (2000 N/m) because it requires more force to deform it by the same amount. Hence, spring A has smaller stiffness.

For such more questions on stiffness:

brainly.com/question/30724864

#SPJ11

how does the conservation of angular momentum explain the increased speed of a planet in its orbit at perihelion? quizley

Answers

The conservation of angular momentum explains that a planet moves faster at perihelion due to an increase in angular velocity, resulting in an increase in linear velocity.

The conservation of angular momentum can be found as:

The conservation of angular momentum is a fundamental principle in physics that states that the total amount of angular momentum in a system remains constant unless acted upon by an external force.According to the law of conservation of angular momentum, when a planet moves closer to the Sun at perihelion, the decrease in distance causes the angular momentum to remain constant. Therefore, the velocity of the planet must increase to compensate for the decrease in distance. At perihelion, which is the point in the planet's orbit where it is closest to the Sun, the planet is moving faster than at any other point in its orbit.This is because as the planet gets closer to the Sun, the gravitational force between the two objects gets stronger, causing the planet to speed up in order to maintain its angular momentum.The closer the planet is to the Sun, the faster it has to move to keep from falling into it due to the strong gravitational pull.Therefore, the conservation of angular momentum explains why a planet speeds up at perihelion because the planet has to maintain its angular momentum as it gets closer to the Sun.

To learn more about the angular momentum: https://brainly.com/question/4126751

#SPJ11

you have two flat metal plates, each of area 2.00 m2, with which to construct a parallel-plate capacitor. if the capacitance of the device is to be 1.00 f, what must be the separation between the plates?

Answers

The capacitance of the device is to be 1.00 f, the separation distance between the plates is 1.77 × 10⁻¹³ m.

We have two flat metal plates of area 2.00 m² each with which to construct a parallel-plate capacitor. If the capacitance of the device is to be 1.00 F

Given:

Area of each plate = 2.00 m²

Capacitance of the device = 1.00 F

We know that the capacitance of a parallel-plate capacitor is given by:

C = εA/d

Where C is the capacitance of the parallel plate capacitor, ε is the permittivity of the material between the plates, A is the area of the plate, and d is the separation distance between the plates.

Rearranging this equation we get:

d = εA/C

Now, to find the separation distance, we need to know the permittivity of the material between the plates. The permittivity of a vacuum is 8.85 × 10⁻¹² F/m.

Since the question doesn't specify the permittivity of the material between the plates, we will assume it to be a vacuum. So,

ε = 8.85 × 10⁻¹² F/m²

Substituting the values of ε, A, and C, we get:

d = εA/C= (8.85 × 10⁻¹² F/m²) × (2.00 m²) / (1.00 F)

= 17.7 × 10⁻¹² m²/F /F= 17.7 × 10⁻¹² m

= 1.77 × 10⁻¹³ m

Therefore, the separation distance between the plates is 1.77 × 10⁻¹³ m.

For more such questions on distance , Visit:

https://brainly.com/question/26550516

#SPJ11

a point charge of 9.00 109 c is located at the origin. how much work is required to bring a positive charge of 3.00 109 c from infi nity to the location x 30.0 cm?

Answers

The amount of work required to bring a positive charge of 3.00 109 c from infinity to the location x 30.0 cm can be calculated using the formula W = qV, where W is the work, q is the charge, and V is the potential difference.

The potential difference for this situation is equal to the electric potential at 30.0 cm, which is equal to the electric potential from the 9.00 109 c point charge at the origin.

The work needed is equal to the charge multiplied by the potential difference, so W = qV = (3.00 109 c)(9.00 109 c/30.0 cm) = 9.00 108 c2/cm. This is the amount of work required to bring a positive charge of 3.00 109 c from infinity to the location x 30.0 cm.

Know more about work here

https://brainly.com/question/12469807#

#SPJ11

which satellite channel measures the temperature of the underlying surfaces (i.e., clouds, ocean, land)? group of answer choices visible infrared water vapor

Answers

Visible Infrared (IR) satellite channels measure the temperature of underlying surfaces. This includes clouds, oceans, and land.

