Cost of a pen is two and half times the cost of a pencil. Express this situation as a
linear equation in two variables.

Answers

Answer 1

The equation to illustrate the cost of a pen is two and half times the cost of a pencil is C = 2.5p.

What is an equation?

A mathematical equation is the statement that illustrates that the variables given. In this case, two or more components are taken into consideration to describe the scenario.

In this case, the cost of a pen is two and half times the cost of a pencil.

Let the pencil be represented as p.

Let the cost be represented as c.

The cost will be:

C = 2.5 × p

C = 2.5p

This illustrates the equation.

Learn more about equations on:

brainly.com/question/2972832

#SPJ1


Related Questions

If the LM follows the reference trajectory, what is the reference velocity vref (t) ?

Answers

Answer:

Explanation:

A certain marine engine has cylinders that are 5.25 cm in diameter and 5.64 cm deep.Find the total volume of 4 cylinders (to the nearest hundredth). Use 3.14 as the approximate value of

Answers

Given:

A cylinder is given with 5.64 cm deep and 5.25 cm diameter.

Required:

Total volume of 4 cylinders.

Explanation:

Diameter of cylinder d = 5.25 cm

Height of cylinder or deepness of cylinder h = 5.64 cm

Radius r of cylinder is

[tex]r=\frac{d}{2}=\frac{5.25}{2}=2.625\text{ cm}[/tex]

volume of cylinder is

[tex]v=\pi r^2h=3.14*2.625^2*5.64=122.03\text{ cm}^3[/tex]

here we need volume of 4 cylinder

for this we just multiply v with 4

[tex]V=4v=4*122.03=488.121\text{ cm}^3[/tex]

Final Answer:

The volume of 4 cylinder is 488.121 cube cm

Reduce the rational expression to lowest terms. If it is already in lowest terms, enter the expression in the answerbox. Also, specify any restrictions on the variable.a²-3a-4/a² + 5a + 4Rational expression in lowest terms:Variable restrictions for the original expression: a

Answers

Factorize both quadratic polynomials, as shown below

[tex]\begin{gathered} a^2-3a-4=0 \\ \Rightarrow a=\frac{3\pm\sqrt{9+16}}{2}=\frac{3\pm\sqrt{25}}{2}=\frac{3\pm5}{2}\Rightarrow a=-1,4 \\ \Rightarrow a^2-3a-4=(a+1)(a-4) \\ \end{gathered}[/tex]

Similarly,

[tex]\begin{gathered} a^2+5a+4=0 \\ \Rightarrow a=\frac{-5\pm\sqrt{25-16}}{2}=\frac{-5\pm3}{2}\Rightarrow a=-1,-4 \\ \Rightarrow a^2+5a+4=(a+1)(a+4) \end{gathered}[/tex]

Thus,

[tex]\Rightarrow\frac{a^2-3a-4}{a^2+5a+4}=\frac{(a+1)(a-4)}{(a+1)(a+4)}[/tex]

Therefore, since the denominator cannot be equal to zero.

The variable restrictions for the original expression are a≠-1,-4

Then, provided that a is different than -1,

[tex]\Rightarrow\frac{a^2-3a-4}{a^2+5a+4}=\frac{x-4}{x+4}[/tex]The rational expression in the lowest terms is (x-4)/(x+4)

I need help understanding slope

Answers

we know that

the formula to calculate teh slope between two points is equal to

[tex]m=\frac{(y2-y1)}{(x2-x1)}[/tex]

where

(x1,y1) is one point

and

(x2,y2) is the other point

substitute the values in the formula and solve for m

Example

you have the points

(1,4) and (3,2)

so

(x1,y1)=(1,4)

(x2,y2)=(3,2)

substitute in te formula

m=(2-4)/(3-1)

m=-2/2

m=-1

the slope is -1

y-intercept of y=3/2|x-2|

Answers

Answer:

Combine [tex]\frac{3}{2 }[/tex] and | x - 2 |

[tex]y\frac{3|x-2|}{2}[/tex]

Find a polynomial f(x) of degree 4 with real coefficients and the following zeros.3 (multiplicity 2) , -i

Answers

We are told that we want a polynomial f(x) with the given zeros.

