Since each of the data value is multiplied by 5, the new mean will be 5 times the original mean.
To get the original mean, we need to divide by 5.
Therefore the original mean is given by:
[tex]\frac{40}{5}=8[/tex]Answer: 8
coupon A 60% off of $87 pants coupon B $55 rebate on $87 pants
We are given two coupons A and B. Coupon A gives a 60% discount on a $87 item. Let's calculate the amount to pay by subtracting 60% of 87. We do that by multiplying 87 by 60/100, like this:
[tex]87(\frac{60}{100})=52.2[/tex]Now we subtract this from the initial price, like this:
[tex]87-52.2=34.8[/tex]therefore, using coupon A she must pay $34.8
For coupon B there's a rebate of $55. We calculate the amount to pay by subtracting 55 to the total price of 87, like this:
[tex]87-55=32[/tex]Therefore, using coupon B she must pay $32.
Coupon B gives the lowest price, the price of coupon B compared to coupon A is calculated by subtracting both prices:
[tex]34.8-32=2.8[/tex]Therefore, with coupon B she pays $2.8 less than the price with coupon A.
Solve 5x² + 25 = 0Ox= -5x = -5 and x = 5Ox=5No Real Solutions
Solve for x:
Subtract 25 from both sides:
[tex]\begin{gathered} 5x^2+25-25=-25 \\ 5x^2=-25 \end{gathered}[/tex]Divide both sides by 5:
[tex]\begin{gathered} \frac{5x^2}{5}=-\frac{25}{5} \\ x^2=-5 \end{gathered}[/tex]Take the square root of both sides:
[tex]\begin{gathered} x=\pm\sqrt{-5} \\ x=\pm\sqrt{5}i \end{gathered}[/tex]Therefore, there are no real solutions
Answer:
No Real Solutions
I need help with the question I post as a photo.
We will have the following:
*First:
[tex]3x+\frac{1}{4}-x+1\frac{1}{2}=2x+\frac{1}{4}+\frac{3}{2}[/tex][tex]=2x+\frac{7}{4}=2x+1\frac{3}{4}[/tex]So, the first one is not equivalent to the other expression.
*Second:
[tex]2(3x+1)=6x+2[/tex]So, the second one is equivalent to the other expression.
*Third:
[tex]3(x+1)-(1+x)=3x+3-1-x[/tex][tex]=2x+2[/tex]So, the third one is not equivalent to the other expression.
*Fourth:
[tex]4(x+1)-x-4=4x+4-x-4[/tex][tex]=3x[/tex]So, the fourth one is equivalente to the other expression.
*Fifth:
[tex]5.5+2.1x+3.8x-4.1=5.9x+1.4[/tex]So, the fifth one is equivalent to the other expression.
Gina left home, riding her bicycle at a rate of 25 miles per hour. Sean left 1 hour later, riding at a rate of 30 miles per hour. How long will it take Sean to catch up to Gina?
As per the distance formula, it take 1 hour of time for Sean to catch up to Gina.
Distance formula:
The equation that relates the distance, rate, and time is
d = rt
Where d represents the distance traveled, r represents the rate, and t represents the time.
Given,
Gina left home, riding her bicycle at a rate of 25 miles per hour. Sean left 1 hour later, riding at a rate of 30 miles per hour.
Here we need to find the time take by Sean to catch up Gina.
Let us consider x be the time when Gina left the home.
Then, Sean left 1 hour later from her time.
So, it can be written as,
=> x + 1
As the Distance traveled is the same, the ratio of Speed in case 1 to the Speed in case 2 will be the inverse of the Time taken in both cases.
Therefore, the ratio of Speed in both cases
=> 25 : 30
=> 25/30
=> 5/6
Therefore, it can be written as,
x/x+1 = 5/6
When we cross multiply them, then we get,
5x + 5 = 6x
x = 5.
If Gina left at the time of 5, then Sean left at the time of 6.
So, it take 1 hour for Sean to catch up to Gina.