IR channels work by detecting the amount of infrared radiation emitted from the Earth's surface. The intensity of the radiation is then converted into a digital number, which is displayed as a color on a satellite image. The higher the digital number, the warmer the surface temperature. This data can then be used to track changes in temperatures over time. The satellite channel that measures the temperature of the underlying surfaces is visible infrared. The surface temperature measurement is made possible by the difference in temperatures of objects in the infrared spectrum. An object's temperature and the level of radiation it emits have a direct correlation, and this is what visible infrared satellites use to take the temperature of the underlying surfaces. The visible infrared (VI) channel is used to estimate cloud cover and surface temperature. Infrared radiation from the surface of the earth is detected in this channel. The temperature of clouds, oceans, and land can be estimated using the visible infrared (VI) channel. It also provides data on how temperature changes with latitude and over time. Furthermore, the VI channel aids in the identification of cold and hot surfaces. Water vapor (WV) is another channel utilized in satellite imagery to observe the atmosphere's water vapor content. It enables meteorologists to forecast the occurrence of rainfall and other weather patterns. In general, satellite measurements assist in understanding Earth's weather and its impact on humans and the environment. These satellites help scientists to forecast severe weather, monitor weather changes over time, and analyze natural disasters. In addition, they assist in tracking the effects of climate change on the planet.

For more such questions on Satellites.

https://brainly.com/question/15168838#

#SPJ11

a resistor is connected across the terminals of a 12 v battery, which delivers 1.47 j of energy to the resistor in 6.50 hours. what is the resistance of the resistor

Answers

The resistance of the resistor is 2.8 ohms.

The resistance of the resistor is calculated using the formula Power = Voltage x Current, or P = V x I.

Plugging in the given values, we get:

1.47 J = 12 V x I x 6.50 hours

Rearranging to solve for I, we get:

I = 1.47 J / (12 V x 6.50 hours)

Then, using Ohm's law (V = I x R) we can solve for R:

R = 12 V / I

Substituting in the value of I, we get:

R = 12 V / (1.47 J / (12 V x 6.50 hours))

Therefore, the resistance of the resistor is 2.8 ohms.

Resistance is the opposition that a substance offers to the flow of electric current

To know more about resistance, refer here:

https://brainly.com/question/29427458

#SPJ11

There are many ways to reduce the amount of waste that we produce. Which of the following is not a reduction or minimization strategy?a)purchasing items that are reusable
b)reduced packaging
c)buying individually packaged items, not in bulk container
d)recycling
e)reducing the amount that a consumer purchases

Answers

There are many ways to reduce the amount of waste that we produce. Which of the following is not a reduction or minimization strategy" is: C) Buying individually packaged items, not in bulk container.

Reducing the amount of waste is an important environmental measure, and minimizing waste is a must for a sustainable future, the world produces over 3.5 million tons of waste each day. As a result, it is essential to implement effective waste management strategies to avoid environmental consequences. Some of the strategies for reducing waste are reduce and reuse, this is the most effective way to minimize waste because it reduces the amount of waste that enters the waste stream.

Reduced packaging, an effective way of minimizing waste is reducing the amount of packaging. Less packaging means less waste, and it also saves on costs. Buying items that are reusable, reusable items, like shopping bags and water bottles, are an excellent way to minimize waste. Recycling helps to reduce the amount of waste in the environment by reusing materials. Reducing the amount that a consumer purchases, buying less and using less is the best way to minimize waste. So, the correct answer is option C) Buying individually packaged items, not in bulk container.

Learn more about reducing waste at:

https://brainly.com/question/26112432

#SPJ11

a material has temperature coefficient of resistance (alpha) of 3.9 x 10^-3. if the material has a resistance of 23 ohms at a temperature of 20 c, what is the resistance of this material at a temperature of 50 c?

Answers

The resistance of the material at a temperature of 50°C is approximately 25.791 Ω.

We can use the formula for temperature dependence of resistance to solve this problem:

R2 = R1 [1 + α(T2 - T1)]

where R1 is the resistance at temperature T1, R2 is the resistance at temperature T2, and α is the temperature coefficient of resistance.

Plugging in the given values, we get:

R2 = 23 Ω [1 + (3.9 x 10⁻³/°C)(50°C - 20°C)]

Simplifying, we get:

R2 = 23 Ω [1 + (3.9 x 10^-3/°C)(30°C)]

R2 = 23 Ω [1 + 0.117]

R2 = 23 Ω [1.117]

R2 = 25.791 Ω

Therefore, the resistance of the material is approximately 25.791 Ω.

Learn more about Resistance:

#SPJ11

two identical carts, both of mass 0.5 kg are moving towards each other, each with a speed of 1.5 m/s. after they collide, what will be their velocities?

Answers

After the collision, the first cart moves to the left with a velocity of -1.5 m/s and the second cart moves to the right with a velocity of 1.5 m/s.