Recall that if we know the zeros oa polynomial, we can write the polynomial by writing the factors (x - zero of the polynomial) and multiply them all together.

For example, if we want a polynomial of degree 2 with zeros at 2 and 3, then the polynomial would be

[tex](x\text{ -2)}\cdot(x\text{ -3)}[/tex]

In this case, we have a polynomial f(x) of degree 4. So far, we know that 3 is a zero and that -i is a zero. So we write the following

[tex]f(x)=(x\text{ -a)}\cdot(x\text{ -b)}\cdot(x\text{ -c) }\cdot\text{ (x -d)}[/tex]

where a,b,c and d are the zeros of f(x). We know that 3 is a zero and that -i is a zero. So we have

[tex]f(x)=(x\text{ -3)}\cdot(x\text{ -b)}\cdot(x\text{ -( -i)) }\cdot(x\text{ -d)}[/tex]

So to fully describe f(x) we need to find the values of b and d. We are told that 3 is a zero of multiplicity 2. This means that the factor (x -3) appears two times in the factorization of f(x). So we can say that b=3. So we have

[tex]f(x)=(x\text{ -3)}\cdot(x\text{ -3) }\cdot(x\text{ +i ) }\cdot(x-d)=(x-3)^2\cdot(x\text{ +i)}\cdot(x\text{ -d)}[/tex]

Now, we need to find the value of d. Note that we are told that -i is a zero of the function. -i is a complex number, so one important property of polynomials is that if a complex number a+bi is a zero of the polynomial, then the number a-bi (which is called the complex conjugate) is also a zero. Note that the complex conjugate of a complex number is calculated by leaving the real part intact and multiplying the imaginary part by -1.

In our case we have the complex number -i. So we can write -i= 0 - 1i . Then, its complex conjugate is i.

So, we have that d=i.

Then our polynomial would look like this

[tex]f(x)=(x-3)^2\cdot(x+i)\cdot(x\text{ -i)}[/tex]

Note that

[tex](x+i)\cdot(x-i)=x^2\text{ -i}\cdot x\text{ + i}\cdot x+1=x^2+1[/tex]

So our polynomial ends up being

[tex]f(x)=(x-3)^2\cdot(x^2+1)[/tex]

Rewrite the following equation in slope-intercept form.

10x − 10y = –1 ?


Write your answer using integers, proper fractions, and improper fractions in simplest form.

Answers

Answer:

y = x + 1/10

Step-by-step explanation:

Rewrite the following equation in slope-intercept form: 10x − 10y = –1 ?

slope intercept form: y = mx + b so you are solving for y:

10x − 10y = –1

subtract 10x from both sides:

10x − 10y – 10x = –1 – 10x

-10y = –1 – 10x

divide all terms by -10:

-10y/(-10) = –1/(-10) – 10x/(-10)

y = 1/10 + x

rearrange for slope intercept form: y = mx + b

y = x + 1/10

Answer:

[tex]y=x+\dfrac{1}{10}[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{6.3 cm}\underline{Slope-intercept form of a linear equation}\\\\$y=mx+b$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $b$ is the $y$-intercept.\\\end{minipage}}[/tex]

Given equation:

[tex]10x-10y=-1[/tex]

To write the given equation in slope-intercept form, perform algebraic operations to isolate y.

Add 10y to both sides of the equation:

[tex]\implies 10x-10y+10y=10y-1[/tex]

[tex]\implies 10x=10y-1[/tex]

Add 1 to both sides of the equation:

[tex]\implies 10x+1=10y-1+1[/tex]

[tex]\implies 10x+1=10y[/tex]

[tex]\implies 10y=10x+1[/tex]

Divide both sides of the equation by 10:

[tex]\implies \dfrac{10y}{10}=\dfrac{10x+1}{10}[/tex]

[tex]\implies \dfrac{10y}{10}=\dfrac{10x}{10}+\dfrac{1}{10}[/tex]

[tex]\implies y=x+\dfrac{1}{10}[/tex]

Therefore, the given equation in slope-intercept form is:

[tex]\boxed{y=x+\dfrac{1}{10}}[/tex]

The semi annual compound interest of a sum of money in 1 year and 2years are Rs400 and Rs441 respectively.Find the annual compound interest for 2years​

Answers

Answer:

Step-by-step explanation

Correct option is A)

C.I. for the third year = Rs. 1,452.

