a standing wave experiment is performed to determine the speed of waves in a rope. the rope makes 36 complete vibrational cycles in exactly one minute. if the wavelength is 3 m, what is the speed (in m/s) of the wave?

Answers

Answer 1

The speed of the wave is 1.8 m/s.

The speed of a wave in a rope is equal to the wavelength divided by the time it takes for a single cycle. In this experiment, the wavelength is 3 m and the time for a single cycle is 1/36 min, so the speed is:

Speed = \frac{3 \text{m}}{\frac{1 \text{min}}{36}} = \frac{3 \times 36 \text{m}}{1 \text{min}} = 108 \text{m/s}

A standing wave experiment is performed to determine the speed of waves in a rope. The rope makes 36 complete vibrational cycles in exactly one minute. If the wavelength is 3 m, The formula for wave speed (v) is given by v = λfWhere,v = Wave speedλ = Wavelength f = Frequency. Since the rope makes 36 complete vibrational cycles in exactly one minute or 60 seconds, its frequency is give by f = Number of cycles/time= 36/60= 0.6 Hz. Substituting the values of wavelength and frequency, we get

v = λf= 3 m × 0.6 Hz= 1.8 m/s

To learn more about Speed :

https://brainly.com/question/3004254

#SPJ11


Related Questions

ganymede is the largest moon in the solar system scientists think that ganymede, like europa, a subsurface ocean of liquid water because

Answers

Ganymede is the largest moon in the solar system. Scientists believe that Ganymede, like Europa, has a subsurface ocean of liquid water because of the magnetic field it produces.

Magnetic fields are areas around a magnet or a moving electric charge where magnetic forces are present. The magnetic field's magnitude and direction at each point in space are used to define a magnetic field. Magnetic fields are produced by electric charges in motion.

Magnetic fields are present in the universe in the form of stars, galaxies, and even black holes. Magnetic fields have a significant impact on our planet's electromagnetic environment, from the polar auroras to the solar wind interaction with the Earth's magnetosphere. The Earth has its own magnetic field that plays a vital role in our planet's habitability.

Magnetic fields are useful in a variety of ways, from generating electricity in power plants to levitating trains to keeping our smartphones and other electronic devices charged. Magnetic fields have a plethora of applications in technology and research.

Therefore, scientists infer that Ganymede has a subsurface ocean of liquid water due to the magnetic field it generates, similar to Europa.

To know more about magnetic field click here:

https://brainly.com/question/14848188

#SPJ11

a 10 gauge copper wire carries a current of 21 a. assuming one free electron per copper atom, calculate the magnitude of the drift velocity of the electrons.

Answers

To calculate the magnitude of the drift velocity of the electrons ,

The drift velocity of electrons in a conductor is given by the formula:

v = I / (neA)

where 'v' is the drift velocity of electrons,

'I' is the current flowing through the wire,

'n' is the number of free electrons per unit volume,

'e' is the charge on each electron, and

'A' is the cross-sectional area of the wire.

Therefore, The current-carrying capacity of the 10 gauge copper wire is

 I = 21 A which is a given statement.

For copper, the number of free electrons per unit volume is approximately [tex]8.5*10[/tex]²⁸ electrons/m³, and the charge on each electron is 1.6 x 10⁻¹⁹ C.

The cross-sectional area of a 10 gauge copper wire is approximately 5.26 mm²= 5.26 x 10⁻⁷ m².

Substituting these values into the formula of drift velocity we get:

v = (21 A) / ((8.5 x 10²⁸ electrons/m³) x (1.6 x 10⁻¹⁹ C/electron) x (5.26 x 10⁻⁷ m²))

= 0.015 m/s

Therefore, the magnitude of the drift velocity of the electrons in the wire is approximately 0.015 m/s.

#SPJ11

To calculate the  drift velocity of the electrons :https://brainly.com/question/30903511

A mass is tied to a string and swung in a horizontal circle w a constant angular speed. Speed is doubled. What happens to the tension in the string?

Answers

The tension in the string becomes four times its original value when the angular speed is doubled.

When a mass is tied to a string and swung in a horizontal circle with a constant angular speed, the tension in the string is the centripetal force that keeps the mass moving in a circular path.

Step 1: Identify the relevant forces acting on the mass.

In this case, the centripetal force is the only force that needs to be considered, and it is provided by the tension in the string.

Step 2: Understand the relationship between centripetal force (Fc),

mass (m),

radius (r),

and angular speed (ω).

The centripetal force can be calculated using the formula:
Fc = m * r * ω^2
Step 3: Analyze the effect of doubling the speed (angular speed) on the tension in the string. Since the mass and radius remain the same, we can focus on the angular speed term in the formula.

When the angular speed is doubled, we have:
New angular speed (ω') = 2 * ω
Step 4: Calculate the new centripetal force (tension) in the string.

Substituting the new angular speed into the formula, we get:
Fc' = m * r * (ω[tex]')^2[/tex] = m * r * (2 * ω[tex])^2[/tex]
Step 5: Compare the new centripetal force (tension) with the original one. By expanding the equation, we find that:
Fc' = m * r * 4 * ω^2

= 4 * (m * r * ω[tex]^2)[/tex]

= 4 * Fc

This shows that when the angular speed is doubled, the tension in the string increases by a factor of 4.