The velocities of the two carts after collision can be determined using the conservation of momentum principle. Momentum is defined as the product of an object's mass and velocity. Given,Mass of each cart, m = 0.5 kg, Initial velocity of each cart, u = 1.5 m/s, Initial momentum of each cart, p = mu.

After collision, velocity of the carts = v. Using the law of conservation of momentum;

mu + mu = mv + mv⇒ 2mu = 2mv⇒ u = v

Momentum before collision = Momentum after collision (conservation of momentum)

∴ 0.5 × 1.5 + 0.5 × (-1.5) = 0.5v1 + 0.5v2

On solving, we get,v1 = -1.5 m/sv2 = 1.5 m/s

Therefore after the collision, the first cart moves to the left with a velocity of -1.5 m/s and the second cart moves to the right with a velocity of 1.5 m/s.

More on velocity: https://brainly.com/question/30470329

#SPJ11

if each charge has two field lines per unit of charge (q), what is the ratio of the total positive (red) charge to the total negative (blue) charge?

Answers

The ratio of total positive charge (red) to total negative charge (blue) is 1:1. This is because for each unit of charge (q), there are two field lines, one for the positive charge and one for the negative charge.

What are field lines?

Field lines are a visual tool used to represent the direction and strength of an electrical field. The direction of a field line shows the direction of the force that a positive test charge would experience if it were placed at that point in the field. Meanwhile, the density of the field lines indicates the strength of the electric field.

Since each charge has two field lines per unit of charge (q), it means that the total number of field lines is proportional to the total charge. If there are equal numbers of field lines coming from both the positive and negative charges, it means that the ratio of the total positive charge to the total negative charge is 1:1.

Read more about electricity:

https://brainly.com/question/24786034

#SPJ11

Suppose that two identical stars (having the same total light output or luminosity) are located such that star A is at a distance of 5 pc and star B is at a distance of 25 pc. How will star B appear, compared to star A?
a) 1/25 as bright
b) 1/20 as bright
c) 1/2.2 as bright
d) 1/5 as bright
a) 1/25 as bright

Answers

Star B will appear 1/25 as bright compared to star A.

The brightness of a star is proportional to its luminosity and the distance to it. When the distance between the star and the observer increases, the brightness of the star decreases.

In this case, since star A and star B have identical luminosity, the only difference between them is the distance. Therefore, using the inverse square law of light:

Luminosity = 4πd²B

where L is the luminosity, d is the distance, and B is the brightness.

Therefore, if star A is at a distance of 5 pc and star B is at a distance of 25 pc, the apparent brightness of star B compared to star A can be calculated as:

[tex]\frac{apparent\ brightness\ of\ star\ B}{apparent\ brightness\ of\ star\ A} = \frac{(distance\ to\ star\ A)^2}{(distance\ to\ star \ B)^2}[/tex]

[tex]=\frac{(5\ pc)^2}{(25\ pc)^2}[/tex]

[tex]= \frac{1}{25}[/tex]

So star B will appear 1/25 as bright as star A.

Therefore, the answer is (a) 1/25 as bright.

Learn more about the inverse square law of light:

https://brainly.com/question/2114742

#SPJ11

if the magnitude of the drift velocity of free electrons in a copper wire is 7.94 10-4 m/s, what is the electric field in the conductor?

Answers

The electric field in the copper wire is approximately 0.0227 V/m.

The drift velocity of free electrons in a copper wire is related to the electric field in the conductor by the following formula,

v_d = (e * E * τ) / m

where v_d is the drift velocity, e is the charge of an electron, E is the electric field strength, τ is the relaxation time of the electrons, and m is the mass of an electron.

Solving for E, we get,

E = (m * v_d) / (e * τ)

Substituting the given values for copper, we get,

E = (9.11 x 10^-31 kg * 7.94 x 10^-4 m/s) / (1.60 x 10^-19 C * 2.0 x 10^-14 s)

E = 0.0227 V/m (rounded to four significant figures)

To know more about electric field, here

brainly.com/question/12911661

#SPJ4

which is the proper order of structures through which light must pass in order to perceive and image?

Answers

The proper order of structures through which light must pass in order to perceive and image is cornea, aqueous humor, lens, vitreous humor, retina.

These are the five main structures of the human eye that enable vision, including light perception and imaging. Let's delve into each of these structures.

Cornea: The clear, protective outer layer of the eye is the cornea. The cornea has two purposes: to shield the inner eye from harm and to help focus light on the retina at the back of the eye.