To know more about Distance Here.
https://brainly.com/question/28956738
#SPJ1
Evaluate 7a - 5b when a = 3 and b = 4 .
Alberto is saving money to buy a pair of shoes that cost $50 he has already saved $32 he still needs to save D dollars explain how to solve your equation to find how much money Alberto needs to save how much more does he need to save
This is the formula that represents how much money needs Alberto to buy a pair of shoes.
To solve this equation, first, subtract 32 to both sides of the equation:
[tex]32\text{ - 32 + x = 50 - 32}[/tex][tex]x\text{ = 50 - 32}[/tex][tex]x\text{ = 18}[/tex]Thus, he still needs to save $18 to buy the shoes.
I’m stuck on this one need a push in Wright direction
In the graph it is observed that staright line is drawn between y-axis and x-axis. The graph of a linear function is always a straight line. So function represented in graph is linear.
Answer: Yes function is linear
What fraction is bigger 25/5 or 24/6?
PLEASE HELP!!
Write an equation of a quadratic function with the given properties: f(3)=f(-5)=0; f(-6)=-36
The equation for a quadratic function with given properties is, f(x) = -201.5 (x² +2x - 15)
Given,
f(3) = f(-5) = 0;
f(-6) = -36
Here,
The x intercepts of the quadratic equation are;
x₁ = 3 , x₂ = -5
The quadratic equation in factored form is equal to
f(x) = a(x - x₁) (x - x₂)
Substitute x₁ = 3 , x₂ = -5 in f(x)
Then,
f(x) = a(x - 3) (x - -5)
f(x) = a(x - 3) (x + 5)
We have;
f(-6) = -36
That is, if x = -6 then f(x) = -36
So,
f(x) = a(x - 3) (x + 5)
-6 = a(-36 - 3) (-36 + 5)
-6 = a x - 39 x - 31
-6 = 1029a
a = -1029/6
a = -201.5
Here,
f(x) = -201.5(x - 3) (x + 5)
Apply distributive property;
f(x) = -201.5(x² +5x - 3x - 15)
f(x) = -201.5 (x² +2x - 15)
That is,
The equation for a quadratic function with given properties is, f(x) = -201.5 (x² +2x - 15)
Learn more about quadratic function here;
https://brainly.com/question/14871651
#SPJ1
Susan is flying a kite, which gets caught in the top of a tree. Use the diagram to estimate the height of the tree. a. 87 ft b. 74 ft c. 65 ft d. 63 ft
Given the information on the picture, we have the following right triangle:
we can use the tangent trigonometric function to find the height of the tree:
[tex]\begin{gathered} tan(44)=\frac{\text{opposite side}}{adjacent\text{ side}}=\frac{h}{90} \\ \Rightarrow\tan (44)=\frac{h}{90} \end{gathered}[/tex]solving for h, we get:
[tex]\begin{gathered} \frac{h}{90}=\tan (44) \\ \Rightarrow h=90\cdot\tan (44)=86.9\approx87 \\ h=87ft \end{gathered}[/tex]therefore, the height of the tree is 87 ft
If two lines intersect and one of the angles formed has a measure of 67°, which of the following statements are true? Explain your answers.
Intersecting Lines
When two lines intersect, four angles are formed at the point of intersection.
Two pairs of angles are vertical, i.e., they have the same measure.
Two pairs of angles are complementary (or linear) therefore their sum adds up to 180°.
We are given one of the angles that has a measure of 67°.
Then, another angle also measures 67° (the vertical peer).
One of the other angles is 180° - 67° = 113°
The other angle also measures 113° (the other vertical peer).
According to the facts found above, the following statements are true:
* Vertical angles are congruent, therefore another angle must equal 67°
* The lines form linear pairs
* The lines form complementary angles
* Two of the angles formed measure 113°
* Two of the angles formed will have a sum of 180°
Note: The last statement should read "Two pairs of angles formed..."
hello,Can you please help me with question # 25 in the picture?Thank you
To find the sum of an arithmetic sequence up to the nth term, we use the sum formula, which is
[tex]S_n=n(\frac{a_1+a_n}{2})[/tex]where a1 represents the first term, and an the nth term.