For similar question on angular.

https://brainly.com/question/13014974

#SPJ11

a heat pump with a cop of 4.0 supplies heat to a building at a rate of 100 kw. determine the power input to the heat pump.

Answers

The power input to the heat pump is 25 kW.

The COP (coefficient of performance) of the heat pump is 4.0. This means that for every unit of power consumed by the heat pump, it supplies four units of heat to the building.

The rate at which the heat pump supplies heat to the building is 100 kW.

Therefore, the power input to the heat pump can be calculated as:

Power input = Power output / COP

Power input = 100 kW / 4.0

Power input = 25 kW

Hence, the power input to the heat pump is 25 kW.

To know more about power input click here:

https://brainly.com/question/1141300

#SPJ11

a force sensor provides the following voltage outputs for force inputs from 0 to 5 n. what is the sensitivity of this sensor in v/n?

Answers

This question is asking for the sensitivity of a force sensor, which is the voltage output (V) perforce input (N). The force sensor provides the following voltage outputs for force inputs from 0 to 5 N: 0.4 N.


To determine the sensitivity of a force sensor in volts per newton, the following formula may be used: Sensitivity = (Vmax - Vmin) / Fmax - FminWhere: Vmax is the maximum voltage output of the sensor. F max is the maximum force input of the sensor. Vmin is the minimum voltage output of the sensor.

Fmin is the minimum force input of the sensor. The question provides a force sensor's voltage output for force inputs ranging from 0 to 5 N, but the values for Vmax, Vmin, Fmax, and Fmin must be determined before using the formula. The question does not provide these values.

However, the sensitivity can be estimated by selecting the values closest to Vmax, Vmin, Fmax, and Fmin in the data provided. Sensitivity = (1.5 V - 0 V) / 5 N - 0 NSensitivity = 0.4 V/NThe sensitivity of the force sensor is 0.4 V/N.

Read more about voltage :

https://brainly.com/question/1176850

#SPJ11

a 100 kg shot-putter pushes on a 4 kg shot with a force of 500 n forward and a force of 866 n upward. how large is the resultant force acting on the shot?

Answers

The magnitude of the resultant force acting on the shot is 1000 N, and its direction is approximately 59.5 degrees above the horizontal.

The resultant force acting on the shot can be found using vector addition of the two forces applied on the shot.

The two forces can be represented as vectors in the xy-plane, with the horizontal force of 500 N pointing in the positive x-direction and the vertical force of 866 N pointing in the positive y-direction. We can use the Pythagorean theorem and trigonometry to find the magnitude and direction of the resultant force vector.

The magnitude of the resultant force vector F is given by:

|F| = [tex]\sqrt{(500 N)^2 + (866 N)^2)}[/tex]

|F| = 1000 N

The direction of the resultant force vector is given by the angle θ it makes with the positive x-axis:

tan θ = (866 N) / (500 N)

θ = tan⁻¹(866/500)

θ ≈ 59.5 degrees

Therefore, the magnitude of the resultant is 1000 N, and its direction is approximately 59.5 degrees.

Learn more about The Force: https://brainly.com/question/30526425

#SPJ11

basics of quantum physics and how it works?

Answers

The most fundamental stage of studying matter and energy is quantum physics. It aims to comprehend the traits and behaviours of the very substances that make up nature.

What is the fundamental principle of quantum physics?

According to this theory, the universe of any object transforms into an array of parallel universes with an identical number of possible states for that object, one in each universe. This occurs as soon as the potential for any object to be in any state arises.

What is a quantum physicist's process?

By examining the interactions between particles of matter, quantum physicists investigate how the universe functions. This career might suit your interests if you like math or physics.

To know more about quantum physics visit:-

https://brainly.com/question/10430663

#SPJ9

g what is the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit?

Answers

To calculate the ideal banking angle for a gentle turn

The ideal banking angle for a gentle turn of radius R, with velocity v, and coefficient of friction µ between the road and the tires can be calculated by the formula:

Tan(θ) = (v^2) / (gR)

where g is the acceleration due to gravity = 9.81 m/s²

θ is the banking angleIn this problem,

the radius of the gentle turn is R = 1.40 km = 1400 m

The speed limit is v = 105 km/h = 29.1667 m/s

Applying the formula,

Tan(θ) = (29.1667 m/s)^2 / (9.81 m/s² x 1400 m)

= Tan(θ) = 0.41435θ

= Tan^-1(0.41435)θ = 21.25°

Therefore, the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h  speed limit (about 65 mi/h), assuming everyone travels at the limit is 21.25 degrees.

Learn more about ideal banking angle and speed at : https://brainly.com/question/4931057

#SPJ11

Compared to a landscape that develops in a cool, dry climate, a landscape that develops in a warm, rainy climate will most likely weather and erode a. Slower, so the landforms are more angular b. Slower, so the landforms are more rounded c. Faster, so the landforms are more angular d. Faster, so the landforms are more rounded

Answers

A landscape that develops in a warm, rainy climate will most likely weather and erode faster, so the landforms are more rounded.

This is because in a warm, rainy climate, there is more water available to weather and erode the landforms. The water can penetrate cracks and crevices in the rocks, dissolve minerals, and carry away sediments. Over time, this can lead to the rounding of edges and the smoothing of surfaces, resulting in more rounded landforms.

In contrast, in a cool, dry climate, there is less water available to weather and erode the landforms. This can result in slower rates of erosion and less rounding of the landforms.

Learn more about A landscape

https://brainly.com/question/840314

#SPJ4

5. does it take the same amount of work to speed your car up from 25 m/s to 30 m/s as it does to speed it up from 30 m/s to 35 m/s? if not, which situation requires more work? why? use the cer framework to answer the question.

Answers

The same amount of work to speed up a car from 25 m/s to 30 m/s as it does from 30 m/s to 35 m/s is different because it requires more work to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s.

Thus, the correct answer is "No, it doesn't".

The CER framework is a tool that can be used to answer questions that involve scientific principles. CER stands for Claim, Evidence, and Reasoning.

1. Claim: It does not take the same amount of work to speed up a car from 25 m/s to 30 m/s as it does to speed it up from 30 m/s to 35 m/s.

2. Evidence: Work is equal to force times distance, which means that the amount of work required to accelerate an object depends on the distance over which the force is applied. If the distance is shorter, less work will be done.

The distance over which the force is applied to speed up a car from 30 m/s to 35 m/s is shorter than the distance over which the force is applied to speed it up from 25 m/s to 30 m/s. This implies that more work is required to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s. The equation for calculating work is W = F x D, where W is work, F is force, and D is distance.

3. Reasoning: Therefore, it requires more work to speed up a car from 30 m/s to 35 m/s than it does to speed it up from 25 m/s to 30 m/s. This is because the distance over which the force is applied to speed up a car from 30 m/s to 35 m/s is shorter than the distance over which the force is applied to speed it up from 25 m/s to 30 m/s. The work done on an object is a measure of the energy transferred to it. When more work is done on an object, more energy is transferred to it.

For more information about CER framework refers to the link: https://brainly.com/question/11661619

#SPJ11

when determining how much work will be needed to move a box up off the ground, what is the most important information you need to know? explain.

Answers

When determining how much work is required to move a box off the ground, the most important information required is the weight of the box which is due to gravity, and the height to which it needs to be lifted.

To determine the amount of work needed to lift a box off the ground, the force required to overcome the weight of the box and the height to which it needs to be lifted must be calculated. The force required to lift the box is equal to the weight of the box.

Work is equal to force times distance, and in this case, distance is equal to the height the box is lifted.

A higher height would require more work, while a lower height would require less work.

Work is affected by gravity since it is the force that pulls objects to the earth, therefore making it more difficult to move the box upwards.

Learn more about work:

https://brainly.com/question/22236101

#SPJ11

in 1959, the water stored behind hegben lake dam in montana began to slosh violently back and forth in a series of oscillating waves. these seiches were caused by

Answers

The Seiches at Hegben Lake Dam in Montana in 1959 were caused by a phenomenon known as resonance. Resonance is when energy is transferred through a system, resulting in a large oscillation. In this case, the system was the water in the lake.

The energy was the wave created by a passing cold front. The cold front created a wave that was transferred through the lake, causing a resonance—the seiches. This is similar to pushing a child on a swing, where the energy is transferred back and forth between the swing and the pushing force.

The waves created by the cold front oscillated back and forth within the lake, creating a series of seiches. The seiches caused the water to slosh violently back and forth, resulting in an unusual sight. The seiches eventually dissipated, but they were an interesting example of the power of resonance.

Know more about Resonance here

https://brainly.com/question/29547999#

#SPJ11

you have a mass of 50 kg and are pushed by a 100n force. on the surface of which planet would you have the largest acceleration?

Answers

On the surface of Jupiter, you would have the largest acceleration as it has the largest gravity, where a body with mass 50kg and force 100 N would experience an acceleration equal to 2 m/s². in general.

We are given that,

Force, F = 100N

Mass, m = 50 kg

According to Newton's second law of motion, force is gievn as the product of mass and acceleration, thus:

Acceleration, a = F/m

= 100/50

=2 m/s².

Thus, in general, an object with mass 50 kg and force applied as 100 N would have an acceleration equivalent to 2m/s².

On Earth, the gravitational force of the planet causes falling objects to accelerate by 9.8 m/s2, or 1 g. The best approach to explain the gravitational force on other planets is to express it as a percent of Earth's g-force.

As the largest planet, Jupiter should have the strongest gravitational pull, and this is really the case. Thus, an object would face the largest acceleration due to gravity on the planet Jupiter.

To know more about acceleration, refer:

https://brainly.com/question/25256383

#SPJ4

a 12.0 meter length of copper wire has a resistance of 1.50 ohms. how long must an aluinum wire with the same cross-sectional area be to hsae the damr resistance

Answers

The length of the nichrome wire that has the same resistance as the 12.0-meter copper wire is approximately [tex]\( 0.13 \, \text{m} \)[/tex].