The cornea's curved shape bends light waves as they enter the eye, assisting in their concentration.

Aqueous humor: This is a liquid that flows throughout the front of the eye, nourishing and removing waste from its surrounding tissues.

It aids in the maintenance of normal eye pressure, and if this pressure becomes too high, it can lead to glaucoma.

Lens: The lens' job is to concentrate light onto the retina. It's a transparent structure with a biconvex (lens-like) shape that varies in thickness.

It is supported by ciliary muscles that allow it to alter shape when we focus on things at different distances.

Vitreous humor: This gel-like substance fills the eye's posterior (rear) cavity, providing it with structural stability and helping it to maintain its form. It also assists in light refraction.

Retina: This is a thin layer of tissue lining the rear of the eye. The retina's photoreceptor cells, or rods and cones, are sensitive to light.

The retina converts light energy into neural signals that are transmitted to the brain via the optic nerve, which is located behind the eye. The brain translates these signals into images, allowing us to see.

What we see when we open our eyes is formed by light. In order to perceive an image, light must pass through a series of structures in the eye.

The cornea, aqueous humor, lens, vitreous humor, and retina are the five main structures of the human eye that enable vision, including light perception and imaging.

to know more about light refer here:

https://brainly.com/question/29994598#

#SPJ11

if you place a charge in the middle of the plates, can the charge move on a curved (non-linear) path?

Answers

Yes, a charge can move on a curved (non-linear) path if it is placed in the middle of the plates.

This is because the electric field is non-uniform in this region, and the force acting on the charge will be non-uniform. As a result, the charge will experience a net force that is not in the same direction as the electric field, and its path will be curved.

The direction of the force acting on the charge is determined by the direction of the electric field at the location of the charge, and the sign of the charge itself.

If the charge is positive, it will experience a force in the direction of the electric field. If it is negative, it will experience a force in the opposite direction to the electric field.

In order to determine the exact path that the charge will follow, you need to know the magnitude and direction of the electric field at each point in space.

This can be calculated using the principles of electrostatics, which relate the electric field to the charge density and the geometry of the system.

Once you know the electric field, you can use Newton's laws of motion to determine the path of the charge, taking into account any other forces that may be acting on it.

To know more about charge, refer here:

https://brainly.com/question/28721069#

#SPJ11

what are the two most straightforward things that can be done on the spacecraft side to close a link with negative margin

Answers

When a communication link between a spacecraft and a ground station has a negative margin, it means that the received signal strength is weaker than the minimum required for proper communication.

If a spacecraft is experiencing a negative margin on a communication link, meaning that the received signal is weaker than the expected signal, there are two straight forward things that can be done on the spacecraft side to improve the link:

Increase the transmit power: By increasing the power of the signal being transmitted by the spacecraft, the received signal strength at the other end can be improved, which may close the link margin. However, increasing the power also increases the demands on the spacecraft's power supply and can cause thermal issues, so this approach should be used with caution.Use a larger antenna: The size of the antenna on the spacecraft affects the amount of power that can be transmitted or received. By using a larger antenna, the gain of the signal can be increased, which can improve the link margin.

This approach may require reorienting the spacecraft to point the antenna in the right direction, but it is generally a less power-intensive solution than increasing transmit power.

To know more about the "spacecraft": https://brainly.com/question/29727760

#SPJ11

the diagram below shows a top-down view of two pucks colliding on a frictionless surface. one puck has twice the mass of the other. the pucks are covered with velcro so they stick together after the collision. what is the final velocity of the two pucks?

Answers

The pucks are covered with velocity so they stick together after the collision.The final velocity of the two pucks is 0.33 m/s.



Applying conservation of linear momentum we get,

mv_1 + 2m.v_2 = (m+2m)v

= v = mv_1 +2mv_2 / m + 2m

= v =v_1 + 2v_2 / 3

Assuming +ve in the right side and -ve in the left side weget

v1 =3m/s v2=-1m/s

v =3+2x(4) / 3 =3-2 / 3 = 1 / 3

= v = 0.33 m/s        As it is +ve so it moves to the right

Velocity is a fundamental concept in physics that describes the rate at which an object changes its position over time. The magnitude of velocity is given by the speed of the object, which is the distance traveled by the object per unit time. The direction of velocity is given by the direction of the object's motion.

Velocity is an important concept in many areas of physics, including mechanics, kinematics, and thermodynamics. In mechanics, velocity is used to describe the motion of objects and the forces acting on them. In kinematics, velocity is used to describe the position and motion of objects without considering the forces acting on them. In thermodynamics, velocity is used to describe the flow of fluids and the transfer of energy and heat.