C.I. for the second year = Rs. 1,320

∴ S.I on Rs. 1,320 for one year = Rs. 1,452− Rs. 1,320= Rs. 132.

Rate of interest =

1,320

132×100

=10%.

Let the original money be Rs. P.

Amount after 2 year − amount after one year =C.I. for second year.

P(1+

100

10

)

2

−P(1+

100

10

)=1,320

P[(

100

110

)

2

100

110

]=1,320

⇒P[(

10

11

)

2

10

11

]=1,320⇒P(

100

121

10

11

)= Rs. 1,320

⇒P×

100

11

=Rs.1,320⇒P=

11

1,320×100

= Rs. 12,000

∴ Rate of interest =10%

and Original sum of money = Rs. 12,000

i need help with my homework PLEASEMCHECK WORK WHEN FINISHED

Answers

Given:

The population of a town increases by 9 % annually.

The current population is 4,500.

Required:

We need to find the equation that gives the population of the town.

Explanation:

The population can be found by the following equation.

[tex]Th\text{e population =4500+9 \% of 4500}[/tex]

Let now be the current population of the town =4500.

Let Next be the population of the town.

The population can be found by the following equation.

[tex]Next\text{ =Now+9\% of Now.}[/tex]

[tex]Next\text{ =Now+}\frac{9}{100}\times\text{Now.}[/tex]

Take the common term now out.

[tex]Next\text{ =Now\lparen1+}\frac{9}{100})[/tex][tex]Use\text{ }\frac{9}{100}=0.09.[/tex]

[tex]Next\text{ =Now\lparen1+0.09})[/tex]

[tex]Next\text{ =Now\lparen1.09})[/tex]

[tex]Next\text{ =Now}\times\text{1.09}[/tex]

Final answer:

[tex]Next\text{ =Now}\times\text{1.09}[/tex]

A rectangular room is twice as long as it is wide, and its perimeter is 60 meters. Find the dimensions of the
room.
The length is __
meters and the width is __
meters.

Answers

Answer: 20, 10

Step-by-step explanation:

Let the width be w. Then, the length is 2w. Substituting into the formula for the perimeter of a rectangle,

[tex]2(w+2w)=60\\\\w+2w=30\\\\3w=30\\\\w=10\\\\\implies 2w=2(10)=20[/tex]

K
Use the data in the following table, which lists drive-thru order accuracy at popular fast food chains. Assume that orders are randomly selected from those included in
the table.
Drive-thru Restaurant D
B C
D
280
245
122
60
32
12
A
Order Accurate
331
Order Not Accurate 38
If one order is selected, find the probability of getting an order that is not accurate or is from Restaurant C. Are the events of selecting an order that is not accurate and
selecting an order from Restaurant C disjoint events?
The probability of getting an order from Restaurant C or an order that is not accurate is
(Round to three decimal places as needed.)
Are the events of selecting an order from Restaurant C and selecting an inaccurate order disjoint events?
disjoint because it
possible to
The events

Answers

The probability is 0.236 and the events are not disjoint​ events

Given,

The data;

                                  A       B      C     D

Order accurate      ; 280   245   122  331

Order not accurate; 60     32     12     38

The probability of getting an order that is not accurate or is from Restaurant C

This is illustrative of

P(Not accurate or Restaurant C) (Not accurate or Restaurant C)

The calculation is

P(Not accurate or Restaurant C) is equal to [n(Not accurate) + (Not accurate and Restaurant C) - n(Restaurant C)] /Total

Thus, we have

P(Not accurate or Restaurant C) is calculated as follows: (60 + 32 + 12 + 38 + 122 + 12 - 12)/(280 + 245 + 122 + 331 + 60 + 32 + 12 + 38).

