The hammer's centripetal acceleration is therefore 100.59 m/s².
Using an example, what is acceleration?An object has positive acceleration when it is going faster than it was previously. Positive acceleration was demonstrated by the moving car in the first scenario. Positive forward motion is being made by the car.
Hammer mass, m, is 6.55 kg. chain length, including the length of the arms, r = 1.3 m, Hammer's angular velocity is given by the formula: = 1.4 rev/s = 8.79646 rad/s (1 rev = 6.28 rad).
The formula a = V2/r, where V is the transverse velocity of the hammer, yields the centripetal acceleration.
V = r, hence
As a result, a = r²
A = 1.3 x 8.796462, or 100.59 m/s², is obtained by substituting the supplied numbers in the equation above.
The hammer's centripetal acceleration is therefore 100.59 m/s².
To know more about Acceleration visit:
brainly.com/question/30499732
#SPJ1
6. An 8000.0 kg truck starts off from rest and reaches a velocity of 18.0 m/s in 6.00 seconds. What is the truck’s acceleration and how much momentum does it have after it has reached this final velocity?
The truck's acceleration is 3.0m/s² and the momentum of the truck is 144000 kg m/s.
What is acceleration?It is the rate at which the speed and direction of a moving object vary over time.
We can use the following equation to calculate the acceleration of the truck:
a = (v - u) / t
where
a = acceleration
v = final velocity = 18.0 m/s
u = initial velocity = 0 m/s (the truck starts from rest)
t = time taken = 6.00 s
Substituting the values, we get:
a = (18.0 m/s - 0 m/s) / 6.00 s
a = 3.00 m/s²
Therefore, the acceleration of the truck is 3.00 m/s².
We can use the following equation to calculate the momentum of the truck:
p = m * v
where
p = momentum
m = mass of the truck = 8000.0 kg
v = final velocity = 18.0 m/s
Substituting the values, we get:
p = 8000.0 kg * 18.0 m/s
p = 144000 kg m/s
Therefore, the momentum of the truck after it has reached its final velocity is 144000 kg m/s.
Learn more about velocity here:
https://brainly.com/question/17127206
#SPJ9
A porter can climb 10 staircase of 30cm each in 10 sec by carrying a 50kg bag. Calculate the power of the porter
Therefore, the power of the porter is 441,450 J/s, or approximately 441.5 watts.
What is work done?The work done by the porter in lifting the 50 kg bag up the stairs can be calculated as the product of the force applied and the distance moved.
The force applied is the weight of the bag, which is given by:
F = m * g
where m is the mass of the bag and g is the acceleration due to gravity, which is approximately 9.81 m/s². Substituting the given values, we get:
F = 50 kg * 9.81 m/s²
F = 490.5 N
The distance moved by the porter in lifting the bag up one staircase is 30 cm, and the porter climbs 10 staircases in 10 seconds, which gives a speed of:
v = (10 * 30 cm) / 10 s
v = 30 cm/s
The power of the porter is the rate at which work is done, which can be calculated as:
P = W / t
where W is the work done and t is the time taken. Substituting the values, we get:
P = F * d * v / t
P = 490.5 N * 10 * 30 cm * 30 cm/s / 10 s
P = 441,450 J/s
To know more about power visit:-
brainly.com/question/4160783
#SPJ9
If 10 A of current flows through a 2 ohm resistor, what is the voltage of the battery?
20 V
0.2 V
OS V
12 V
The voltage of the battery would be 20 volts. Option I.
Voltage calculationAccording to Ohm's law, the voltage (V) across a resistor is equal to the current (I) flowing through it multiplied by its resistance (R). Mathematically,
V = I × R
In this case, the current (I) flowing through the resistor is given as 10 A and the resistance (R) of the resistor is given as 2 ohms. Substituting these values into the above formula, we get:
V = 10 A × 2 ohms = 20 volts
Therefore, the voltage of the battery is 20 volts.
More on voltage can be found here: https://brainly.com/question/13521443
#SPJ1
460miles per hour with the wind nd 420 per hour gainst the wind
The speed of the wind is 20 miles per hour.
To solve this problem, we can use the formula:
Speed = Distance/Time
Let's assume that the speed of the wind is x miles per hour.
With the wind, the plane travels at a speed of 460 miles per hour. This means that its speed relative to the ground is the sum of its airspeed and the speed of the wind:
460 = Airspeed + x
Against the wind, the plane travels at a speed of 420 miles per hour. This means that its speed relative to the ground is the difference between its airspeed and the speed of the wind:
420 = Airspeed - x
We can solve this system of equations to find the airspeed of the plane:
460 = Airspeed + x
420 = Airspeed - x
Adding the two equations gives:
880 = 2Airspeed
Dividing both sides by 2 gives:
Airspeed = 440 miles per hour
Now that we know the airspeed of the plane, we can find the speed of the wind by substituting this value into one of the equations we obtained earlier:
460 = Airspeed + x
460 = 440 + x
x = 20
To learn more about speed visit;
https://brainly.com/question/28224010
#SPJ9