To learn more about velocity visit here:

brainly.com/question/28738284

#SPJ4

a heavy fish (mass 4 kg) is swimming with a speed of 1.5 m/s. he then swallows a light fish (1.2 kg), swimming toward him with a speed of 3.0 m/s. what is the velocity of the larger fish after he had his meal? (you can neglect water resistance.)

Answers

The velocity of the larger fish after the meal is zero.

We can use the law of conservation of momentum, which states that the total momentum of a closed system remains constant. Before the light fish is swallowed, the total momentum is,

p1 = m1v1 + m2v2

where m1 = 4 kg, v1 = 1.5 m/s (velocity of the heavy fish), m2 = 1.2 kg, and v2 = -3.0 m/s (negative because the light fish is swimming toward the heavy fish).

p1 = (4 kg)(1.5 m/s) + (1.2 kg)(-3.0 m/s)

p1 = 0 kg m/s

After the light fish is swallowed, the two fish become one system. Let the velocity of the larger fish after the meal be v.

The total momentum of the system after the meal is,

p2 = (m1 + m2)v

By the law of conservation of momentum, p1 = p2,

0 kg m/s = (4 kg + 1.2 kg) v

Solving for v,

v = 0 m/s

To know more about speed, here

brainly.com/question/31080132

#SPJ4

when the resistors are connected in 2 loops (first circuit of the video) the current through the resistors are 1 ma and 10ma. what is the current in the circuit before the junction that splits to the 2 resistors?

Answers

The circuit's initial current via the junction where the two resistors are separated is 11 mA. The current divides and simultaneously passes via both resistors in a paralleled resistor circuit using two resistors.

A battery and many capacitors are linked in series. The capacitors have a comparable amount of charge.

A battery and many capacitors are linked in series. The sum of the potential differences between each capacitor equals the current battery emf.

When two resistors having resistance R that are similar to one another are linked in series, the capacitive reactance is 2R.

Both negative and positive ions move charges whenever an electricity flows through with an ionic liquid like salty water. Energy is measured in electron-volts.

To know more about current click here

brainly.com/question/30832987

#SPJ4

Research Galileo's work on falling bodies What did he wanted to demonstrate?What arguments did he use to prove that he was right?did be used experiments logic finding of other scientists or other approaches

Answers

Galileo Galilei conducted experiments on falling bodies to demonstrate that the rate of fall is independent of an object's mass.  Galileo argued that if heavier objects did indeed fall faster, then two objects of different masses tied together would fall at an intermediate speed, which he found was not the case.

He used various methods to prove his point, including rolling balls down inclined planes, dropping weights from towers, and measuring the times of fall. He also used logic and mathematical reasoning to support his conclusions. Galileo's work marked a significant shift from traditional Aristotelian physics to the empirical approach of modern science.

To know more about modern science, here

brainly.com/question/30252960

#SPJ4

besides changing the distance between the plates and area of the plates, another way to alter the capacitance is by filling the space between the plates with dielectric material. doing this will reduce the electric field between the plates. considering the relationship between electric field and voltage (potential difference), and between capacitance and voltage, filling the empty (vacuum) space between a capacitors plates group of answer choices will increase the capacitance of the capacitor. will have no effect on the capacitance of the capacitor. will reduce the capacitance of the capacitor. may increase or reduce the capacitance of the capacitor.

Answers

Filling the space between a capacitor's plates with a dielectric material will increase the capacitance of the capacitor.


1. A dielectric material is inserted between the plates of the capacitor.

This material has the property of reducing the electric field between the plates.
2. The relationship between electric field (E) and voltage (V) is given by E = V/d, where d is the distance between the plates.

Since the electric field is reduced by the presence of the dielectric material, the voltage (potential difference) between the plates also decreases.

3. The relationship between capacitance (C), voltage (V), and charge (Q) is given by C = Q/V.

As the voltage decreases due to the presence of the dielectric material, the capacitance increases for a given charge on the plates.

4. The dielectric material has a property called dielectric constant (K), which is a measure of how effectively it reduces the electric field between the plates.

The capacitance of the capacitor with the dielectric material is given by C = K * C0,

where C0 is the capacitance without the dielectric material.

Since K is always greater than 1 for dielectric materials, the capacitance with the dielectric material is always higher than without it.
In conclusion, filling the empty (vacuum) space between a capacitor's plates with dielectric material will increase the capacitance of the capacitor.