Analyze the difference and the total.

Restaurant C or P(Not accurate) = 264/1120

Assess the quotient.

P(Not accurate or Restaurant C) = 0.236

Last but not least, choosing an incorrect order and choosing an order from Restaurant C are not separate events.

This is because choosing an inaccurate order from restaurant C is a possibility.

Learn more about probability here;

https://brainly.com/question/28842018

#SPJ1

(8x+6)=mL(blank)

8x+6) =

8x=

x=

the L is an angle

Answers

The value of the unknown angle is as follows;

∠ = 62 degrees

How to find the unknown angle?

When parallel lines are cut by a transversal line, angle relationships are formed such as corresponding angles, alternate angles, linear angles, vertically opposite angles etc.

Therefore, the angle 4 can be found as follows:

∠4 = 8x + 6 (alternate angles)

Hence,

8x + 6 + 118 = 180(sum of angles on a straight line)

8x = 180 - 118 - 6

8x = 56

divide both sides by 8

x = 56 / 8

x = 7

Therefore,

∠4 = 8(7) + 6 = 56 + 6 = 62 degrees

learn more on angle here: https://brainly.com/question/7153708

#SPJ1

3
Drag each tile to the correct box.
Place the parallelograms in order from least area to greatest area.
3 cm
4 cm
6 cm
3 cm
4 cm
5 cm
4 cm
3 cm
----
4 cm
Submit Test
}

Answers

The least area of the parallelogram will be 12cm² and the greatest area will be 20cm².

What will be the area of the parallelogram?

The area of a parallelogram is simply calculated thus:

= Base × Height

The least area will be:

= Base × Heights

= 3cm × 4cm

= 12cm²

The greatest area of the parallelogram will be:

= Base × Height

= 4cm × 5cm

= 20cm²

Note that the figures are gotten from the. information given.

Learn more about parallelogram on:

brainly.com/question/970600

#SPJ1

The figure below is an iscoceles trapezoid. If m

Answers

..Given an isosceles trapezoid

The following are the properties of an isosceles trapezoid

The legs are congruent by definition (From the diagram, the legs are JM and KL)

The lower base angles are congruent. The lower base angles are

[tex]m\angle M\cong m\angle L[/tex]

The upper base angles are congruent. The upper base angles are

[tex]m\angle J\cong m\angle K[/tex]

Any lower base angle is supplementary to any upper base angle. This means that

[tex]\begin{gathered} m\angle J+m\angle M=180^0 \\ m\angle K+m\angle L=180^0 \end{gathered}[/tex][tex]\begin{gathered} \text{If} \\ m\angle K=61^0 \\ \text{Therefore} \\ m\angle J\cong m\angle K=61^0 \\ m\angle J=61^0 \end{gathered}[/tex]

Also,

[tex]\begin{gathered} m\angle L+m\angle K=180^0 \\ m\angle L+61^0=180^0 \\ m\angle L=180^0-61^0 \\ m\angle L=119^0 \end{gathered}[/tex][tex]\begin{gathered} m\angle L\cong m\angle M,m\angle L=119^0 \\ Therefore\colon \\ m\angle M=119^0 \end{gathered}[/tex]

Hence

m∠J = 61⁰

m∠L = 119⁰

m∠M = 119⁰

i need help on number 7. Please use 4 points

Answers

In order to graph this equation, we need at least two points that are solution to the equation.

To find these points, we can choose values for x and then calculate the corresponding values of y.

