based on your melting points and demo tlc, comment on the success of the extraction experiment. are the tlc and melting points in agreement? which is the purest solid of the three? does the result make sense? explain your answer. (

Answers

Answer 1

If we assume that the melting points and TLC are in agreement, then we can use them to determine the purity of the solids.

The purest solid would have the highest melting point and the most distinct TLC spot. We can compare the values to ascertain which solid is the purest if the melting points and TLC are in agreement. It may be a sign that the extraction was unsuccessful or that there were impurities in the sample if there is a significant difference between the melting points or the spots on the TLC.

It's crucial to remember that melting points and TLC are not always accurate indications of purity because other variables can influence them. However, they can be a helpful tool for determining the success of an extraction experiment if the values are consistent and in agreement.

Learn more about  melting point

brainly.com/question/40140

#SPJ4


Related Questions

PLSSS HELP STUCK ON THIS LAB REPORT AND 39PTS I REALLY DON'T DO QUESTIONS BECAUSE IT TAKES AWAY MY PTS BUT THIS NEEDS HELP (Also due before 4:00 pm)

Answers

To familiarize students with experimental tools, the scientific method, and data analysis techniques so that they can understand the inductive process that led to the concepts.

What is the experimental summary in Section I?

Give a complete sentence description of each stage of the process. It also offers possible explanations (your hypothesis(es)) for what you anticipated the experiment to show. There should be one to three paragraphs in this part.

What significance does experimental study have?

Before moving the study into clinical trials, experimental research enables you to test your hypothesis in a controlled setting. Additionally, it offers the best way to test your hypothesis due to the following benefits.

To know more about scientific method visit:-

https://brainly.com/question/26694164

#SPJ1

The Air Quality Index (AQI) informs the public about which of the following?

Responses

weekly air quality averages
weekly air quality averages

daily air quality levels
daily air quality levels

amount of particulate matter in the air
amount of particulate matter in the air

size of particulate matter in the air

Answers

Explanation:

The Air Quality Index (AQI) informs the public about daily air quality levels, including the amount and size of particulate matter in the air. It provides a standardized measurement to help people understand how clean or polluted the air is in their area and how it may affect their health. The AQI typically reports levels of common air pollutants such as ground-level ozone, particulate matter (PM2.5 and PM10), carbon monoxide, sulfur dioxide, and nitrogen dioxide. The AQI scale ranges from 0 to 500, with higher values indicating more severe air pollution and greater potential health effects.

Which particle represents the size of the bromide ion compared to the bromine atom? Help please!

Answers

Because of the addition of one electron, the effective nuclear charge falls and repulsion rises, causing electrons to be further apart and therefore increasing atomic size. We also know that anion has a bigger size than the parent atom, therefore Br- will have the highest atomic size.

Why is bromide greater than bromine?

The radius of the bromide ion Br- is greater.

Anions are more massive than their parent atoms. The anion's extra electron increases electron-electron repulsion. Since electrons spread out further in space, an anion has a wider radius than its parent atom.

Bromine belongs to the halogen group, which also contains fluorine, chlorine, iodine, and astatine.

learn more about bromide

https://brainly.com/question/29228517

#SPJ1

Answer:

C

Explanation: Your welcome

The vaporization of

from the liquid to the gas state requires 7.4 kcal/mol (31.0 kJ/mol).



What is the sign of

for this process? Write a reaction showing heat as a product or reactant.


How many kilocalories are needed to vaporize 5.8 mol of




How many kilojoules are needed to evaporate 82 g of

Answers

Evaporation is a different term for it. As particles move more quickly than liquid molecules, a liquid needs energy to transform into a gas.

What is the liquid vaporisation process?

vaporisation is the process by which a substance is transformed from its liquid or solid state into its gaseous (vapour) state. Boiling is the term for the vaporisation process when conditions permit the creation of gas bubbles within a liquid. Sublimation is the process of directly converting a solid into a vapour.

How fast does vaporisation occur?

The ratio of the time needed to evaporate a testing solvent to the time needed to evaporate a reference solvent under the same circumstances is the evaporation rate. The findings can be shown as either a percentage of the total amount evaporated within a given time frame, the amount of time needed to evaporate, or a relative rate.

To know more about energy visit:

https://brainly.com/question/8630757

#SPJ1

how many ounces of a 35 % solution of sulfuric acid (and distilled water)must be mixed with 20 oz of a 20 % solution to get a 30 % solution of sulfuric acid?

Answers

To get a 30% solution of sulfuric acid, 4 oz of a 35% solution of sulfuric acid (and distilled water) must be mixed with 20 oz of a 20% solution of sulfuric acid.