For similar question on capacitor.

https://brainly.com/question/30826443

#SPJ11

what is the magnitude, in volts, of the maximum potential difference between two parallel conducting plates separated by 0.61 cm of air?

Answers

The maximum potential difference between the two parallel conducting plates separated by 0.61 cm of air is approximately 18,300 volts, assuming a uniform electric field between the plates.

The greatness of the most extreme likely distinction between two equal directing plates isolated by 0.61 cm of air relies upon the electric field strength between the plates and the distance between them. On the off chance that the plates are associated with a voltage source, the expected contrast between the plates will be equivalent to the voltage provided. Be that as it may, in the event that there is no voltage source and the plates are uncharged, the most extreme potential contrast still up in the air by the breakdown voltage of air, which is around 3 million volts for each meter.

Expecting a uniform electric field between the plates, we can compute the potential contrast utilizing the condition V = Ed, where V is the likely distinction, E is the electric field strength, and d is the distance between the plates.

Utilizing the breakdown voltage of air and the distance between the plates of 0.61 cm (0.0061 m), we can compute the greatest likely distinction as follows:

V = Ed = (3,000,000 V/m) * (0.0061 m) = 18,300 volts

Consequently, the greatest likely contrast between the two equal directing plates isolated by 0.61 cm of air is roughly 18,300 volts, expecting a uniform electric field between the plates.

To learn more about potential difference, refer:

https://brainly.com/question/30258618

#SPJ4

a 23.9 a current flows in a long, straight wire. find the strength of the resulting magnetic field at a distance of 58.3 cm from the wire.

Answers

The magnetic field at a distance of 58.3 cm from a long, straight wire carrying a 23.9 A current, the strength of the resulting magnetic field can be found using the equation B = μ0*I/2π*r, where B is the magnetic field strength, μ0 is the permeability of free space, I is current, and r is the distance.

Therefore, the strength of the magnetic field at 58.3 cm from the wire is B = 4π * 10-7 * 23.9/2π * 58.3 = 0.0067 N/Amp.


The magnetic field strength due to the current in the wire is caused by the current producing a magnetic field, which is a result of moving electric charges (electrons) in the wire. The strength of the magnetic field depends on the magnitude of the current and the distance from the wire.

As the current increases, the magnetic field strength increases; likewise, as the distance from the wire increases, the magnetic field strength decreases. The direction of the magnetic field can be determined using the right-hand rule.


The strength of the magnetic field can be used to calculate the force on a moving charged particle, F = q * v * B, where q is the charge of the particle, v is its velocity, and B is the magnetic field strength. By using this equation, the force acting on a charged particle due to the magnetic field at 58.3 cm from the wire can be found.

To know more about magnetic field refer here:

https://brainly.com/question/23096032#

#SPJ11

a car starts from rest and moves around a circular track of radius 47.0 m. its speed increases at the constant rate of 0.600 m/s2. (a) what is the magnitude of its net linear acceleration 15.0 s later?

Answers

The magnitude of the net linear acceleration of the car 15.0 seconds later is 5.08 m/s2. This is because acceleration is the rate of change of velocity, and the car's velocity is increasing at a constant rate of 0.600 m/s2.

To calculate the magnitude of the net linear acceleration, we must use the equation a = v2/r, where a is the acceleration, v is the velocity, and r is the radius of the circular track. Since the velocity of the car is increasing at a constant rate of 0.600 m/s2, we can calculate the velocity of the car after 15.0 seconds using the equation v = v0 + at, where v0 is the initial velocity (0 m/s in this case), a is the acceleration (0.600 m/s2), and t is the time (15.0 seconds).
Thus, the velocity of the car after 15.0 seconds is 9.00 m/s. Now, we can plug this velocity, along with the radius of the circular track (47.0 m), into the equation a = v2/r to calculate the magnitude of the net linear acceleration:
a = (9.00 m/s)2/47.0 m = 5.08 m/s2

Therefore, the magnitude of the net linear acceleration of the car 15.0 seconds later is 5.08 m/s2.

For more such questions on Linear acceleration.

https://brainly.com/question/12996537#

#SPJ11

A droplet of ink in an industrial ink-jet printer carries a charge of 2.1×10?10C and is deflected onto paper by a force of 3.2×10?4N. Find the strength of the electric field (E=F/q) required to produce this force. Express your answer to two significant figures and include the appropriate units.