Choosing the x-values of -2, -1, 0 and 1, we have:

[tex]\begin{gathered} x=-2\colon \\ y=-\frac{5}{2}\cdot(-2)-1 \\ y=5-1 \\ y=4 \\ \\ x=-1\colon \\ y=-\frac{5}{2}(-1)-1 \\ y=2.5-1 \\ y=1.5 \\ \\ x=0\colon \\ y=-\frac{5}{2}\cdot0-1 \\ y=-1 \\ \\ x=1\colon \\ y=-\frac{5}{2}\cdot1-1 \\ y=-2.5-1 \\ y=-3.5 \end{gathered}[/tex]

So we have the points (-2, 4), (-1, 1.5), (0, -1) and (1, -3.5). Graphing these points and the line that passes through them, we have:

Expand the polynomial. 1. (m^2-n)(m^2+2n^2)2. (a-2)(4a^3-3a^2)

Answers

1)

The given polynomial is

[tex](m^2-n)(m^2+2n^2)[/tex]

Multiply as follows:

[tex](m^2-n)(m^2+2n^2)=m^2(m^2+2n^2)-n(m^2+2n^2)[/tex]

[tex]=m^2\times m^2+m^2\times2n^2-n\times m^2-n\times2n^2[/tex]

[tex]=m^4+2m^2n^2-m^2n-2n^3[/tex]

Hence the required expansion is

[tex](m^2-n)(m^2+2n^2)=m^4+2m^2n^2-m^2n-2n^3[/tex]

2)

The given polynomial is

[tex](a-2)(4a^3-3a^2)[/tex]

Multiply as follows:

[tex](a-2)(4a^3-3a^2)=a(4a^3-3a^2)-2(4a^3-3a^2)[/tex]

[tex]=a\times4a^3-a\times3a^2-2\times4a^3-(-2)\times3a^2[/tex]

[tex]=4a^4-3a^3-8a^3+6a^2[/tex]

[tex]=4a^4-11a^3+6a^2[/tex]

Hence the required expansion is

[tex](a-2)(4a^3-3a^2)=4a^4-11a^3+6a^2[/tex]

Pls help ASAP!!! Ill give you 5.0

Answers

The equivalent equation of 6x + 9 = 12  is 2x + 3  = 4.

Another equivalent equation of 6x + 9 = 12 is 3x + 4.5 = 6

What are equivalent equations?

Equivalent equations are algebraic equations that have identical solutions or roots. In other words,  equivalent equations are equations that have the same answer or solution.

Therefore, the equivalent equation of 6x + 9 = 12 can be calculated as follows:

6x + 9 = 12

Divide through by 3

6x / 3 + 9 / 3 = 12 / 3

2x + 3  = 4

Therefore, the equivalent equation of 6x + 9 = 12 is 2x + 3  = 4

Another equation that is equivalent to 6x + 9 = 12 is 3x + 4.5 = 6

learn more on equivalent equation here: https://brainly.com/question/17357101

#SPJ1

An object was dropped off the top of a building. The function f(x) = -16x2 + 36represents the height of the object above the ground, in feet, X seconds after beingdropped. Find and interpret the given function values and determine an appropriatedomain for the function.

Answers

f(x) = -16x^2 + 36

Where:

f(x) = height of the object

x = seconds after being dropped.

f(-1) = -16 (-1)^2 + 36

f(-1) = -16 (1) + 36

f(-1) = 20

-1 seconds after the object was dropped, the object was 20 ft above the ground.

This interpretation does not make sense, because seconds can't be negative.

f(0.5) = -16 (0.5)^2 + 36

f(0.5) = -16 (0.25) +36

f(0.5) = -4 + 36

f(0.5) = 32

0.5 seconds after the object was dropped, the object was 32 ft above the ground.

This interpretation makes sense in the context of the problem.

f(2) = -16 (2)^2 + 36

f(2) = -16 (4) +36

f(2) = -64+36

f(2) = -28

2 seconds after the object was dropped, the object was -28 ft above the ground.

This interpretation does not make sense in the context of the problem, because the height can't be negative.

Based on the observation, the domain of the function is real numbers in a <- x <-b , possible values of x where f(x) is true.

before the object is released x=0

next, calculate x when f(x)=0 ( after the object hits the ground)

0= -16x^2+36

16x^2 = 36

x^2 = 36/16

x^2 = 2.25

x = √2.25

x = 1.5

0 ≤ x ≤ 1.5

10 pts What is x and y intercept for the following equation? 8x + y = 12 A. x intercept = 0 y intercept = 4 B. x intercept = 12 y intercept = 0 C. x intercept = 4 y intercept = 6 D. x intercept = 3/4 y intercept = 12 OB ОА Oc

Answers

To find the x intercept of the equation make y=0 and solve for x.