The general term of our sequence is
[tex]a_n=3n+2[/tex]We want to sum up to the 16th term. Evaluanting n = 16 and n = 1 on this expression, we get the terms to plug in our formula
[tex]\begin{gathered} a_1=3(1)+2=3+2=5 \\ a_{16}=3(16)+2=48+2=50 \end{gathered}[/tex]Then, the sum is equal to
[tex]\sum_{i\mathop{=}1}^{16}(3i+2)=16(\frac{50+5}{2})=8\cdot55=440[/tex]The result of this sum is 440.
f(x) = -5x -4 and g(x) = x^2 + 3 find (g+f)(x)
f(x) = -5x -4
g(x) = x^2+3
To find (g+f)(x) , simply add both equations:
(g+f)(x)= x^2+3 + (-5x -4 )
(g+f)(x)= x^2+3 -5x -4
Combine like terms
(g+f)(x)= x^2-5x+3-4
(g+f)(x)= x^2-5x-1
give two-sided of a triangle, find a range of a possible side length of the third side 24 and 52
For a triangle to be possible with 3 given lengths, the largest side must be lower than the sum of the two remaining sides.
Let L be the length of the third side. There are two cases:
If L is the largest side, then:
[tex]\begin{gathered} L<24+52 \\ \Rightarrow L<76 \end{gathered}[/tex]If L is not the largest side, then the largest side has a measure of 52 and:
[tex]\begin{gathered} 52<24+L \\ \Rightarrow52-24Since both conditions should meet for a triangle to be formed, then:[tex]28Therefore, the range of possible values for L is:[tex]undefined[/tex]How do I simplify 5 8/48
Given:
[tex]5\frac{8}{48}[/tex][tex]5\frac{8}{48}=\frac{248}{48}[/tex][tex]5\frac{8}{48}=\frac{31}{6}[/tex][tex]5\frac{8}{48}=5.1667[/tex]9) Write an equation of a line that is steeper than y- 6x + 2
What should you do to finish solving this equation?6y + 4y + 90 = 36010y + 90 = 360Add 90 then divide by 102 subtract 90 then multiply by 10Add 10 then multiply by 904Subtract 90 then divide by 10O 102O 304h
answer is substract 90 then divide by 10
In a sourball game, a fizzy is worth 2 points and a X is worth 5 points. K and W recently played for the sourball game. During the game, K scored eight more fizzles than the W, but scored 5 fewer Y than the W. Together the two teams scored 93 pints total. What was the final score?
Using mathematical operations of addition, multiplication, division, and subtraction, the final score was:
K = 42 pointsW = 51 points.What are mathematical operations?The basic mathematical operations for getting mathematical results from numbers, values, and variables include addition, multiplication, division, and subtraction.
In this situation, we apply these four basic mathematical operations.
Fizzy = 2 points
X = 5 points
Total scores = 93 points
The points in 8 Fizzys = 16 points (8 x 2)
The points in 5 Xs = 25 points (5 x 5)
The equation showing the total scores of K = total scores + 16 - 25
= (93 + 16 - 25)/2
= 42 points
The equation showing the total scores of W = total scores - 16 + 25
= (93 - 16 + 25)/2
= 51 points
Final scores are K = 42 and W = 51.
Thus, applying mathematical operations, the final score shows that K scored 42 points while W scored 51 points, totaling 93 points for the two teams.
Learn more about mathematical operations at https://brainly.com/question/20628271
#SPJ1
A committee of eight math instructors and ten science instructors need to select two people from each group to send to a conference. What is the probability of selecting two math instructors and two science instructors?