A solution is a homogeneous mixture of two or more substances. For instance, two or more gases, or a gas and a solid, or a liquid and a solid, or two or more liquids could be mixed to create a solution.

First, determine the volume of sulfuric acid in each solution, then combine them to obtain the total amount of sulfuric acid. Solve the equation based on the sulfuric acid content in the final solution.

The volume of sulfuric acid in 35% solution is:

35% = 35/100

      = 0.35

V1 = volume of 35% solution of sulfuric acid and distilled water

V1 = 0.35 x V1

Suppose V2 is the volume of 20% solution of sulfuric acid, then

20% = 20/100

       = 0.2

V2 = volume of 20% solution of sulfuric acid

V2 = 0.2 x 20 oz

    = 4 oz

Let's combine the two solutions.

Total volume is (V1 + V2) ounces,

and the amount of sulfuric acid is 0.35V1 + 0.2V2 ounces.

The volume of sulfuric acid in the final mixture is:

30% = 30/100

        = 0.3

V1 + V2 = total volume

0.35V1 + 0.2V2 = total sulfuric acid volume

(0.3 x (V1 + V2)) = 0.35V1 + 0.2V2

V1 + V2 = 40

V1 = 4 oz

Substitute the value of V1 in the equation

V1 + V2 = 40(4 oz) + V2

             = 40 V2

              = 36 oz

To solve this problem, we can use the concept of the concentration of a solution, which is given by the amount of solute (in this case sulfuric acid) divided by the total amount of solution (sulfuric acid and water) multiplied by 100.

Or

Let x be the number of ounces of the 35% solution of sulfuric acid needed to make a 30% solution. We know that we have 20 ounces of a 20% solution. We can set up an equation based on the concentration of the sulfuric acid in the two solutions:

(0.35x + 0.20(20)) / (x + 20) = 0.30

Simplifying this equation, we get:

0.35x + 4 = 0.30x + 6

0.05x = 2

x = 40

Therefore, we need 40 ounces of the 35% solution of sulfuric acid to mix with the 20 ounces of the 20% solution to obtain a 30% solution.

4 oz of a 35% solution of sulfuric acid (and distilled water) must be mixed with 20 oz of a 20% solution of sulfuric acid to get a 30 % solution of sulfuric acid.

Learn more about sulfuric acid: https://brainly.com/question/10220770

#SPJ11

1
Which of the following is a balanced equation for the reaction?
Aluminum Bromide + Chlorine Gas- Aluminum Chloride and
Bromine Gas
A 3AlBr3 + 2Cl₂-3AlCl3 + 2Br₂
B
2AlBr3 + 3Cl₂ → 2AlCl3 + 3Br2
C
2Al3Br + Cl₂ - 2Al3Cl + Br₂
D AlBr3 + 3Cl₂ - AlCl3 + 3Br2

Answers

B. There is the same amount of each element on both sides of the arrow.

select a mineral, rock, or gemstone from the united state and explain why you selected it. discuss how the mineral, rock, or gemstone you selected is used in everyday life, and the processes by which they formed.

Answers

Answer: I have selected the gemstone turquoise from the United States. Turquoise is a semi-precious gemstone composed of copper aluminum phosphate. It is found in the deserts of Nevada, Arizona, Colorado, and New Mexico. Turquoise has a long history of use, with some pieces found in Ancient Egyptian tombs and Native American jewelry. Turquoise is still used today for making jewelry, figurines, and inlays for furniture. It is also often used to decorate clothes and other items.

Turquoise is created through the process of sedimentary precipitation, which involves the accumulation of minerals in slow-moving water. This process takes thousands of years, and is further shaped by the elements, such as air and water, which break down the mineral and change its color. It can also be artificially altered to improve its color.



In everyday life, turquoise is primarily used for jewelry, but it is also thought to possess healing properties. In some cultures, turquoise is believed to bring good luck and is used to ward off evil spirits. Turquoise has been a popular choice for making jewelry and decorative objects since ancient times. It is a beautiful, vibrant gemstone with a wide range of colors and patterns, which makes it a highly sought after material.



Learn more about minerals here:

https://brainly.com/question/18078524#




#SPJ11

given that burning a 1 gram carbohydrate sample raised the temperature of the 500 gram water bath by 8oc, calculate how much heat energy was released by the carbohydrate sample.

Answers

The burning of 1 gram carbohydrate release 16,736 J of heat energy.

Burning a 1 gram carbohydrate sample raised the temperature of the 500 gram water bath by 8°C, to calculate how much heat energy was released by the carbohydrate sample, we can use the specific heat capacity of water which is 4.18 J/g°C.