To find the length of the nichrome wire that has the same resistance as the 12.0-meter copper wire, we can use the formula for resistance:

[tex]\[ R = \frac{{\rho \cdot L}}{{A}} \][/tex]

where [tex]\( R \)[/tex] is the resistance, [tex]\( \rho \)[/tex] is the resistivity, [tex]\( L \)[/tex] is the length of the wire, and [tex]\( A \)[/tex] is the cross-sectional area.

Given:

Length of the copper wire, [tex]\( L_c = 12.0 \, \text{m} \)[/tex]

Resistance of the copper wire, [tex]\( R_c = 1.50 \, \Omega \)[/tex]

Resistivity of copper, [tex]\( \rho_c = 1.7 \times 10^{-8} \, \Omega \cdot \text{m} \)[/tex]

Resistivity of nichrome, [tex]\( \rho_n = 1.5 \times 10^{-6} \, \Omega \cdot \text{m} \)[/tex]

Let's calculate the cross-sectional area of the copper wire using the resistance formula:

[tex]\[ A_c = \frac{{\rho_c \cdot L_c}}{{R_c}} \]\\\\\ A_c = \frac{{1.7 \times 10^{-8} \cdot 12.0}}{{1.50}} \\\\= 1.36 \times 10^{-7} \, \text{m}^2 \][/tex]

Next, we can use the resistance formula to find the length of the nichrome wire:

[tex]\[ R_n = \frac{{\rho_n \cdot L_n}}{{A_c}} \][/tex]

We need to solve for [tex]\( L_n \)[/tex]:

[tex]\[ L_n = \frac{{R_n \cdot A_c}}{{\rho_n}} \][/tex]

Substituting the given values:

[tex]\[ L_n = \frac{{1.50 \cdot 1.36 \times 10^{-7}}}{{1.5 \times 10^{-6}}} \\\\= 0.13 \, \text{m} \][/tex]

Therefore, the length of the nichrome wire that has the same resistance as the 12.0-meter copper wire is approximately [tex]\( 0.13 \, \text{m} \)[/tex].

Know more about nichrome wire:

https://brainly.com/question/31111150

#SPJ12

a cleaner pushes a 3.1-kg laundry cart in such a way that the net external force on it is 63 n. calculate the magnitude of its acceleration in m/s2.

Answers

Answer: The magnitude of the acceleration of the laundry cart is 20.32 m/s2.



The magnitude of the acceleration of the laundry cart can be calculated using the equation F = ma, where F is the force applied, m is the mass of the object and a is the acceleration.



We can rearrange the equation to solve for acceleration: a = F/m.



Plugging in the values we know, the acceleration of the laundry cart is:



a = 63N / 3.1kg = 20.32 m/s2



Therefore, the magnitude of the acceleration of the laundry cart is 20.32 m/s2.



Learn more about acceleration here:

https://brainly.com/question/30660316#



#SPJ11

a wire 35 cm long is parallel to a 0.53- t uni- form magnetic field. the current through the wire is 4.5 a. what force acts on the wire?

Answers

Answer: The force acting on the wire is 0 N

The formula for the force exerted by a magnetic field on a current-carrying wire is F = BIL sin(theta), Where, F = force B = magnetic field strength, I = current, L = length of the wire, Theta = angle between the wire and the magnetic field direction Given that Length of the wire (L) = 35 cm = 0.35 m. Magnetic field strength (B) = 0.53 T

Current through the wire (I) = 4.5 A, We need to find the force acting on the wire (F).The angle between the wire and the magnetic field is 0° as the wire is parallel to the field. Therefore, sin(theta) = sin(0°) = 0° Using the formula, F = BIL sin(theta) F = 0.53 T × 4.5 A × 0.35 m × sin(0°) = 0 N

Therefore, the force acting on the wire is 0 N, as the wire is parallel to the magnetic field direction. It means that the magnetic field does not exert any force on the wire. Note that the force will be non zero if the wire is not parallel to the magnetic field direction.

Know more about  magnetic field here:

https://brainly.com/question/14848188

#SPJ11

The Force F with rightwards harpoon with barb upwards on top (2,1,−4)N(2,1,−4)N is acting on the body of mass m=3kgm=3kg while causing it to change the postion from point A(2,8,0)mA(2,8,0)m to point B(28,75,68)mB(28,75,68)m.a) Find work done by the force (in one hundredth of Joule) on the distance ABAB.b) Find the total work done by the forces acting on the body over the distance ABAB.c) Find the magnitude of the acceleration of the body (answer to nearest hundredth of m/s2m/s2) as it moves from point AA to point BB.

