To make this problem solvable and you can get the help you need, I'll complete and arrange some data.
Answer:
Acceleration: [tex]0.0417\ m/s^2[/tex], Distance=7,500 m
Explanation:
Uniform Acceleration Motion
It's a type of motion in which the velocity of an object changes uniformly over time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:
[tex]v_f=v_o+at\qquad\qquad [1][/tex]
The distance traveled by the object is given by:
[tex]\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2][/tex]
Using the equation [1] we can solve for a:
[tex]\displaystyle a=\frac{v_f-v_o}{t}\qquad\qquad [3][/tex]
The problem will be rewritten as follows:
A train starting from rest reaches a velocity of 90 km/h in 10 minutes. Assuming that the acceleration is uniform, find the acceleration and the distance traveled by the train for attending the velocity.
Let's take the relevant data:
vo=0
vf=90 Km/h*1000/3600 = 25 m/s
t = 10 minutes = 10*60 = 600 seconds
Now compute the acceleration by using [3]:
[tex]\displaystyle a=\frac{25-0}{600}=0.0417[/tex]
[tex]a=0.0417\ m/s^2[/tex]
Finally, compute the distance:
[tex]\displaystyle x=0*600+\frac{0.0417\cdot 600^2}{2}[/tex]
[tex]x=7,500\ m[/tex]
Note: We used the value of the acceleration with more precision than shown.
Acceleration: [tex]\mathbf{0.0417\ m/s^2}[/tex], Distance=7,500 m
Polymetrics can help a person maintain cardiorespitory fitness T or F
Answer:
True
Explanation:
The term 'plyometrics' is used interchangeably with the term 'jump training'. The technique can be used for training in sports that require explosive movements.
Muscles covert chemicals energy int
Answer:
Mechanical energy
Explanation:
Mechanical energy is needed for movement of objects. Muscles convert chemical energy provided by the rest of the body to allow movement.
If a bicyclist travels at 15 km/h, how long will it take her to travel 30 km?
A battery of emf 24v and terminal resistance 4 ohms is connected to a resistor of 32 ohms. What is the terminal pd of the battery?
Answer:
21.3V
Explanation:
Explanation
E = V + Ir
V = E- Ir
V = 24 - {(24/36) x 4}
V = 21.3V
What affect does doubling the net force have on the acceleration of the object (when
the mass of the object stays the same)? Identify a set of two trials that support your answer to question 1
===========================================================
Explanation:
Consider a mass of 10 kg, so m = 10
Let's say we apply a net force of 20 newtons, so F = 20
The acceleration 'a' is...
F = ma
20 = 10a
20/10 = a
2 = a
a = 2
The acceleration is 2 m/s^2. Every second, the velocity increases by 10 m/s.
---------------
Now let's double the net force on the object
F = 20 goes to F = 40
m = 10 stays the same
F = ma
40 = 10a
10a = 40
a = 40/10
a = 4
The acceleration has also doubled since earlier it was a = 2, but now it's a = 4.
---------------
In summary, if you double the net force applied to the object, then the acceleration doubles as well.
Acceleration is directly proportional to the net force on an object, and inversely proportional to its mass.
So if an object's mass stays the same while the net force on it doubles, then its acceleration will also double.
We don't know anything about the "trials". This sounds like it might be a follow-up to a lab experiment that was performed when we weren't there.
We also don't know anything about "question 1".
When a light ray enters water, its velocity is _________.
Answer:
UR ANSWER IS WAVELENGTH
PLEASE HURRYYYYYY:
Students had two batteries and two different resistors. During four trials, they build four different circuits and plan to measure the circuit’s current in Amps according to the following table.
Trial Number
Voltage (V)
Resistance (Ω)
Current (A)
1
1.5
200
2
1.5
100
3
3.0
200
4
3.0
100
For which trial would the students measure the smallest current in the circuit?
Answer: C. Trial 3
Explanation:
Trial 1 and 2 equal 1.5, Trial 3 equals 1 and Trial 4 equals 3. Trial 3 is the smallest current .
The trial for which the students would measure the smallest current is the circuit is trial 2 and trial 3.
To know the trial which generates the smallest current, we need to determine the current in each trial.
Since current I = V/R where V = voltage and R = resistance.