Choosing two math instructors out of 8 would be
[tex]P=\frac{2}{8}=\frac{1}{4}[/tex]Choosing two science instructors out of 10 would be
[tex]P=\frac{2}{10}=\frac{1}{5}[/tex]Given that they are independent events, we multiply their probabilities
[tex]P=\frac{1}{4}\times\frac{1}{5}=\frac{1}{20}[/tex]Hence, the probability of selecting two math instructors and two science instructors is 1/20.
Do you know anything about dilation!?
The numerator of a certain fraction is five times the denominator. If nine is added to both the numerator and the denominator, the resulting fraction is equivalent to two. What was the original fraction (not written in lowest terms)?
Explanation
To solve the question,
Let
The numerator = x
The denominator = y
So that the original equation will be
[tex]\frac{x}{y}[/tex]Next, we are told that the numerator is five times the denominator.
So that
[tex]x=5y[/tex]Again, we are told that If nine is added to both the numerator and the denominator, the resulting fraction is equivalent to two. so
[tex]\frac{x+9}{y+9}=2[/tex]Hence
we can substitute x =5y into the above
[tex]\begin{gathered} \frac{5y+9}{y+9}=2 \\ \\ cross\text{ multiplying} \end{gathered}[/tex][tex]\begin{gathered} 5y+9=2(y+9) \\ 5y+9=2y+18 \\ Taking\text{ like terms} \\ 5y-2y=18-9 \\ 3y=9 \\ \\ y=\frac{9}{3} \\ \\ y=3 \end{gathered}[/tex]Thus, the denominator is 3
The numerator will be
[tex]\begin{gathered} x=5y \\ x=5\times3 \\ x=15 \end{gathered}[/tex]The numerator is 15
Therefore, the fraction is
[tex]undefined[/tex]Use the fact that 521•73=38, 033.Enter the exact product of 5.21•7.3
Answer: 38.033
5.21 x 7.3
= 38.033
Find the slope of the line that passes through (4,2) and (2,1) which set up in the formula is correct? Select all that apply.
The formula for calculating the slope of a line passing through the points (x1, y1) and (x2, y2) is expressed as:
[tex]slope=\frac{y_2-y_1}{x_2-x_1}\text{ }or\text{ }\frac{y_1-y_2}{x_1-x_2}[/tex]Given the coordinate points (4,2) and (2,1), the possible set up formulas are:
[tex]\begin{gathered} x_1=4 \\ y_1=2 \\ x_2=2 \\ y_2=1 \end{gathered}[/tex][tex]\begin{gathered} slope=\frac{1-2}{2-4} \\ slope=\frac{2-1}{4-2} \end{gathered}[/tex]This are the slopes of the line formula
Eric takes classes at both Westside Community College and Pinewood Community College. At Westfield class fees are $98 per credit hour and at Pinewood, class fees are $115 per credit hour. Eric is taking a combined total of 17 credit hours at the two schools. Suppose that he is taking W credit hours at Westside. Write an expression for the combined total dollar amount he paid for class fees. Total paid ( in dollars) =
Let W = number of credit hours at Westside
Since the total credit hours is 17, the number of credit hours at Pinewood is :
[tex]17-W[/tex]To find the expression for the combined total dollar amount for both class.
Multiply each hours by the corresponding fees.