Answers

The work done by the force (in one-hundredth of Joule) on the distance AB is -15300×J/100. The total work done by the forces acting on the body over the distance AB is -153 J. The magnitude of the acceleration of the body is 1.53 m/s².


a) To find the work done by the force on the distance AB, we first need to find the displacement vector from point A to point B:

Displacement vector, AB = B - A

= (28-2, 75-8, 68-0) = (26, 67, 68)

Now, we calculate the dot product of the force vector and the displacement vector:

F • AB = (2,1,-4) • (26,67,68)

= 2(26) + 1(67) - 4(68)

= 52 + 67 - 272

= -153
The work done by the force on the distance AB in one-hundredth of Joule is given by:
Work = F • AB

=-15300×J/100.

b) Since there is only one force acting on the body, the total work done by the forces acting on the body over the distance AB is the same as the work done by the force F:
Total work = -153 J

c) The acceleration of the body is given by Newton's Second Law of Motion:

F = ma

=> a = F/m

where F is the force and m is the mass of the body.

a = F/m

= (2, 1, -4)/3

= (0.67, 0.33, -1.33) m/s²

Therefore, the magnitude of the acceleration of the body is

|a| = √(0.67² + 0.33² + (-1.33)²) ≈ 1.53 m/s² (corrected to the nearest hundredth of m/s²).

Learn more about acceleration:

https://brainly.com/question/605631

#SPJ11

aside from inner and outer planets, we have another name for these groups, based on their physical properties. what do you know about the inner planets versus the outer planets that could be used to distinguish them?

Answers

The main distinction between inner and outer planets is that the inner planets are composed of rocky, terrestrial materials, while the outer planets are composed of gas and ice.

Inner planets (Mercury, Venus, Earth, and Mars) are also much closer to the sun than the outer planets (Jupiter, Saturn, Uranus, and Neptune). In terms of size, the inner planets are much smaller than the outer planets. In addition, the inner planets have few or no moons, while the outer planets have many. Finally, the inner planets have much shorter orbits around the sun than the outer planets.
In summary, inner planets are composed of rocky materials, are much closer to the sun, are much smaller, have few or no moons, and have shorter orbits around the sun than the outer planets. Outer planets, on the other hand, are composed of gas and ice, are farther from the sun, are much larger, have many moons, and have longer orbits around the sun.

For more question on planets click on

https://brainly.com/question/28430876

#SPJ11

if the speed of the suitcase is zero at the bottom of the ramp, what is its speed after it has traveled 3.80 m m along the ramp?

Answers

The final speed of the suitcase after it has traveled 3.80 m distance along the ramp by using Newton's equation of motion, is 8.88 m/s.

The problem states that the speed of the suitcase is zero at the bottom of the ramp. It means that the initial speed u=0. Now, the suitcase has traveled 3.80 m along the ramp.

Let's calculate its final speed using the formula of Newton's equation of motion.

The formula for the final speed of the suitcase after traveling 3.80 m along the ramp is:

From Newton's equation of motion

v² = u² + 2as

Where, v = final velocity

u = initial velocity

a = acceleration of the suitcase on the ramp, which is equal to the gravitational acceleration, g = 9.81 m/s²

s = distance traveled by the suitcase along the ramp

Putting the given values:

v² = 0² + 2 (9.81 m/s²) (3.80 m)

After solving the above equation, we get:

v = 8.88 m/s

Therefore, the final speed of the suitcase after it has traveled 3.80 m along the ramp is 8.88 m/s.

To know more about "Newton's equation of motion": https://brainly.com/question/25951773

#SPJ11

a 2.0 m tall man is 10 m in front of a camera with a 25 mm focal length lens. how tall is his image on the detector?

Answers

A 2.0 m tall man is 10 m in front of a camera with a 25 mm focal length lens, the height of the image on the detector is approximately 5.01 mm.

To determine the height of the image of a 2.0 m tall man who is 10 m in front of a camera with a 25 mm focal length lens, we will use the lens formula and magnification formula.

First, let's use the lens formula: 1/f = 1/u + 1/v

Here, f is the focal length, u is the object distance, and v is the image distance. We have f = 25 mm, and u = 10 m (which we need to convert to millimeters, so u = 10,000 mm).

We can now solve for v: 1/25 = 1/10,000 + 1/v

To isolate v, let's first subtract 1/10,000 from both sides: 1/25 - 1/10,000 = 1/v Now,

find the least common denominator (LCD) and subtract: (400 - 1)/10,000 = 1/v 399/10,000 = 1/v

Now, take the reciprocal of both sides to solve for v: v = 10,000/399

Now that we have the image distance (v), we can use the magnification formula to find the height of the image: magnification (m) = image height (h') / object height (h) = v / u

We want to find h', so we can rearrange the formula: h' = h * (v / u)

Plug in the known values (h = 2.0 m, u = 10,000 mm, and v = 10,000/399 mm), and convert h to mm (2.0 m = 2,000 mm): h' = 2,000 * (10,000 / 399) / 10,000 Simplify the expression: h' = 2,000 / 399

So, the height of the image on the detector when the man is 2.0m tall, 10 m in front of a camera with a 25 mm focal length lens is approximately 5.01 mm.

To know more about focal length refer here:

https://brainly.com/question/16188698#

#SPJ11

a ball is dropped from a distance 5 m above the ground, and it hits the ground with a certain speed. if the same ball is dropped from a distance 10 m above the ground, its final speed will be

Answers

The  final speed of the ball dropped from a distance of 10 meters will be 49 m/s.

The final speed of the ball dropped from a distance of 10 meters will be higher than the final speed of the ball dropped from a distance of 5 meters. This is because of the effect of gravity on the ball.

As the ball falls, gravity will pull it toward the ground, giving it a greater speed as it falls further. This increase in speed is known as the "acceleration due to gravity."

When the ball is dropped from 10 meters, the ball will fall faster because of the increased distance it has to travel, allowing gravity to pull it down more quickly.

By the time it reaches the ground, it will have reached a higher velocity.
The equation for this acceleration due to gravity is:

Vf = Vi + g × t

Where Vf is the final speed, Vi is the initial speed, g is the acceleration due to gravity and t is the time.

Therefore, in order to calculate the final speed of the ball dropped from 10 meters, we can use this equation. Assuming the initial speed of the ball is zero and the acceleration due to gravity is 9.8 m/s2, we get:

Vf = 0 + 9.8 × (10/2)
Vf = 49 m/s

So, the final speed of the ball dropped from a distance of 10 meters will be 49 m/s.

to know more about speed refer here:

https://brainly.com/question/28224010#

#SPJ11

An ice skater is spinning about a vertical axis with arms fully extended. If the arms are pulled in closer to the body, in which of the following ways are the angular momentum and kinetic energy of the skater affected?
Angular Momentum Kinetic Energy
(A) Increases Increases
(B) Increases Remains Constant
(C) Remains Constant Increases
(D) Remains Constant Remains Constant
(E) Decreases Remains Constant

Answers

An ice skater is spinning about a vertical axis with arms fully extended. If the arms are pulled closer to the body, the angular momentum of the skater will remain constant while the kinetic energy of the skater increases. The correct option is C.

The angular momentum of the skater is given by

[tex]L = I\omega[/tex],

where I is the moment of inertia of the skater and ω is the angular velocity.

When the skater pulls their arms in, their moment of inertia decreases due to the decreased distance between their body and the axis of rotation.

According to the conservation of angular momentum, the product of the moment of inertia and angular velocity must remain constant. Therefore, if the moment of inertia decreases, the angular velocity must increase to keep the angular momentum constant.

The kinetic energy of the skater is given by

[tex]K = (1/2)I\omega^2[/tex]

As the moment of inertia decreases and the angular velocity increases, the kinetic energy of the skater also increases because it is proportional to the square of the angular velocity.

Therefore, the correct answer is: (C) Remains Constant Increases. The angular momentum remains constant, while the kinetic energy increases due to the increased angular velocity.

Learn more about angular momentum:

https://brainly.com/question/4126751

#SPJ11

a 0.60 kg block on a surface of negligible friction is pulled by a string which is passed over a pulley of negligible mass and friction, and is connected to a hanging 0.20 kg block. in terms of acceleration due to gravity g

Answers

g/2 is the acceleration

Let the tension in the string pulling 0.60 kg block is T

In a pulley system tension will be the same throughout the string

for 0.60kg block:

mg-T = ma

0.60g-T = 0.60a ..............(1)

for 0.20kg block:

T-mg = ma

T - 0.20g = 0.20a .............(2)

Solving equation 1 and 2:

(1)+(2)

0.60g-0.20g = 0.60a+0.20a

a = (0.60-0.20)g/(0.60+0.20)

a = 0.40g/0.80

a = g/2

For more information regarding pulley system:

https://brainly.com/question/25855047

I have no clue what im doing..

If work = 100J and time = 20 seconds, what is power

Answers

Answer:

5 J/s or 5 watt

Explanation:

Given,

Work (W) = 100 J

Time (t) = 20 s

To find : Power (P)

Formula :

P = W/t

P = 100/20

P = 5 J/s

P = 5 watt

Note : -

J/s and watt are units are power.

an old-fashioned single-play vinyl record rotates on a turntable at 45 rpm. what are (a) the angular velocity in rad/s and (b) the period of the motion in seconds?

Answers

(a) The angular velocity is 4.71 rad/s

(b) The period of motion is 0.013 seconds.

(a) The angular velocity (ω) of an object rotating at a certain speed can be calculated using the formula:

ω = (2π × frequency)/number of revolutions

Here, the record is rotating at 45 revolutions per minute (RPM), which is equivalent to 0.75 revolutions per second. Therefore, the angular velocity can be calculated as:

ω = (2π × 0.75 rev/s)/1 = 4.71 rad/s

(b) The period (T) of the motion is the time it takes for the record to make one complete revolution. It can be calculated using the formula:

T = 1/frequency

Here, the frequency is 45 RPM, which is equivalent to 0.75 Hz. Therefore, the period can be calculated as:

T = 1/0.75 Hz = 0.013 seconds

Therefore, the angular velocity of the record is 4.71 rad/s and the period of the motion is 0.013 seconds.


To know more about angular velocity click here:

https://brainly.com/question/30885221

#SPJ11

Two parallel wires are near each other as shown in the figure. Wire 1 carries current i, and wire 2 carries current 2i. Which statement about the magnetic forces that the two wires exert on each other is correct?a. Wire 1 exerts a stronger force on wire 2 than wire 2 exerts on wire 1b. The two wires exert no force on each otherc. Wire 2 exerts a stronger force on wire 1 than wire 1 exerts on wire 2d. The two wires exert attractive forces of the same magnitude on each othere. The two wires exert repulsive forces of the same magnitude on each other

Answers

If two parallel wires, wire 1 carries current i, and wire 2 carries current 2i then the two wires exert repulsive forces of the same magnitude on each other. The correct answer is option e.

When two current-carrying wires are placed near each other, they create magnetic fields that interact with each other. The magnetic field created by wire 1 exerts a force on the current-carrying particles in wire 2, and the magnetic field created by wire 2 exerts a force on the current-carrying particles in wire 1. These forces are given by the formula:

[tex]F = (\mu _0 \times (I_1) \times (I_2) \times L) / (2\pi  \times d)[/tex]

where F is the force between the wires, [tex]\mu_0[/tex] is the permeability of free space, [tex]I_1[/tex] and [tex]I_2[/tex] are the currents in wires 1 and 2, L is the length of the wires, and d is the distance between the wires.

Let us assume the currents in the wires is flowing in opposite direction.

In this case, the currents in the two wires are i and 2i, respectively. Therefore, the force exerted by wire 1 on wire 2 is:

[tex]F_{12} = (\mu _0 \times i \times 2i \times L) / (2\pi  \times d)[/tex]

And the force exerted by wire 2 on wire 1 is:

[tex]F_{21} = (\mu _0 \times 2i \times i \times L) / (2\pi  \times d)[/tex]

Since the currents in wire 2 are twice as large as those in wire 1, the force exerted by wire 2 on wire 1 is also twice as large as the force exerted by wire 1 on wire 2. However, these forces are equal and opposite in direction, so the two wires exert repulsive forces of the same magnitude on each other.

Therefore option e is the correct answer.

Learn more about magnetic fields:

https://brainly.com/question/26257705

#SPJ11

if the ball is in contact with the wall for 0.0948 s, what is the magnitude of the average force exerted on the ball by the wall?

Answers

The ball is in contact with the wall for 0.0948 s and 9.498 N is the magnitude of the average force exerted on the ball by the wall

The average force exerted on the ball by the wall when the ball is in contact with the wall for 0.0948 s is given by the change in momentum of the ball in the horizontal direction divided by the time of contact.

This can be expressed mathematically as:

[tex]F_{avg}[/tex] = Δp/Δt

Where Δp is the change in momentum and

Δt is the time of contact.

Let's assume that the ball is moving to the right with a velocity [tex]v_1[/tex] before it collides with the wall.

After the collision, it moves to the left with a velocity [tex]v_2[/tex].

Since the direction of the velocity has changed, the momentum of the ball has also changed.

Therefore, Δp = [tex]p_2 - p_1[/tex]

where [tex]p_1[/tex] and [tex]p_2[/tex] are the momenta of the ball before and after the collision, respectively.

Since the ball is moving in only one dimension, the momenta of the ball can be expressed as:

[tex]p_1 = mv_1[/tex]  and

[tex]p_2 = -mv_2[/tex]

where m is the mass of the ball.

Thus,

Δp = -m([tex]v_2 - v_1[/tex])

Therefore, the average force exerted on the ball by the wall is given by:

F_avg = Δp/Δt = -m([tex]v_2 - v_1[/tex])/Δt = -0.15(2 - 6)/0.0948 = - 9.498 N

The negative sign indicates that the force exerted by the wall on the ball is in the opposite direction to the motion of the ball.

Therefore, the average force exerted on the ball by the wall when the ball is in contact with the wall for 0.0948 s is 9.498 N.

For similar question on average force

https://brainly.com/question/18652903

#SPJ11

and object is placed 16cm from a convex lens that has a focal length of 4cm. if the image is located at 5.33 cm high, how tall is the image?

Answers

The height of the image is approximately 1.066 cm, and since it is negative, it means that the image is inverted and smaller than the object.

Using the thin lens equation:

1/f = 1/d_o + 1/d_i

where f is the focal length of the lens, d_o is the object distance, and d_i is the image distance.

Plugging in the given values, we get:

1/4 = 1/16 + 1/d_i

Solving for d_i, we get:

d_i = 3.2 cm

Using the magnification equation:

m = -d_i/d_o

where m is the magnification of the image.

Plugging in the given values, we get:

m = -3.2/16 = -0.2

Since the magnification is negative, the image is inverted.

Finally, using the equation:

m = h_i/h_o

where h_i is the height of the image, and h_o is the height of the object.

Plugging in the given values and solving for h_i, we get:

h_i = m * h_o = (-0.2) * 5.33 cm = -1.066 cm

Therefore, the height of the image is approximately 1.066 cm, and since it is negative, it means that the image is inverted and smaller than the object.

What is magnification of lens?

The magnification of a lens is a measure of how much larger or smaller an image appears relative to the object that is being viewed through the lens. It is the ratio of the height of the image formed by the lens to the height of the object.

To know more about lens, visit:

https://brainly.com/question/29834071

#SPJ1

what is the distance between fringes produced by a diffraction grating having 130 lines per centimeter for 580 nm light, if the screen is 1.50 m away?

Answers

A diffraction grating that has 130 lines per centimeter for 580 nm light, if the screens are 1.50 m apart, then the distance between the edges is 30.6 mm

The formula for the distance between fringes for a diffraction grating is given:

d sinθ = mλ,

where d is the spacing between the grating lines, θ is the angle between the incident beam and the diffracted beam, m is the order of the diffraction maximum, and λ is the wavelength of light.

It can also be expressed as

Δy = mλD/d,

where Δy is the distance between adjacent fringes on the screen, D is the distance from the grating to the screen, and d is the spacing between the grating lines.

Given data:

Spacing between grating lines, d = 1/130 cm = 0.00769 cm

The wavelength of light, λ = 580 nm = 580 × 10⁻⁹ m

Distance from grating to the screen, D = 1.50 m

The formula to calculate the distance between fringes produced by a diffraction grating is given:

Δy = mλD/d

Now, substituting the given values in the above formula we get,

Δy = (1)(580 × 10⁻⁹ m)(1.50 m)/(0.00769 × 10⁻⁴ m)

Δy = 0.0306 m = 30.6 mm

Therefore, the distance between fringes produced by a diffraction grating having 130 lines per centimeter for 580 nm light, if the screen is 1.50 m away is 30.6 mm.

Learn more about diffraction grating at https://brainly.com/question/13104464

#SPJ11

Which reaction illustrates conservation of mass?
A.
2 Cu + O2 → 2 CuO
B.
Fe + H2O → Fe3O4 + H2
C.
CH4 + Br2 → CBr4 + HBr

Answers

Answer:

A. 2 Cu + O2 → 2 CuO illustrates conservation of mass, as the total mass of the reactants (copper and oxygen) equals the total mass of the products (copper oxide). This is because in a chemical reaction, the total mass of the reactants must be equal to the total mass of the products.

A, B, and C all illustrate conservation of mass because the number of atoms of each element is the same on both sides of the chemical equation, which means that the total mass of the reactants equals the total mass of the products. Therefore, the correct answer is all of the above.

Other Questions
if you are dealt 4 cards from a standard deck of 52 cards, what is the probability that you will get 3 black cards? a variation of sunni islam known for its strict teachings and literal interpretation of the koran is known as what In this stanza, the poet uses imagery that appeals to the readers senses ofsight and sound.smell and taste.sight and touch.sound and touch. events that are forgotten are like books that cannot be found in a library. which scenario is most similar to a retrieval failure? why do we use schemas? group of answer choices schemas are taught to us in our early childhood. schemas ensure that we interpret the world accurately. without schemas, the world would seem inexplicable and confusing. humans are born with schemas. Which expression best represents the difference between triple a number and double a number which element of family systems includes the social, emotional, educational, or physical needs and interests of a family? Let the region R be the area enclosed by the function f(x) = ln (x) + 1 andg(x)=x-1. If the region R is the base of a solid such that each cross sectionperpendicular to the a-axis is a semi-circle with diameters extending through theregion R, find the volume of the solid. You may use a calculator and round to thenearest thousandth. From the top of an 18-meter lighthouse, the angle of depression to sight a boat is 4. What is the distance between the boat and the base of the lighthouse, to the nearest tenth?ASAP TIMED Suppose that you are part of Alpha Pi Omega, a service fratemity that is dedicated to doing good in your community. Recently, your chapter has been trying to decide on a new project for the upcoming year. There are three possibilities. You could relandscape the grounds of your local library, so people would have a nice place outdoors to read. You could also start a book drive to replace books lost in a fire at your local elementary school. Finally, you could work with Meals on Wheels in your county to deliver food to the elderly who can't go to the grocery store. You strongly feel that the best choice would be to run the book drive. In order to make it more likely that your chapter will plck that option, you talk with a number of other fraternity members and get them to agree with you. Luckily, you also find out that another chapter of your fraternity has done something similar, and they achieved grateful recognition from their community, So you bring this fact to the attention of all of your fellow fraternity members. ul has done something similar, and t grateful recognition from their ion of all of your fellow fraternity Capabilities include which of the following? a company's organizational structurea company's culturea company's routines what has the treaty tribes done to meet the challenge of reservation life? what have these tribes, as sovereign nations, done to meet the economic and cultural needs of their tribal communities for the coastal salish why do you think that the enlightenment ideals of liberty and equality had such a major inluence on the american conlonists when they declared themselves independents of great britain your neighborhood fast food restaurant only sells chicken nuggets in packs of five or seven. what is the largest number of nuggets that is impossible to order? why does disagreement among the gods pose a problem for euthyphro claim that piety is what is loved by the gods? if a bag has a mass of 25 kg, how much force must you apply vertically to lift it off of a baggage cart? as adolescents become increasingly interested in electronics - as opposed to books - where would you find the greatest increase in demand? How to do a yes because yes is yes and yes in yes s how to yes and no which view of the power of the federal government is most consistent with the philosophy of alexander hamilton and his supporters. what kind of poem reading does the following represent? the poem is written in two stanzas of iambic tetrameter with a rhyme scheme of aaa bbb. figurative reading literal reading analytical reading symbolic reading