For trial 1, V = 1.5 V and R = 200 Ω
So, I = 1.5 V/200 Ω
= 0.0075 A
= 7.5 mA
For trial 2, V = 1.5 V and R = 100 Ω
So, I = 1.5 V/100 Ω
= 0.015 A
= 15 mA
For trial 3, V = 3 V and R = 200 Ω
So, I = 3 V/200 Ω
= 0.015 A
= 15 mA
For trial 4, V = 3 V and R = 100 Ω
So, I = 3 V/100 Ω
= 0.03 A
= 3 mA
Trial 2 and trial 3 both produce a the smallest current of 15 mA.
So, the trial for which the students would measure the smallest current is the circuit is trial 2 and trial 3.
Learn more about current here:
https://brainly.com/question/996480
You use a knife to cut a piece of bread. What kind of simple machine are you
using?
A. Wedge
B. Inclined plane
C. Screw
O D. Lever
Answer:
the answer is A.) Wedge
A knife to cut a piece of bread is a A. Wedge
What is a simple machine?
A simple machine, any of several devices with few or no moving parts that are used to modify motion and the magnitude of a force in order to perform work.
since , a wedge is a simple machine with two inclined planes which when put together forms a sharped edge, which forms a triangular shaped tool which can be used to separate portion of two objects .
hence , a knife to cut a piece of bread is a A. Wedge
learn more about simple machine
https://brainly.com/question/10075890?referrer=searchResults
#SPJ2
A tree is turned into sawdust is that physical change or chemical change?
Answer:
Physical change
Explanation:
A physical change can be reversible where the original form of the matter can be restored, or irreversible where the original form cannot be restored. Therefore, sawdust is a physical change.
How do you calculate the radius of a planets orbit with mass and time ?
Answer:
By observing the time between transits, we know the orbital period. Kepler's Third law can be used to determine the orbital radius of the planet if the mass of the orbiting star is known (R3=T2−Mstar/Msun, the radius is in AU and the period is in earth years).
Explanation:
hope this helps!
What force is needed to move a barrel 45-m if 3600 J of work are accomplished?
Answer:
The answer is 80 NExplanation:
The force acting on the object can be found by using the formula
[tex]f = \frac{w}{d} \\ [/tex]
where
d is the distance
w is the work done
We have
[tex]f = \frac{3600}{45} \\ [/tex]
We have the final answer as
80 NHope this helps you
what is measurement ?
Answer: Measurement is the assignment of a number to a characteristic of an object or event, which can be compared with other objects or events. The scope and application of measurement are dependent on the context and discipline. In the natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International vocabulary of metrology published by the International Bureau of Weights and Measures. However, in other fields such as statistics as well as the social and behavioural sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.
Explanation:
Explain and reason why the the moon rotates around the earth every lunar cycle
Pls explain ASAP
Best answer will be marked as BRAINLIEST✨
How long will it take a car to go from a complete stop to 44 km/hr if they are accelerating at 5 km/hr^2
Answer:
8.8 hours
Explanation:
plz give me a Brainliest
13. A baseball pitcher throws a fastball at a speed of 46m/s. The
acceleration occurs as the pitcher holds the ball in his hand and moves it
through an almost straight line distance of 3.5 m. Calculate the
acceleration, assume it is constant and uniform. (Answer in 3 sig figs and
do not include units) *
Answer: Approximately 302 m/s^2
================================================
Work Shown:
s = starting velocity = 0
f = final velocity = 46
d = distance = 3.5
a = acceleration = unknown (we're solving for this)
[tex]f^2 = s^2 + 2a*d \ \ \text{ ..... one of the kinematics equations}\\\\46^2 = 0^2 + 2a*3.5\\\\2116 = 7a\\\\7a = 2116\\\\a = \frac{2116}{7}\\\\a \approx 302.28571\\\\a \approx 302[/tex]
The acceleration to three sig figs is roughly 302 m/s^2
The acceleration is so large because the ball's final velocity is incredibly fast in such a short amount of time.
A runner is jogging in a straight line at a steady vr= 7.3 km/hr. When the runner is L= 2.1 km from the finish line, a bird begins flying straight from the runner to the finish line at vb= 29.2 km/hr (4 times as fast as the runner). When the bird reaches the finish line, it turns around and flies directly back to the runner After this first encounter, the bird then turns around and flies from the runner back to the finish line, turns around again and flies back to the runner. The bird repeats the back and forth trips until the runner reaches the finish line. How far does the bird travel from the beginning (including the distance traveled to the first encounter
Answer:
Explanation:
Time taken by jogger to travel the distance to finishing line = 2.1 / 7.3
= .28767 hr
Bird will keep flying for this time period
distance covered by bird = speed x time
= 29.2 x .28767 km
= 8.4 km .