[tex]\begin{gathered} 8x+y=12 \\ 8x=12 \\ x=\frac{12}{8} \\ x=\frac{6}{4} \\ x=\frac{3}{2} \end{gathered}[/tex]

The x intercept is 3/2

To find the y intercept, make x=0 and solve for y

[tex]\begin{gathered} 8x+y=12 \\ 8(0)+y=12 \\ y\text{=}12 \end{gathered}[/tex]

The y intercept is 12.

The first five multiples for the numbers 4 and 6 are shown below.Multiples of 4: 4, 8, 12, 16, 20Multiples of 6: 6, 12, 18, 24, 30,What is the least common multiple of 4 and 6?241224

Answers

We have

Multiples of 4: 4, 8, 12, 16, 20

Multiples of 6: 6, 12, 18, 24, 30,

the least common multiple is the first number share between these numbers as we can see the first number share is 12

What is the unknown angle b?

Answers

Answer:

48°


Explanation:

A line always equals 180°. The angle on the right is a 90° angle (we know this because or the little red box shown) and the angle in the middle is 42°. We would add 42° and 90° to get the combination of both which is 132°

42+90=132

Then subtract 132° from 180° to find unknown angle b.

180-132=48

Unknown angle b= 48°

The world's largest swimming pool is the Orthalieb pool in Casablanca, Morocco the length is 30 m longer then 6 times the width. If the perimeter of the pool is 1110 Meters what are the dimensions of the pool?

Answers

The length of the rectangular pool is 30m longer than 6 times the width.

Let "x" represent the length of the width, then you can express the dimensions of the pool as follows:

[tex]\begin{gathered} w=x \\ l=6x+30 \end{gathered}[/tex]

The perimeter of the pool is 1110m, this perimeter was obtained using the formula:

[tex]P=2w+2l[/tex]

Replace the formula with the expressions determined for the width and length:

[tex]1110=2(x)+2(6x+30)[/tex]

From this expression, you can determine the value of x:

-First, distribute the multiplications on the right side of the equation:

[tex]\begin{gathered} 1110=2x+2\cdot6x+2\cdot30 \\ 1110=2x+12x+60 \\ 1110=14x+60 \end{gathered}[/tex]

-Second, pass 60 to the left side of the equal sign by applying the opposite operation to both sides of it:

[tex]\begin{gathered} 1110-60=14x+60-60 \\ 1050=14x \end{gathered}[/tex]

-Third, divide both sides of the equation by 14 to determine the value of x:

[tex]\begin{gathered} \frac{1050}{14}=\frac{14x}{14} \\ 75=x \end{gathered}[/tex]

The width of the pool is w= 75 meters

Now you can determine the length of the pool:

[tex]\begin{gathered} l=6x+30 \\ l=6\cdot75+30 \\ l=480 \end{gathered}[/tex]

The length of the pool is l=480 meters

Find the measures of the numbered angles in rhombus DEFG. I just need someone to shown me how to find each of the numbered angles

Answers

Step 1

Properties of a Rhombus

Below are some important facts about the rhombus angles:

Rhombus has four interior angles.

The sum of interior angles of a rhombus add up to 360 degrees.

The opposite angles of a rhombus are equal to each other.

The adjacent angles are supplementary.

In a rhombus, diagonals bisect each other at right angles.

The diagonals of a rhombus bisect these angles.

Step 2

From the figure

Angle DGF = Angle DEF = 118

Step 3

Since adjacent angles are supplementary, that is add to 180 degrees

[tex]\begin{gathered} \angle\text{DGF + }\angle GFE\text{ = 180} \\ 118\text{ + }\angle GFE\text{ = 180} \\ \angle GFE\text{ = 180 - 118} \\ \angle GFE\text{ = 62} \end{gathered}[/tex]

Step 4

The diagonals of a rhombus bisect these angles

[tex]\begin{gathered} \angle3\text{ = }\angle4\text{ = }\frac{62}{2}\text{ = 31} \\ \angle3\text{ = }\angle4\text{ = 31} \end{gathered}[/tex]

Step 5

The opposite angles of a rhombus are equal to each other.