Answers

The electric field strength needed to generate this force is roughly 1.5 x 106 N/C

We know that the strength of the electric field is defined as,E = F/qWhere,E = Electric field strength,F = Force on the droplet of ink,q = Charge on the droplet of ink.Therefore, putting the given values, we get: E = (3.2 × 10⁻4 ) / (2.1 ×10-4 ) = 1.5 × 10⁶ N/C.

Thus, the strength of the electric field required to produce the force is 1.5 ×10⁶ N/C (two significant figures). Therefore, the final answer is 1.5 × 10⁶ N/C.

To know more about electric field strength  click on below link :

https://brainly.com/question/28227168

#SPJ11

europa, one of the moons of jupiter, was discovered by galileo in 1610. europa has a circular orbit of radius 6.708 105 km and period 3.551 days. find the mass of jupiter.

Answers

Therefore, the mass of Jupiter is approximately 1.898 × 1027 kg.

The mass of Jupiter can be calculated using the equation M = (4π2 r3)/(G P2), where M is the mass of Jupiter, r is the orbital radius of Europa (6.708 105 km), G is the gravitational constant (6.674 × 10-11 m3 kg-1 s-2), and P is the orbital period of Europa (3.551 days).

The circular orbit of Europa is given as, r = 6.708 × 105 km. The period of Europa is given as, T = 3.551 days are supposed to calculate the mass of Jupiter. In order to calculate the mass of Jupiter, we need to use Kepler's 3rd law. Kepler's 3rd law is given as, T2 = (4π2/GM) × r3 where T is the period of orbit, G is the gravitational constant, M is the mass of the planet, and r is the radius of the orbit.

By rearranging the above formula we get, M = (4π2r3) / (GT2)Substituting the given values, we get, M = (4π2 × (6.708 × 105)3) / ((6.67430 × 10-11) × (3.551 × 24 × 60 × 60)2) ≈ 1.898 × 1027 kg. Therefore, the mass of Jupiter is approximately 1.898 × 1027 kg.

You can read more about Jupiter at https://brainly.com/question/2715802#:

#SPJ11

your car is accelerating to the right from a stop.for the steps and strategies involved in solving a similar problem, you may view a

Answers

To solve the given problem, it is important to understand the concept of acceleration and the forces acting on the car. The acceleration of a car is the rate at which its velocity changes over time.

The forces acting on the car can be divided into two components: the force of friction between the tires and the road, and the force of gravity acting on the car.

The force of friction depends on the nature of the road surface and the type of tires on the car. The force of gravity depends on the mass of the car and the gravitational acceleration.

It is given that the car is accelerating to the right from a stop. This means that the car is moving in the positive x-direction with an increasing velocity.Identify the forces acting on the car: The forces acting on the car are the force of friction and the force of gravity. The force of friction is acting in the opposite direction to the motion of the car and is given by f = μN, where μ is the coefficient of friction and N is the normal force acting on the car. The force of gravity is acting in the downward direction and is given by Fg = mg, where m is the mass of the car and g is the gravitational acceleration.Analyze the motion of the car using the concepts of force and acceleration. The net force acting on the car is given by Fnet = ma, where a is the acceleration of the car. From Newton's second law, we can write Fnet = f - Fg = ma. Solving for a, we get a = (f - Fg)/m.Calculate the acceleration of the car by substituting the values of f, Fg, and m in the above equation, we get a = (μN - mg)/m. The normal force acting on the car is equal to the weight of the car, which is given by N = mg. Substituting this value in the above equation, we get a = (μ - g)/m. This is the expression for the acceleration of the car.

Therefore, a = (μ - g)/m is the expression for the acceleration of the car.

To know more about acceleration click here:

https://brainly.com/question/30660316

#SPJ11

how much work is done lifting a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot

Answers

The amount of work required to lift a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot is 1050 foot-pounds.

In order to solve the problem, we can use the formula W = Fd. where, W is the work done, F is the force required and d is the distance covered by the object while being lifted or moved.

So, we have to first calculate the force required to lift the object. Let us assume the force required is F, then

F =  weight of object + weight of cable

F = 15 + 2 * 30

F = 75 pounds

Therefore, the force required to lift the object is 75 pounds. Now, we can calculate the work done as follows:

W= Fd

W = 75 * 14

W = 1050 foot-pounds

Therefore, the amount of work required to lift a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot is 1050 foot-pounds.

Learn more about work of move at https://brainly.com/question/28356414

#SPJ11

if you rub a balloon against your head, then electrons from the atoms that make up your hair get transferred to the balloon. the balloon becomes negatively charged and your hair becomes positively charged. what happens if you place balloon by hair?

Answers

When you rub a balloon against your head, electrons from the atoms in your hair are transferred to the balloon. This causes the balloon to become negatively charged, while your hair becomes positively charged. If you then place the balloon near your hair, the negative charge of the balloon will be attracted to the positive charge of your hair, causing the two to stick together. This phenomenon is known as electrostatic attraction.


The attraction of the negative charge of the balloon to the positive charge of your hair creates a strong force that causes the two objects to stick together. This force is known as the electrostatic force of attraction. It is the same force that makes two magnets stick together when their poles are placed near each other. The attraction between the balloon and your hair will remain until the charge on the balloon is dissipated by contact with another object.

To demonstrate this force of attraction, you can try rubbing the balloon against your head and then holding it near your hair. You will notice that the balloon will become attracted to your hair and will stick to it. You can also experiment with other materials that become charged when rubbed together, such as a cloth and a comb.

For similar questions on electrostatic attraction

https://brainly.com/question/17692887

#SPJ11

Other Questions
Pandora Corporation operates several factories in the Midwest that manufacture consumer electronics. The December 31, 2021, year-end trial balance contained the following income statement items:Account TitleDebits CreditsSales revenue$12,500,000Interest revenue50,000Loss on sale of investments $100,000Cost of goods sold6,200,000Selling expenses620,000General and administrative expenses 1,520,000Interest expense40,000Research and development expense1,200,000Income tax expense900,000 a company receives $450 in february for services that will be performed in march. in march, the adjusting entry is recorded as: how did Hoovervilles lead to the passing of the Social Security Act ganymede is the largest moon in the solar system scientists think that ganymede, like europa, a subsurface ocean of liquid water because the diameter of bronchioles varies under the control of neurons, which cause the diameter to . A random sample of dogs at different animal shelters in a city shows that 10 of the 70 dogs are puppies. The city's animal shelters collectively house 1,960 dogs each year. About how many dogs in all of the city's animal shelters are puppies? What is the largest source of revenue for most states?O A.O B.O C. sales taxesO D. income taxesinheritance taxesproperty taxesRese which body part does a flatworm first use to catch its prey? responses digestive enzymes digestive enzymes mouth mouth gastrovascular cavity gastrovascular cavity pharynx wechsler scales are used to assess learning abilities with individuals with asd. what conclusions can be drawn from the studies conducted on the wechsler scales and the patterns that emerge (specific to individuals with asd). I will give brainiest to whatever answered correctly. Determine the inverse of the matrix (5 -4)( -8 6)A) c^-1 = (-5 8) (4 -6)B) c^-1 = (6 4) (8 5)C) c^-1 = (2.5 2) (4 3)D) c^-1 = (-3 -2)(-4 -2.5) four 100w bulbs are connected in parallel across a 120v ac source. how much energy does the source supply over a 5 hour time window what is the relationship between the northern and southern hemisphere with regard to insolation patterns? (1 point) Which set of ordered pairs is NOT A FUNCTION?(5,3) , 6,3) , (7,3) , (8,3)(2,1) (3,3) , (4,6) , (2,3)(1,6) , (8,4) , (3,8) , (7,`)(9,8), (7,6) , (5,3) , (2,1) in which order would the nurse follow steps of risk management to identify potential hazards and eliminate them before harm occurs the term sexuality is complicated and often misunderstood. identify the key perspectives from which sexuality is defined? what project stakeholder management process intricately and dynamically supports project communications management? when an activity with a long duration is broken into smaller segments so that the following activities can begin sooner it is called___ Help!!! Will give you brilliant 3 This question has two parts. First, answer Part A. Then, answer Part B.Part ABased on the information in paragraphs 23 through 36, Ashoke canbest be described as -optimistic and irritablecompassionate and sternelegant and criticalinsightful and authoritarianPart BWhich quotation from the excerpt best supports the answer to Part A?A "No, no, it's not a middle name," Ashoke says. He is beginning tolose patience. (paragraph 23)"Don't be scared, Gogol," he says, raising his son's chin with hisfinger. "You're a big boy now. No tears." (paragraph 26)Ashoke hands over the lunch box, a windbreaker in case it getscold. (paragraph 28)Ashima and Ashoke wonder, shaking their heads. But since neitherof them feels comfortable pressing the issue, they have no choicebut to give in. (paragraph 36) What is 5 1/2 x 5 = ? I need help on this assignment on IXL! I will give credit afterwards!