The expression will be :
[tex]\begin{gathered} 98(W)+115(17-W) \\ =98W+1955-115W \\ =1955-17W \end{gathered}[/tex]The correct answer is :
1955 - 17W
0 Rick has been losing weight at a constant rate since he began his new fitness plan. The table below shows Rick's weight for the first four weeks, 2 3 I 220.2 218.6 221.8 223.4 Weight (lbs) a) Write an equation to represent this sequence. b) Find Rick's weight after 16 weeks. ter your answer(s) here
To make the equation lets us find the rate of change of the weight
The form of the equation is y = m x + b
where:
m is the rate of change (slope)
b is the y-intercept (value y when x = 0)
To find m use two-point from the table
(1, 223.4) , (2, 221.8)
[tex]m=\frac{221.8-223.4}{2-1}=-\frac{8}{5}=-1.6[/tex]Substitute it in the form of the equation
[tex]y=-1.6x+b[/tex]To find b use any point in the table
(1, 223.4)
x = 1 , y = 223.4
[tex]\begin{gathered} 223.4=-1.6(1)+b \\ 223.4=-1.6+b \end{gathered}[/tex]Add 1.6 for both sides to find b
[tex]\begin{gathered} 223.4+1.6=-1.6+1.6+b \\ 225=b \end{gathered}[/tex]Substitute value b in the equation
[tex]y=-1.6x+225[/tex]The equation of the sequence is y = -1.6 x + 225
to find his weight after 16 weeks substitute x by 16
[tex]\begin{gathered} y=-1.6(16)+225 \\ y=-25.6+225 \\ y=199.4 \end{gathered}[/tex]His weight after 16 weeks is 199.4 Ibs
urgently need help with question 30, it’s Venn diagram, is it valid or not valid & is the argument sound or not?
For statement 30:
Premise: All fruits are foods with sugar;
Premise: Chocolate bars contain sugar;
Conclusion: Chocolate bars are fruit.
Since the conclusion does not necessarily follow from the premises, this is an invalid argument, regardless of whether chocolate is fruit.
Consider the following equation of a parabola.(y- 7)? = -4(x - 3)Step 1 of 3: Find the focus of the parabola.
Answer
Focus = (2, 7)
Explanation
Given:
The following is the equation of a parabola
[tex](y-7)^2=-4x(x-3)[/tex]What to find:
To find the focus of the parabola.
Step-by-step solution:
The general equation of a parabola can be given as,
[tex](y-k)^2=4p(x-h)[/tex]Comparing the general equation of a parabola with the given equation of a parabola, we have
4p = -4
∴ p = -4/4 = -1
Also,
h = 3
k = 7
Since h ± c = F
We have,
3 - 1 = 2
Therefore, the focus will be (h ± c, k) = (2, 7)
Which graph represents 2x + 3y < 6?Choose 1 answer:
Given: An inequality
[tex]2x+3y<6[/tex]Required: To determine the graph of the inequality.
Explanation: The inequality represent an area either inside or outside a line determined by repl
A cubic equation has zeros at -2, 1, and 3 a) Write an eqn for a polynomial function that meets the given conditions.b) Draw the graph of a polynomial function that meets the given conditions.
we know that
A cubic equation has zeros at -2, 1, and 3
so
the factors of the cubic equation are
(x+2), (x-1) and (x-3)
Part a
The equation of a polynomial is
[tex]P(x)=(x+2)\cdot(x-1)\cdot(x-3)[/tex]Applying distributive property
[tex]\begin{gathered} P(x)=(x^2-x+2x-2)\cdot(x-3) \\ P(x)=(x^2+x-2)\cdot(x-3) \end{gathered}[/tex]Applying distributive property again
[tex]P(x)=x^3-3x^2+x^2-3x-2x+6[/tex]Combine like terms
[tex]P(x)=x^3-2x^2^{}-5x+6[/tex]Part b
using a graphing tool
see the attached figure below
Olivia goes out to lunch. The bill, before tax and tip, was $13.90. A sales tax of 6% was added on. Olivia tipped 23% on the amount after the sales tax was added. How much was the sales tax? Round to the nearest cent.
According to the information given in the exercise, the bill before the tax and tip was $13.90 and the sales tax of 6% was added to that amount.
By definition, you can write 6% as a Decimal number by dividing it by 100. Then, this is:
[tex]\frac{6}{100}=0.06[/tex]Let be "t" the amount (in dollars) of the sales tax.
To find the value of "t", you can set up the following equation:
[tex]t=(13.90)(0.06)[/tex]Finally, evaluating, you get that this is:
[tex]t=0.834[/tex]Rounded to the nearest cent, this is:
[tex]t\approx0.83[/tex]The answer is: $0.83