[tex]\angle1\text{ = }\angle\text{ 2 = 31}[/tex]

Final answer

[tex]\angle\text{1 = }\angle\text{ 2 = }\angle\text{ 3 = }\angle4\text{ = 31}[/tex]

you get a student loan from the educational assistance Foundation to pay for your educational expenses as you earn your associate's degree you will be allowed 10 years to pay the loan back find the simple interest on the loan if you borrow $3,600 at 8 percent

Answers

Simple interest = PRT/100

where p = $3600

R=8

T=10

Substituting into the formula;

S.I = $3600 x 8 x 10 /100

=$36 x 8 x 10

=$2880

The formula to calculate the gravitational force between two objects is F_g=\frac{GM_1M_2}{r^2},F
g

=
r
2

GM
1

M
2



, where M_1M
1

and M_2M
2

are the masses of the objects, GG is the gravitational constant and rr is the distance between the objects. Solve for M_2M
2

in terms of F_g,F
g

, G,G, M_1M
1

and r.r.

Answers

The expression for M in terms of other variables is M = Fr^2/Gm

Subject of formula

The variable being calculated is the formula's subject. On one side of the equals sign, it is identifiable as the letter on its own.

In order to make one of the the variables the subject of the formula, we place rewrite the expression in a different form.

Given the formula to calculate the gravitational force between two objects as;

Fg = GMm/r^2

We are to make M the subject of the formula in terms of other variables.

F = GMm/r^2

Cross multiply

Fr^2 = GMm

Divide both sides by Gm

Fr^2/Gm = GMm/Gm

Fr^2/Gm = M

Swap

M = Fr^2/Gm

This gives the expression for the variable M.

Learn more on subject of formula here: https://brainly.com/question/657646

#SPJ1

i have to find is they similar or not. help im lost

Answers

First we have to find the missing angle on each case.

In the first triangle we have

180°-(28°+80°)=72°

In the second triangle we have

180°-(28°+71°)=81°

Since the values of the angles are not the same for both triangles they are not similar.

TRIGONOMETRY Find the length of the longer diagonal of this parallelogram round to the nearest tenth

Answers

Given the parallelogram ABCD

As shown: AB = 4 ft

m∠BAC = 30

m∠BDC = 104

We will find the length of the longer diagonal which will be AC

See the following figure:

The point of intersection of the diagonals = O

The opposite sides are parallel

AB || CD

m∠ABD = m∠BDC because the alternate angles are congruent

So, in the triangle AOB, the sum of the angles = 180

m∠AOB = 180 - (30+104) = 46

We will find the length of OA using the sine rule as follows:

[tex]\begin{gathered} \frac{OA}{\sin104}=\frac{AB}{\sin 46} \\ \\ OA=AB\cdot\frac{\sin104}{\sin46}=4\cdot\frac{\sin104}{\sin46}\approx5.3955 \end{gathered}[/tex]

The diagonals bisect each other

So,

[tex]AC=2\cdot OA=10.79[/tex]

The longer diagonal is AC

Rounding to the nearest tenth

So, the answer will be AC = 10.8 ft

A long distance runner runs 2⁵ miles one week and 2⁷ miles the next week. How many times farther did he run in the second week than the first week?

Answers

Answer:

he ran 96 miles farther in the second week.

Explanation:

Given that A long distance runner runs 2⁵ miles one week;

[tex]2^5miles=2\times2\times2\times2\times2=32miles[/tex]

And 2⁷ miles the next week;

[tex]2^7miles=2\times2\times2\times2\times2\times2\times2=128\text{ miles}[/tex]

The amount of miles farther he run in the second week than the first week is;

[tex]\begin{gathered} 128-32 \\ =96\text{ miles} \end{gathered}[/tex]

Therefore, he ran 96 miles farther in the second week.