Describe effect of artificial selection on the process of evolution
Answer: The process is called artificial selection because people (instead of nature) select which organisms get to reproduce.
Explanation: This is evolution through artificial selection and the characteristics to reproduce, causing the evolution of farm stock.
Can you pls answer the 2 questions
Answer:
1) False, since constant speed means constant velocity, but with constant direction as well. Velocity is speed with direction. When you move in a circle, there are boundaries which means that a constant moving speed will cause the object to veer(move in different directions) to maintain movement, If it doesn't veer, the object will deflect(rebound) off the surface due to friction, and impact force or depending on its physical bond of malleability or density.
2a) Create position vectors by drawing a ray from the center(origin) of the circle to each of your desired points, it's magnitude will be the radius(how convenient). Both of these vectors go from the center of the circle to the position on the circle. In general, the distance from the origin to a point is called the radius vector.
2b)
If two cars are 5 m apart, and one car has a mass of 2,565 kg and the other
car has a mass of 4,264 kg, what is the gravitational force between the two
cars? Newton's law of gravitation is F gravity
Gm; m2 The gravitational
constant G is 6.67 x 10-11 Nm2/kg?.
A. 5.84 x 10-6N
B. 4.37 % 105 N.
C. 1.46 10-4N
D. 2.92 x 10-5 N
Gravitational force between two cars are 2.92 × 10 ⁻¹¹ Nm²/kg.
The universal force of attraction happened between two objects is called as gravitational force.
The mass of the two cars, m₁ = 2565 kg
m₂ = 4264 kg
r = 5m
G = 6.67 ₓ 10 ⁻11 Nm²/kg
How gravitational force can be calculated?
Definition of gravitational force: The force of attraction between any two bodies is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.
F ∝ m₁ m₂ ÷ r²
where the force exerted between the two masses m₁ and m₂,
F = G (m₁ m₂) ÷ r²
where as, F - Gravitational force between two bodies,
G - Gravitational constant,
m₁ - mass of the first body,
m₂ - mass of the second body,
r² - square of the distance between two bodies.
F= 6.67 × 10⁻¹¹ Nm²/kg ( 2565 kg × 4264 kg) ÷ ( 5²)
Hence,
F = 2.92 × 10⁻⁵ N
Option D is correct answer.
Learn more about Newton's law of Gravitation,
https://brainly.com/question/9373839
#SPJ5
What is better for measuring how hard you are actually working, Target Heart Rate or Rating of perceived exertion?
Answer:
Rating of percieved exertion
A 68 kg runner exerts a force of 59 N. What is the acceleration of the
runner?
0 m/s2
1.16 m/s2
4012 m/s2
0.87 m/s2
d) ≈ 0.87 m/s²
Explanation:Hi there !
Newton's second lawF = m×a => a = F/m
a = 59N/68kg
1 N = 1kg·m/s²
= (59kg·m/s²)/68kg
= 0.8676 m/s²
≈ 0.87 m/s²
Good luck !
The MSDS for chloroform indicates that it is a clear liquid that has a pleasant smell and substantial vapor pressure. People should avoid inhaling its vapors, and it is sensitive to light. Malik needs 10 mls of chloroform for an experiment.
According to this information, how should he safely pour the chloroform?
He should locate the chloroform stored in a transparent container in chemical storage and pour directly into his beaker from that location.
He should locate the chloroform stored in a transparent container in chemical storage and should take it to the fume hood to pour.
He should locate the chloroform stored in a dark container in chemical storage and should take it to the fume hood to pour.
He should locate the chloroform stored in a dark container in chemical storage and pour directly into his beaker from that location.
Answer:
The correct option is the third option
Explanation:
Firstly, it must be noted that chemicals/reagents that are sensitive to sunlight are stored in dark/amber container in the laboratory. Hence, the chloroform can only be found in an amber/dark bottle.
Also, reagents/chemicals that release poisonous/offensive gases are handled in the fume cupboard in the laboratory. Thus, If Malik is going to pour the chloroform, he should pour it in a fume cupboard to avoid inhaling it because of the toxicity of it's vapor.
From the above explanation, it can be deduced that Malik should locate the chloroform stored in a dark container in chemical storage and should take it to the fume hood to pour.
Answer:
He should locate the chloroform stored in a dark container in chemical storage and should take it to the fume hood to pour.
Explanation:
Fy is the reaction force from Plate Y. What Statement best describes the action and reaction forces on the plates? Tectonic plates
Answer:
According to Newton's third law of motion, the reaction force is equal to the action force.