The heat energy released by the carbohydrate sample can be calculated using the following equation:

Heat energy (J) = mass of water (g) × specific heat capacity of water × ΔTHeat energy

In this case, the calculation is as follows:

Heat energy (J) = 500 g x 8°C x 4.184 = 16,736 J

Therefore, burning a 1 gram carbohydrate sample raised the temperature of the 500 gram water bath by 8°C and released 16,736 J of heat energy.

Learn more about heat energy: https://brainly.com/question/878982

#SPJ11

What conversion factor is used to convert from moles of substance A to moles of substance B?
A.) molar mass; go to #7
B.) Avogadro's number; go to #1
C.) mole ratio; go to #6
D.) the mass of 1 mole; go to #4

Please help!! Been struggling

Answers

Mole ratio is the conversion factor used to convert from moles of substance A to moles of substance B (option C).

What is mole ratio?

Mole ratio is a ratio of the number of moles of one substance to the number of moles of another substance in a balanced chemical equation.

It allows us to convert between moles of different substances involved in a chemical reaction. Molar mass (A), Avogadro's number (B), and the mass of 1 mole (D) can be used to convert between moles and other units, such as mass and number of particles.

Learn about Mole ratio here https://brainly.com/question/30632038

#SPJ1

which one of the following molecules has the highest molecular weight? group of answer choices acetyl coa alpha-ketoglutarate. oxaloacetate citrate isocitrate

Answers

Citrate has the highest molecular weight among the given molecules.

to double the resolution between two peaks in a chromatographic separation, the length of the column would need to be...?

Answers

The length of the column required depends on the type of chromatographic system used.

Generally speaking, increasing the length of the column increases resolution. This is because a longer column provides a greater surface area for the analyte to travel along, which allows for more efficient separation.

For normal-phase liquid chromatography, the resolution between two peaks can be doubled by doubling the column length. For example, if the column length is 10 cm, the resolution can be doubled by doubling the length to 20 cm.

For reverse-phase liquid chromatography, the resolution can be increased by increasing the non-polar character of the stationary phase. This can be achieved by increasing the length of the column, adding a small number of silanol groups to the stationary phase, or increasing the pH.

Additionally, in reverse-phase chromatography, the resolution between two peaks can be increased by increasing the amount of organic modifier in the mobile phase.


In summary,

For normal-phase liquid chromatography, the resolution can be doubled by doubling the column length. For reverse-phase liquid chromatography, the resolution can be increased by increasing the non-polar character of the stationary phase, or by increasing the amount of organic modifier in the mobile phase.

Therefore, the length of the column required to double the resolution between two peaks in a chromatographic separation depends on the type of chromatographic system used.

To know more about chromatographic separation, refer here:

https://brainly.com/question/29442779#

#SPJ11

147 grams of argon to liters

Answers

Answer:

Explanation:

3.6797837188344116 mol

Europe and North America are drifting apart from each other at a rate of 0.438 cm every year. How many years are required for the continents to drift 1.00 meter apart?

Answers

Answer:

See Below.

Explanation:

Europe and North America are drifting apart at a rate of about 3 cm per year due to continental drift. To find out how many years are required for them to drift 1 meter apart, we can use a simple formula:

Years = Distance / Rate

Plugging in the values, we get:

Years = 100 cm / 3 cm per year

Years = 33.33

Therefore, it would take about 33.33 years for Europe and North America to drift 1 meter apart at the current rate.

I hope this helps!

Final answer:

To find the number of years needed for Europe and North America to drift apart by 1.00 meter, given a drift rate of 0.438 cm per year, we convert the meter into centimeters, and then divide by the rate. The calculation gives approximately 228 years.

Explanation:

To determine the number of years required for the continents to drift apart by 1.00 meter, we use the concept of rate, distance and time often used in mathematics.

Given the rate of drifting is 0.438 cm per year, we first convert the 1.00 meter into centimeters as calculations should be in the same units. 1 meter equals 100 cm.

We then divide the total distance by the rate of drift to find the time. So, 100 cm/0.438 cm per year gives approximately 228 years.

Therefore, it would take approximately 228 years for Europe and North America to drift 1.00 meter apart at the current rate.

Learn more about rate calculation here:

https://brainly.com/question/16549128

#SPJ2

after pressing a heat treatment operation performed on the compact to bond metallic particles is know as:

Answers

Answer: The heat treatment operation performed on the compact to bond metallic particles is known as sintering.

What is sintering?

Sintering is a heat treatment process in which particles of a material are compressed into a strong mass, typically by heat but sometimes by pressure or other means. This process is mostly used for manufacturing ceramics, metals, and plastics.

The goal of sintering is to make a material more durable and compact, and it can be done in several ways.In general, sintering is used to manufacture components that are strong, resistant to wear and tear, and have high heat resistance.