Factor completely. (3.2² - 12x)(x2 – 2x + 1) =

Answers

We will have the following:

Which equation is the best approximation of the trend line

Answers

approximatesThe equation of a line is given by

[tex]\begin{gathered} y=mx+c \\ m=\frac{change\text{ in y}}{change\text{ in x}}=\frac{y_2-y_1}{x_2-x_1}=\frac{y-y_1}{x-x_1} \end{gathered}[/tex]

Taking two points from the line of best fit

Point A(14,200) and Point B (18,400)

[tex]\begin{gathered} x_1=14;y_1=200;x_2=18;y_2=400 \\ \frac{y_2-y_1}{x_2-x_1}=\frac{y-y_1}{x-x_1} \\ \frac{400-200}{18-14}=\frac{y-200}{x-14} \\ \frac{200}{4}=\frac{y-200}{x-14} \\ \frac{50}{1}=\frac{y-200}{x-14} \\ y-200=50(x-14) \\ y-200=50x-700 \\ y=50x-700+200 \\ y=50x-500 \end{gathered}[/tex]

Hence, the equation that best approximate the trend line is y=50x-500

Other Questions
PassageDuring World War II, wheg many experienced firefighters were called to duty, local communities had to dealwith forest fires on their own. This situation led to a national campaign to prevent fires caused by humancarelessness, and to the creation of the character Smokey Bear (contrary to popular belief, it's not Smokeythe Bear). The campaign has been successful-since its inception, the average area lost annually to forestfires has dropped from 22 million to 4 million acres.QuestionWhat assumption does the author of the passage make?O Fighting forest fires was not a priority during World War II.O Human carelessness is the cause of every forest fire.O The decrease in forest fires is a result of the Smokey Bear campaign.O Communities will soon have to fight forest fires on their own again. How do you evaluate the following polynomials for a domain value?P(x) = -3x + 9x find P(-5) 12*pi=pi*12Name the property that the following statement illustratesA. Identify property of multiplicationB. Associative property of multiplication C. Commutative property of additionD. Commutative property of multiplication E. Identity property of additionF. Associative property of addition A plumber charges a flat fee of 75 to visit a home and examine a clogged drain. The plumber charges an additional 22 per hour spent fixing the drain. The total cost, (in dollars), for fixing a drain that takes hours is given by the following. Find the percent markdown. Cost of a pants $36.95, selling price $24.02 I need help with my math assignment thank you :) Rewrite the expression using only positive integer exponents. (m2/3n-1/3)^5 Solve the equation. -5x + 1 = 31 x= I need help with this pls it due tomorrow and I need it please please What is the mathematical formula that you would use to describe the financial activity on a bank statement? Find the cosine of angle R. Reduce the answer to the lowest terms. Question 1Is the sequence arithmetic: 78, 785, 7855, 78555, ...O No5 ptsYesNext > Calculate the determinant of this 2x2 matrix. Provide the numerical answer. 2 -14 - 5 jeslie ann has a 48 month installment loan of 82.91. the amount she borrowed was 3600 7. f(x) = x + 4 (a) f(-2) (b) f(3) f) f (c) f(2) (d) f(x + bx) Eli has 12 eggs. He uses his grandpa's recipe to bake 4 loaves of challah. Find how many eggs are left over if Eli uses 2 eggs for each loaf of challah? tom wishes to purchase a property that has been valued at $300,000. he has 25% of this amount available as a cash deposit, and will require a mortgage for the remaining amount. the bank offers him a 25-year mortgage at 2% interest. calculate his monthly repayments. give your answer in dollars and cents. do not include commas or the dollar sign in your answer. Write the product using exponents. I need help Im not sure how to do this upon leaving her club, the golf ball moved upward to a height above the surrounding trees. is the ke and pe increasing, decreasing, or staying the same? If an airplane is running low on fuel, the pilot may decide to dump unneededweight. As the airplane gets lighter, the engines need less fuel to generate thesame amount of acceleration for flight. The pilot has taken advantage ofNewton's law of motion.A. fourthB. thirdO C. firstD. second