Explanation:
Newton's third law of motion states that for every action there is an equal and opposite reaction. This means that if one object exerts a force on a second object, the second object exerts an equal force in the opposite direction. When Plate X pushes on Plate Y with the action force (Fx), Plate Y must push back with an equal force (Fy).
Therefore, the best explanation is that according to Newton's third law of motion, the reaction force is equal to the action force.
For every action, there has equal and opposite reaction - this statement best describes the action and reaction forces on the plates.
What is Newton's 3rd law of motion?As a result of this interaction, there are two forces: one from plate X and one from plate Y. The third law of motion of Newton deals with these two forces, which are referred to as action and reaction forces. Newton's third law is officially expressed as follows: There is an equal and opposite reaction to every action.
The implication of the statement is that there are always two forces acting on the two interacting objects. The force acting on the first object is equal in size to the force acting on the second. The force acting on the first object is acting in the opposite direction to the force acting on the second object. Force pairs—equal and opposing action-reaction force pairs—always exist in pairs.
Learn more about force here:
https://brainly.com/question/13191643
#SPJ5
The data table shows how the amplitude of a mechanical wave varies with
the energy it carries. Analyze the data to identify the mathematical
relationship between amplitude and energy. Use your equation to find the
energy if the amplitude is 6 units.
Amplitude
Energy
1 unit
2 units
2 units
8 units
3 units
18 units
4 units
32 units
Answer:
162
Explanation:
When the amplitude of the wave is 8 units, the corresponding energy of the wave is 128 units. Therefore, option C is correct.
What do you mean by an amplitude ?The term amplitude is defined as the maximum distance moved by a point on a vibrating body or wave calculated from its equilibrium position.
We have given,
first amplitude, A = 1, corresponding energy = 2
second amplitude, A = 2, corresponding energy = 8
The energy of a string at a given amplitude is calculated as follows;
E ∝ A²
Energy varies as the square of the change in amplitude.
If amplitude of one has energy of two
Amplitude of 2 (double of 1)
= ( 2 x 2 ) = 4 x 2
= 8 4 times the energy at amplitude of 1.
Then for 8 units of amplitude change
8 x 8 = 64 x 2
= 128
Thus, When the amplitude of the wave is 8 units, the corresponding energy of the wave is 128 units, option C is correct.
To learn more about an amplitude, follow the link;
https://brainly.com/question/15930409
#SPJ2
Your question is incomplete, most probably your question was
The data table shows how the amplitude of a mechanical wave varies with the energy it carries. Analyze the data to identify the mathematical relationship between amplitude and energy. Use your equation to find the energy if the amplitude is 8 units.
Amplitude
1
2
3
4
energy
2
8
18
32
A.66 units
B. 108 units
C. 128 units
D. 88 units
a car travels 200m in 30 s and 400m in the next 90s. Whats the average speed?
Answer:
300m per minute or 5m per second
Covert 1 mile to feet. Then convert to inches. Then covert to centimeters. How many centimeters are in a mile?
Answer:
160,934.4 cm or in other words *160,934*
Explanation:
1 mile = 5280 ft.
5280 ft. = 63360 in.
63360 in. = 160934.4
MathPhys Pls PLS PLS PLS HELP ME!!!!
Which of these statements describes the relationship between mass and weight?
(1 Point)
Mass is always greater than weight.
Mass of an object changes based on location, weight stays constant.
Mass of an object is constant, weight changes based on location.
Mass and weight are the same measurement.
Answer:
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater ...
The level of toluene (a flammable hydrocarbon) in a storage tank may fluctuate between 10 and 400 cm from the top of the tank. since it is impossible to see inside the tank, an open-end manometer with water or mercury as the manometer fluid is to be used to determine the toluene level. one leg of the manometer is attached to the tank 500 cm from the top. a nitrogen blanket at atmospheric pressure is maintained over the tank contents. felder, richard m.; rousseau, ronald w.; bullard, lisa g.. elementary principles of chemical processes, 4th edition (page 81). wiley. kindle edition.
Complete Question
The complete question is shown on the first and second uploaded image
Answer:
When water is used the reading is [tex] R = 2281.6 \ cm [/tex]
When mercury is used the reading is [tex] R = 23.83 \ cm [/tex]
The best fluid to use is mercury because for water a slight change in toluene level will cause a large change in height .