Because sintering involves the use of heat, it can be used to remove defects from materials and create components with high dimensional accuracy.

In addition, sintering can be used to produce a wide range of shapes and sizes, making it a versatile manufacturing technique.

Learn more about sintering here:

https://brainly.com/question/30906950#



#SPJ11

A rate constant obeys the Arrhenius equation, the factor A 2.2 x 1013 s and the activation energy being 150. kJ mol. What is the value of the rate constant at 227°C, in 6.7x10-22 s-1 b. 2.1x1013 -1 1.5x101 s 4.7x10-3 s1 a. C.

Answers

The rate constant at 227°C is a. 6.7 x [tex]10^{-22}[/tex].

How to find the rate constant of a reaction?

The Arrhenius equation states that the rate constant (k) is equal to A × e(-Ea/RT).

Given values:  A = 2.2 x 10¹³ s⁻¹, Activation energy (Ea) = 150 kJ/mol, Temperature (T) = 227°C = 500 K.

For this, we need to substitute the given values in the Arrhenius equation as

k = A × e(-Ea/RT)

k = 2.2 x 10¹³ s⁻¹ × e(-150000 J/mol / (8.31 J/mol-K × 500 K))

k = 2.2 x 10¹³ s⁻¹ × e(-30.12)

k = 6.69 x 10⁻¹² s⁻¹

Therefore, the value of the rate constant at 227°C is 6.69 x 10⁻¹² s⁻¹. Hence, option A is the correct answer.

To know more about Arrhenius equation:

https://brainly.com/question/30653541

#SPJ11

if you start with 0.045 m of i2 at this temperature, how much will remain after 5.12 s assuming that the iodine atoms do not recombine to form i2 ? g

Answers

At 0.045 m of I2 and a given temperature, after 5.12 s of reaction, a certain amount of I2 will remain, the amount of I2 remaining, it is important to consider the rate of reaction of the: iodine atoms.

Assuming that the iodine atoms do not recombine to form I2, we can use the formula:

[tex]m(t) = m(0) x e^(-kt),[/tex]

where m(t) is the mass of I2 remaining after time t, m(0) is the initial mass of I2, k is the rate constant, and t is the time.

Therefore, the mass of I2 remaining after 5.12 s is [tex]0.045 m x e^(-k x 5.12 s).[/tex]

To solve for the rate constant k, we can use the equation

[tex]k = -ln(m(t)/m(0)) / t,[/tex]

where m(t) is the final mass of I2 and m(0) is the initial mass of I2.

Therefore, the rate constant for the reaction is [tex]-ln(m(5.12s)/m(0)) / 5.12s[/tex]. With this rate constant, the amount of I2 remaining after 5.12 s can be calculated by plugging it into the first equation, [tex]m(t) = m(0) x e^(-kt).[/tex]

To know more about iodine atoms refer here:

https://brainly.com/question/14077853#

#SPJ11

A gas takes up a volume of 17L, has a pressure of 2. 3atm, and a temperature of 299K. If I raise the temperature to 350K and lower the pressure to 1. 5atm, what is the new volume of the gas?

Answers

The new volume of the gas is approximately 29.5 L when the temperature is raised to 350K and the pressure is lowered to 1.5 atm.

To solve this problem, we can use the combined gas law, which states that,

(P1 × V1) / T1 = (P2 × V2) / T2

where P1, V1, and T1 are the initial pressure, volume, and temperature, respectively, and P2, V2, and T2 are the final pressure, volume, and temperature, respectively.

We can plug in the given values to get,

(2.3 atm × 17 L) / 299 K = (1.5 atm × V2) / 350 K

Solving for V2,

V2 = (2.3 atm × 17 L × 350 K) / (1.5 atm × 299 K)

V2 = 29.5 L

To know more about volume, here

brainly.com/question/20319705

#SPJ4

A mixture of 90. 0 grams of CH4 and 10. 0 grams of argon has a pressure of 250 torr under conditions of constant temperature and volume. The partial pressure of CH4 in torr is?

Answers

The partial pressure of CH4 in the mixture is 239 torr.

To find the partial pressure of CH4 in the mixture, we need to use the mole fraction of CH4.

First, we need to find the moles of each component in the mixture. The molar mass of CH4 is 16.04 g/mol, so:

moles of CH4 = 90.0 g / 16.04 g/mol = 5.61 mol

The molar mass of Ar is 39.95 g/mol, so:

moles of Ar = 10.0 g / 39.95 g/mol = 0.250 mol

The total number of moles in the mixture is:

total moles = moles of CH4 + moles of Ar = 5.61 mol + 0.250 mol = 5.86 mol

Now we can find the mole fraction of CH4:

mole fraction of CH4 = moles of CH4 / total moles = 5.61 mol / 5.86 mol = 0.957

Finally, we can use the mole fraction to find the partial pressure of CH4 using Dalton's Law of Partial Pressures:

partial pressure of CH4 = mole fraction of CH4 x total pressure

partial pressure of CH4 = 0.957 x 250 torr = 239 torr

Therefore, the partial pressure of CH4 in the mixture is 239 torr.

To know more about pressure click here:

brainly.com/question/12971272

#SPJ4

how many grams of h2o will be formed when 32.0 g h2 is mixed with 12.0 g of o2 and allowed to react to form water?

Answers

When 32.0 g of H2 and 12.0 g of O2 are mixed and allowed to react to form water, the end result will be 44.0 g of H2O.

This is because the equation for the reaction is 2H2 + O2 = 2H2O, so for every two grams of H2 that are present, one gram of O2 must be present to balance the equation. Therefore, 32.0 g of H2 and 12.0 g of O2 will result in 44.0 g of H2O.
To solve this problem, first calculate the amount of H2 and O2 needed to create the desired amount of H2O. Using the equation, the ratio of H2 to O2 is 2:1, so the total amount of O2 needed to react with the given amount of H2 is 16.0 g (32.0 g of H2 divided by 2). Next, calculate the amount of H2O that will be produced. To do this, use the equation 2H2 + O2 = 2H2O, so the total amount of H2O produced is twice the amount of H2 and O2, or 44.0 g (32.0 g of H2 + 16.0 g of O2 = 48.0 g, then divided by 2 = 24.0 g).
Therefore, when 32.0 g of H2 and 12.0 g of O2 are mixed and allowed to react to form water, the end result will be 44.0 g of H2O.

For more such questions on H2O

https://brainly.com/question/26709403

#SPJ11

How would you interpret that all four C-H bonds of methane are identical?​

Answers

The four C-H bonds of methane are identical because all of these are formed by the overlapping of the same type of orbital's i.e; hybrid orbital's of carbon and s-orbital of hydrogen.

describes a chemical weathering process where the products are typically . oxidation / coal beds hydrolysis / clay minerals precipitation / dissolved bicarbonate ions dissolution / iron oxides (hematite)

Answers

Answer: The chemical weathering process that dissolves iron oxides (hematite) is called dissolution.

What is chemical weathering?

Chemical weathering is the process by which rocks and minerals are broken down by chemical reactions. This kind of weathering transforms the original composition of rocks and minerals into new compounds that are more stable at the Earth's surface. Chemical weathering can change the overall appearance, strength, and porosity of rocks over time.

Types of chemical weathering processes Chemical weathering processes can take a variety of forms, such as: Hydrolysis ,Oxidation, Carbonation ,Dissolution.

Students must keep in mind that these processes may occur simultaneously in a specific area to produce new minerals with varied properties. And among the different chemical weathering processes, the one that dissolves iron oxides (hematite) is called dissolution.

What is dissolution?

The process in which a chemical compound is dissolved in a solvent is known as dissolution. It is a physical change rather than a chemical change since the chemical composition of the substance being dissolved is not altered. Dissolution is used in many processes, such as extracting and separating minerals, preparing solutions, purifying liquids, and so on.


Learn more about dissolution here:

https://brainly.com/question/9949108#



#SPJ11

How many grams of carbon monoxide does a 3.0-L balloon contain?

Answers

If the balloon is popped and all of the CO2 is released, approximately 5.4 grams of CO2 would be released.

What is STP?

At STP (Standard Temperature and Pressure), the pressure is 1 atmosphere (atm) and the temperature is 273.15 K (0 °C or 32 °F).Any ideal gas has a molar volume of 22.4 L/mol at STP.

Carbon dioxide (CO2) seems to have a molar mass of approximately 44 g/mol.

Using the ideal gas law, PV = nRT, we can calculate the number of moles of CO2 in the balloon:

PV = nRT

n = PV/RT

n = (1 atm)(3 L)/(0.0821 L·atm/mol·K)(273.15 K)

n = 0.1226 mol

Therefore, the balloon contains 0.1226 mol of CO2.

To calculate the mass of CO2, we can use the following formula:

mass equates to the number of moles multiplied by the molar massmass = 0.1226 mol x 44 g/mol

mass = 5.4 g

To know more about ideal gas law, visit:

https://brainly.com/question/28257995

#SPJ1

0.1mol of a substance has a mass of 4g. Calculate the mass of 1 mol

Answers

Answer:

The mass of 1 mole of substance is 40 g

Molar Mass is defined as the mass in grams of one mole of a substance. The units of molar mass are grams per mole (g/mol).

This can be found by dividing the mass present by the number of moles. Mathematically, the units: grams ÷ moles = g/mol.

Hence, Molar mass (M) = mass (m) ÷ moles (n).

Therefore, M = m/n = 4/0.1 = 40 g/mol

suppose the 1h nmr spectrum shown below is obtained from a reaction product of a student who wanted to make acetyl ferrocene from ferrocene, what can you say about the product?

Answers

Answer: The 1H NMR spectrum shown below is most likely that of the product obtained from a reaction of ferrocene and acetic anhydride.

The spectrum displays a single peak at 6.6 ppm, which is characteristic of a vinyl proton in a substituted cyclopentadienyl ring. The peak at 5.2 ppm is that of a methylene protons in the acyl substituent. The peak at 1.2 ppm is that of a proton attached to a tertiary carbon. This strongly suggests that the student has successfully synthesized acetyl ferrocene.

Acetyl ferrocene is a stable compound, containing a cyclopentadienyl ring with an acyl substituent attached at one of the ring carbons. It is synthesized by reacting ferrocene with acetic anhydride, a reaction that requires heating. The reaction leads to the substitution of a proton in the cyclopentadienyl ring by an acyl group, resulting in acetyl ferrocene.

The 1H NMR spectrum of this product contains a single peak at 6.6 ppm, indicating the presence of a vinyl proton in the cyclopentadienyl ring, a peak at 5.2 ppm, indicating the presence of a methylene protons in the acyl substituent, and a peak at 1.2 ppm, indicating the presence of a proton attached to a tertiary carbon.


Therefore, it can be concluded that the student has successfully synthesized acetyl ferrocene from ferrocene using acetic anhydride.



Learn more about methylene protons here:

https://brainly.com/question/29585359#



#SPJ11

at a fixed temperature and number of moles of nitrogen gas, its volume and pressure are 148 ml and 743 torr, respectively. what is the final pressure in torr, if the final volume is 214 ml?

Answers

The final pressure of nitrogen gas, at a fixed temperature and number of moles, with a final volume of 214 ml is 552 torr.

The pressure and volume of an ideal gas are inversely proportional to each other, meaning if one increases, the other decreases. This can be expressed by the equation PV=nRT, where n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

Since n and T remain constant, the equation can be rearranged to solve for pressure as P=nRT/V. Using the given values, P= (1)(0.08206)(273.15)/(214 ml) = 552 torr.

Thus, the final pressure of nitrogen gas at a fixed temperature and number of moles, with a final volume of 214 ml is 552 torr.

To know more about final pressure click on below link:

https://brainly.com/question/28526047#

#SPJ11

What l formation does the first digit of VSEPR number provide?

Answers

The VSEPR (Valence Shell Electron Pair Repulsion) theory is used to predict the shapes of molecules based on the arrangement of electron pairs around the central atom.

The VSEPR theory assigns a numerical value, called the "VSEPR number", to each central atom in a molecule.

The first digit of the VSEPR number corresponds to the number of electron pairs around the central atom that are involved in bonding. Specifically:

A VSEPR number of 2 indicates that the central atom has 2 electron pairs involved in bonding (e.g. linear geometry).A VSEPR number of 3 indicates that the central atom has 3 electron pairs involved in bonding (e.g. trigonal planar or pyramidal geometry).A VSEPR number of 4 indicates that the central atom has 4 electron pairs involved in bonding (e.g. tetrahedral or square planar geometry).A VSEPR number of 5 indicates that the central atom has 5 electron pairs involved in bonding (e.g. trigonal bipyramidal geometry).A VSEPR number of 6 indicates that the central atom has 6 electron pairs involved in bonding (e.g. octahedral or square pyramidal geometry).

The first digit of the VSEPR number is used to determine the general electron pair geometry around the central atom, which is a crucial factor in determining the molecular geometry of the molecule.

Learn more about VSEPR,

https://brainly.com/question/29756299

#SPJ4

which compound in each pair below would you expect to have a greater fluorescence quantum yield? explain

Answers

The compound O,O'-dihydoxyazobenzene, have a greater fluorescence quantum yield because of the rigidity provided by the -N=N- group. Option D is correct.

Fluorescence quantum yield is a measure of the efficiency of a molecule to emit fluorescence, which is dependent on various factors, including the rigidity or flexibility of the molecule and the presence of any functional groups that can affect the electronic structure. In the given options, O,O'-dihydoxyazobenzene has a rigid structure due to the presence of the azo group (-N=N-) that is expected to restrict the molecule's vibrational freedom, thereby reducing non-radiative energy loss and enhancing fluorescence.

On the other hand, bis(o-hydroxyphenyl) hydrazine has a flexible structure due to the -NH-NH- group, which can lead to higher non-radiative energy loss, reducing the fluorescence quantum yield. Therefore, O,O'-dihydoxyazobenzene is expected to have a greater fluorescence quantum yield than bis(o-hydroxyphenyl) hydrazine.

Hence, D. O,O'-dihydoxyazobenzene, because of the rigidity provided by the  -N=N- group is the correct option.

To know more about Fluorescence here

https://brainly.com/question/14742655

#SPJ4

--The given question is incomplete, the complete question is

"Which compound in each pair below would you expect to have a greater fluorescence quantum yield? A) bis(o-hydroxyphenyl) hydrazine, because of the chemical activity of the two extra H atoms. B) bis(o-hydroxyphenyl) hydrazine, because of the flexibility provided by the -NH -NH - group C) O,O'-dihydoxyazobenzene, because of the chemical activity of the -N=N- group. D) O,O'-dihydoxyazobenzene, because of the rigidity provided by the  -N=N- group."--

Atmospheric pressure on the peak of Mt. Everest can be as low as 150 mm Hg, which is why climbers
need to bring oxygen tanks for the last part of the climb. If the climbers carry 10.0 liter tanks with an
internal gas pressure of 3.04 x 10¹ mm Hg, what will be the volume of the gas when it is released from the
tanks?

Answers

Answer: The volume of gas released from the tank at the peak of Mt. Everest is 37.83 liters.

Explanation: To solve this problem, we can use the general gas law equation:

PV = nRT

where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is temperature (in Kelvin).

We can rearrange this equation to solve for volume:

V = nRT/P

We are given the internal gas pressure of the tank (P) and the volume of the tank (10.0 L). We need to find the volume of gas released from the tank (V). We also know that the temperature and number of moles of gas are constant (assuming no leaks or temperature changes during the climb).

To find the volume of gas released at the peak of Mt. Everest (150 mm Hg), we can use the following steps:

Convert the internal gas pressure of the tank to atm:

3.04 x 10¹ mm Hg x (1 atm / 760 mm Hg) = 0.004 atm

Convert the peak pressure to atm:

150 mm Hg x (1 atm / 760 mm Hg) = 0.197 atm

Plug in the known values to the equation:

V = nRT/P

V = nRT / (0.197 atm)

Solve for V:

V = (nRT) / (0.197 atm)

We can assume that the number of moles of gas, n, and the temperature, T, are constant. R is also a constant (0.08206 L atm / mol K).

So we can simplify the equation to:

V = constant / P

V = k / 0.197

where k is a constant. We can solve for k by using the initial conditions:

10.0 L = k / 0.004

k = 0.04 L atm

Now we can use this value of k to find the volume of gas released at the peak of Mt. Everest:

V = k / 0.197

V = 0.04 L atm / 0.197

V = 0.203 L

But this is the volume of gas at standard conditions (0°C and 1 atm). We need to correct for the temperature and pressure at the peak. To do this, we can use the following equation:

(P1 V1) / (n1 T1) = (P2 V2) / (n2 T2)

where the subscripts 1 and 2 refer to the initial and final states of the gas.

We can assume that n and V are constant, so this equation simplifies to:

P1 / T1 = P2 / T2

We can solve for T2:

T2 = (P2 T1) / P1

T1 is the initial temperature of the gas (room temperature, about 20°C or 293 K). P1 is the initial pressure of the gas (0.004 atm). P2 is the final pressure of the gas (0.197 atm).

T2 = (0.197 atm x 293 K) / 0.004 atm

T2 = 14,502 K

This temperature is obviously not physically realistic, but it shows that the volume of gas is greatly affected by the low pressure and temperature at the peak of Mt. Everest. To correct for this, we can assume that the gas behaves ideally and use the ideal gas law equation:

PV = nRT

We can solve for V:

V = (P2 V1 T1) / (P1 T2)

V = (0.197 atm x 10.0 L x 293 K) / (0.004 atm x 14,502 K)

V = 37.83 L

So the volume of gas released from the tank at the peak of Mt. Everest is about 38 liters.

Hope this helps, and have a great day!

6.0 mol NaOH can form
3.0 mol Na3PO4 while 9.0 mole H3PO4
can form 9.0 mol Na3PO4. What mass of
Na3PO4 forms?
Na3PO4: 164 g/mol
[?] g Na3PO4
Round your answer to the ones place.
g NasPO4

Answers

Answer:

1) 492 grams Na3PO4

2) 1,476 grams Na3PO4

Explanation:

6.0 mol NaOH forms 3.0 mol Na3PO4

9.0 mole H3PO4 forms 9.0 mol Na3PO4.

What mass of Na3PO4 forms?

1)  6.0 moles of NaOH

3.0 moles of Na3PO4 are formed.  Convert thism into grams using the molar mass conversion factor:  164 g/mole

(3.0 moles Na3PO4)*(164 g/mole Na3PO4) = 492 grams

2)  9.0 moles of H3PO4

9.0 moles of Na3PO4 are formed.  Again, use the molar mass conversion factor.

(9.0 moles Na3PO4)*(164 g/mole Na3PO4) = 1,476 grams Na3PO4

what is necessary for extraction? group of answer choices two phases in which the solute is equally soluble higher solute solubility in the second phase lower solute solubility in the second phase two phases in which the solute is equally insoluble

Answers

For extraction, there should be an option c) lower solute solubility in the second phase.

Extraction is a process in which a solute is separated from a solution or mixture by two immiscible liquid phases. It involves two phases in which the solute has different solubilities.

In the first phase, the solute has higher solubility, meaning it dissolves more readily.

In the second phase, the solute has lower solubility, meaning it is less likely to dissolve.

In order for extraction to be successful, the solute must be differently soluble in the phases. This ensures that the solute is separated efficiently and effectively.


The process of extraction involves the formation of two liquid phases and the transfer of the solute from one phase to the other. The solute is transferred from the first phase to the second phase, where it is separated from the solution.


To summarize, extraction is a process of separating a solute from a solution or mixture by two immiscible liquid phases. It involves two phases in which the solute has different solubilities.

Therefore, for extraction, it is necessary for the solute to have a lower solubility in the second phase. and hence the correct answer is option c.

To know more about extraction, refer here:

https://brainly.com/question/12910778#

#SPJ11

Other Questions
the nurse is reviewing drugs prescribed for the management of peptic ulcer disease (pud) with a group of new colleagues. which cell should the nurse explain is inhibited by drugs used to reduce gastric acid secretion? according to amdahl's law, what is the speedup gain for an application that is 90% parallel and we run it on a machine with 6 processing cores? which of the following linguistic expressions allows for borderline cases in which it is impossible to tell if the expression applies or does not apply? value claim vague expression emotive meaning ambiguous expression cognitive meaning Urine formation begins in which of the following structures?Loop of HenleBowman's capsuleDistal convoluted tubuleProximal convoluted tubule what is the successor of -34 what would be best for someone, or would be most in this persons interests, or would make this persons life go, for him, as well as possible A builder is creating a scale drawing of a plot of land as shown. The original plot of land is 335 meters wide. The drawing uses a 1 scale factor of 500. 7. Find the area of the original plot of land in square meters and the area of the scale drawing in square centimeters. (Example 5) taking good features of a prior system and improving them to achieve a new goal is an example of which characteristic of a vision? the first mathematician to come close to calculating pi how many moles of oh- are in 55.85 ml of 0.350 m naoh? do not include units and place answers in 3 sig figs. be sure to include any zeros before the decimal and do not put answer in scientific notation. middle portion of the small intestine that extends from the duodenum to the ileum.___ Based on the criteria used by the Bureau of Labor Statistics (BLS), identify each persons status as Employed, Unemployed, "Not in the labor force" but still part of the civilian noninstitutional population, or "Not in the civilian noninstitutional population" if not in the civilian noninstitutional population.Paolo is a 21-year-old professional tennis player. When he's not competing, he works as a coach at a local tennis club. Problem 1. What masses of 15% and 20% solutions are needed to prepare 200 g of 17% solution?Problem 2. What masses of 18% and 5% solutions are needed to prepare 300 g of 7% solution?Problem 3. 200 g of 15% and 350 g of 20% solutions were mixed. Calculate mass percentage of final solution.Problem 4. 300 g of 15% solution and 35 g of solute were mixed. Calculate mass percentage of final solution.Problem 5. 400 g of 25% solution and 150 g of water were mixed. Calculate mass percentage of final solution. if there is an error in recording an adjusting entry on the income statement causing net income to be overstated, then the generation of multiple forecasts of future conditions followed by an analysis of how to respond effectively to each of those conditions is Which event is often considered the beginning of the modern-day conflict between Israelis and Palestinians the reason that the primary mirror of an astronomical telescope is often shaped and polished to a parabolic shape is which of the following are compounds? question 37 options: a) h2o and o2 b) h2o, o2, and ch4 c) h2o and ch4, but not o2 d) o2 and ch4 h(t) = -16t + 110t + 72The function above models the height, h, in feet, of an object above the ground t seconds after being launched straight up in the air. What does the number 72 represent in the function?*1 pointA The initial height, h, in feet, of the object.B The maximum height, h, in feet, of the object.C The initial speed, in ft per second, of the object.D The maximum speed, feet per second, of the object. which sequence of metabolic paths could a carbon atom take to go from a molecule of glucose to a molecule of dna?