Explanation:
From the question we are told that
The length of the leg of the manometer to the top of the tank is d = 500cm
The toluene level where in the tank where the height of the manometer fluid level in the open arm is equal to the height where the manometer is connected to the tank is h =150 cm
The manometer reading is R
Generally at the point where the height of the open arm is equal to the height of the of the point connected to the tank ,
The pressure at the height of the both arms of the manometer corresponding to the base of the tank are equal
i.e [tex]P_1 = P_2[/tex]
Here [tex]P_1[/tex] is the pressure of the manometer at the point corresponding to the base of the tank and this is mathematically represented as
[tex] P_{atm} + P_1 = P_{atm} + P_t[/tex]
Here [tex]P_t[/tex] is the pressure due to the toluene level in the tank and in the arm of the manometer connected to the tank and this is mathematically represented as
[tex]P_t = \rho_t * g * h_i[/tex]
Here
[tex]\rho_t [/tex] is the density of toluene with value [tex]\rho_t = 867 kg/m^3 [/tex]
[tex]h_i[/tex] is the height of the connected arm above the point equivalent to the base of the tank , this mathematically represented as
[tex]h_i = d - h + R[/tex]
and [tex] P_2 [/tex] is the the pressure at the open arm of the manometer at the point equivalent to the base of the base of the tank and this is mathematically represented as
[tex] P_2 = \rho_f * g * h_f [/tex]
Here
[tex]\rho_f[/tex] is the density of the fluid in use , if it is water the density is
[tex]\rho_w = 1000 \ kg /m^3 [/tex]
and if it is mercury the density is
[tex]\rho_m = 13600 \ kg /m^3 [/tex]
[tex]h_f[/tex] is the height of the fluid in the open arm of the manometer from the point equivalent to the base of the tank which is equivalent the manometer reading R
So when the fluid is water we have
[tex] P_{atm} + \rho_t* g *(d - h + R) = P_{atm} + \rho_f * g * h_f[/tex]
=> [tex] \rho_t* (d - h + R) = \rho_w * h_f[/tex]
=> [tex] 867 (500 - 150 + R) = 1000 * R [/tex]
=> [tex] R = 2281.6 \ cm [/tex]
So when the fluid is mercury we have
[tex] \rho_t* (d - h + R) = \rho_m * h_f[/tex]
=> [tex] 867 (500 - 150 + R) = 13600 * R [/tex]
=> [tex] R = 23.83 \ cm [/tex]
The difference in the mercury reading for mercury due to the fact that they have different densities as we have seen in this calculation
So the best fluid to use is mercury because for water a slight change in toluene level will cause a large change in height .
Someone, please help me with this
1. Distance traveled during the first minute (A-B) *
40 m
100 m
140 m
180 m
2. Displacement after the first minute (A-B) *
180 m west
180 m east
100 m west
100 m east
3. Distance traveled during the first 2 minutes (A-B-C)
40 m
140 m
320 m
420 m
4. Displacement after the first 2 minutes of travel (A-B-C) *
40 m east
40 m west
140 m east
140 m west
5. Distance traveled during the total time of 3 minutes (A-B-C-D) *
140 m
240 m
360 m
420 m
6. Displacement after the total 3 minutes of travel (A-B-C-D) *
40 m east
40 m west
140 m east
140 m west
Answer:
Explanation:
1). Distance traveled during the first minute (A-B)
= Distance from A to C + Distance from C to D + Distance from D to B
= 40 + 100 + 40
= 180 m
Option (4) will be the answer.
2). Displacement after first minute (A-B)
= Distance from A to B
= 180 m East
Option (2) is the answer.
3). Distance traveled during the first 2 minutes (A - B - C)
= Distance from A to B + Distance from B to C
= 180 + 140
= 320 m
Option (3) will be the answer.
4). Displacement after first 2 minutes (A-B-C)
= Distance between A and C
= 40 m towards east
Option (1) is the answer.
5). Distance traveled during 3 minutes (A-B-C-D)
= Distance between A to B + Distance between B to C + Distance between C to D
= 180 + 140 + 100
= 420 m
Option (4) is the answer.
6). Displacement after total 3 minutes (A-B-C-D)
= Distance between A and D
= Distance between A to C + distance between C to D
= 40 + 100
= 140 m
And the direction is towards East.
Option (3) is the answer.
A loaf of bread bakes in an oven. The bread is on a rack about one foot above the heat source. However, the top of the bread cooks just as fast as the bottom. How is heat being added to the bread?
Answer:
the bread is getting heated from top and bottom because the oven is heated all over and the particles from the oven makes the bread's particles heat up and the bread will be done
Explanation:
i have the same answer
Answer:
The air is heated by the heat source in the oven. The hot air rises, surrounds the bread, and heats the bread on all sides.
Explanation: