Determine whether the following relation is a function. Then state the domain and range of the relation or function.{(7,6), (4,-6), (0,-1), (3,3), (1,1)}Is this relation a function? Choose the correct answer below.A.Yes, because each first component corresponds to exactly one second component.B.No, because each first component corresponds to more than one second component.C.Yes, because each first component corresponds to more than one second component.D.No, because each first component corresponds to exactly one second component.

Answers

Answer 1

A function is a relation in which each possible input value leads to exactly one output value. We say “the output is a function of the input.”

The input values make up the domain, and the output values make up the range.

The relation is given to be:

[tex]\mleft\lbrace(7,6\mright),(4,-6),(0,-1),(3,3),(1,1)\}[/tex]

To classify a function, get the input and output values. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to two or more outputs, do not classify the relationship as a function.

The input values are: {7, 4, 0, 3, 1}

The output values are: {6, -6, -1, 3, 1}

Therefore, the relation is a function.

The correct option is OPTION A: Yes, because each first component corresponds to exactly one second component.

The domain is:

[tex]\mleft\{7,4,0,3,1\mright\}[/tex]

The range is:

[tex]\mleft\{6,-6,-1,3,1\mright\}[/tex]


Related Questions

Question 3(Multiple Choice Worth 2 points)
(01.06 MC)
Simplify √√-72-
--6√√2
6√-2
6√√2i
061√2

Answers

Answer:

[tex]6i\sqrt{2}[/tex]

Step-by-step explanation:

Given expression:

[tex]\sqrt{-72}[/tex]

Rewrite -72 as the product of 6 · -1 · 2:

[tex]\implies \sqrt{36 \cdot -1 \cdot 2}[/tex]

Apply the radical rule  [tex]\sqrt{ab}=\sqrt{a}\sqrt{b}:[/tex]

[tex]\implies \sqrt{36} \sqrt{-1} \sqrt{2}[/tex]

Carry out the square root of 36:

[tex]\implies 6\sqrt{-1}\sqrt{2}[/tex]

Apply the imaginary number rule [tex]\sqrt{-1}=i[/tex] :

[tex]\implies 6i\sqrt{2}[/tex]

What is the max/min of the quadratic equation in factored form: f(x) = 0.5(x +3)(x-7)

Answers

F(x) = 1/2(x+3)(X-7)

Step 1 ; expand the function

F(x)= 1/2(x²-7x+3x-21)

F(x) = 1/2(x² - 4x-21)

F(x) = 1/2x² - 2x-21/2

Step 2 : Take the second derivative of F(x)

This means you are to differentiate F(X) twice

[tex]\begin{gathered} F(x)=\frac{1}{2}x^2-2x-\frac{21}{2} \\ \text{First derivative is} \\ F^!(x)\text{=x-2} \\ F^{!!}(x)=1 \\ \text{the second derivative =1} \end{gathered}[/tex]

The second derivative is greater than 0, so it is a minimum point

Put x=1 in F(x) to find the value

[tex]\begin{gathered} f(x)=\frac{1}{2}(1)^2_{}-\text{ 2(1)-}\frac{21}{2} \\ f(x)=\frac{1}{2}-2-\frac{21}{2} \\ f(x)=-2-\frac{20}{2} \\ f(x)\text{ =-12} \end{gathered}[/tex]

The minimum of the quadratic equation is -12

Do the following lengths form an acute, right, or obtuse triangle? 99 90 39 O Acute, 7921 < 7921 Right, 7921 = 7921 Obtuse, 7921 > 7921

Answers

As we can see the interior angles of this triangle are less than 90° , therefore this triangle is an ACUTE TRIANGLE

3|x -1| > 9Group of answer choicesx> 4 or x < -2x > 4x < 4 or x > -2x > 7 or x < -5

Answers

Answer:

[tex]x\text{ > 4 or x < -2}[/tex]

Explanation:

Here, we want to get the correct x values

We have this as follows:

[tex]\begin{gathered} 3|x-1|\text{ > 9} \\ =\text{ 3(x-1) > 9} \\ 3x-3\text{ > 9} \\ 3x\text{ > 9 + 3} \\ 3x\text{ > 12} \\ x\text{ > 12/3} \\ x\text{ > 4} \\ \\ OR \\ \\ -3(x-1)\text{ > 9} \\ -3x\text{ + 3 > 9} \\ -3x\text{ > 9-3} \\ -3x\text{ > 6} \\ x\text{ < 6/-3} \\ x\text{ < -2} \end{gathered}[/tex]

Given f(x) and g(x) = f(k⋅x), use the graph to determine the value of k.A.) - 2B.) -1/2C.) 1/2D.) 2

Answers

In order to solve this problem we have to remember that the equation of any line takes the form

[tex]y(x)=mx+b[/tex]

Therefore,

[tex]y(kx)=\text{mkx}+b[/tex]

In other words, multiplying k by x is just multiplying the slope m by a factor of k.

The slope of g(x) is

[tex]m=2[/tex]

and the slope of f(x) is

[tex]m=1[/tex]

We see than the slope of g(x) is 2 times the slope of f(x); therefore, k = 2 which is choice D.

Does the formula represent a linear or nonlinear function? Explain

Answers

A linear function is an equation in which each term is either a constant or the product of a constant and the first power of a single variable. In other word, a linear function represents a straight line.

In our case, we have 2 variables: the volume (V) and the radius (r). However, the relationship is not linear because the radius is raised to the third power (not the first power). Therefore, the volume formula is a nonlinear function.

Question 9 of 10 What is the measure of 7 shown in the diagram below? 110- O A. 71• O B. 35.5° X C 32° 39- Z D. 74.50

Answers

In this case, we'll have to carry out several steps to find the solution.

Step 01:

Diagram

arc vw = 110 °

angle = 39°

arc xy = ?

Step 02:

We must analyze the diagram to find the solution.

39 = 1/2 ( 110 - arc xy)

39*2 = 110 - arc xy

78 - 110 = - arc xy

- 32 = - arc xy

arc xy = -32 / - 1 = 32

The answer is:

arc xy = 32°

Answer:

Step-by-step explanation:

Answer is C

An airplane travels at 550 mph. How far does the airplane travel in 5 1/2 hours

Answers

Answer:

At a speed of 550mph, the airplane covers 3,025 miles in 5 1/2 hours.

Explanation:

Given:

• The speed of the airplane = 550 miles per hour

,

• Time taken = 5 1/2 hours

We want to find out how far the airplane travels.

The distance covered is calculated using the formula:

[tex]Distance=Speed\times Time[/tex]

Substitute the given values:

[tex]Distance=550\times5\frac{1}{2}[/tex]

Simplify:

[tex]\begin{gathered} Distance=550\times\frac{11}{2} \\ =275\times2\times\frac{11}{2} \\ =275\times11 \\ =3025\text{ miles} \end{gathered}[/tex]

The airplane covers 3,025 miles in 5 1/2 hours.

Simplify each expression.26. -2 · 11ly27. -5s(-4t)28. 3(-p)(-2q)29. -j(11k)30. 7x(-2y)

Answers

[tex]-2\cdot11ly=-22ly[/tex][tex]-5x\cdot(-4t)=20xt[/tex][tex]3\cdot(-p)\cdot(-2q)=-6\cdot(-pq)=6pq[/tex][tex]-j\cdot(11k)=-11jk[/tex][tex]7x\cdot(-2y)=-14xy[/tex]

We need to multiply each term in the expression and take into account the rules for signs.

You randomly draw a marble from a bag of marbles that contains 7 blue marbles 2 green marbles and 1 red marbles

Answers

Given the following:

7 blue marbles

2 green marbles

1 red marbles

We to find the probability of not drawing a blue marble.

We will be solving it in two ways.

First let's get the total marbles

Total Marble = 7 + 2 + 1 = 10

recall that probablity is number of favourable outcome divide by number of total outcome.

So,

probablity of Drawing a Blue Marble is = 7/10

probability of not Drawing Blue Marbles = 1 - Probability of Drawing Blue Marbles

= 1 - 7/10

= 10 - 7

10

= 3/10

OR

Probability of not Drawing Blue Marbles = Probablity of drawing Green or Red Marbles.

= 2/10 + 1/10

= 3/10

Therefore, the probability of not Drawing Blue Marbles is 3/10.

One function has an equation in slope-intercept form: y = x + 5. Another function has an equation in standard form: y + x = 5. Explain what must be different about the properties of the functions. See if you can determine the differences without converting the equation to the same form.

Answers

Without converting the equations to the same form, the property that must be different in the functions is the slope

How to determine the difference in the properties of the functions?

From the question, the equations are given as

y = x + 5

y + x = 5


From the question, we understand that:

The equations must not be converted to the same form before the question is solved

The equation of a linear function is represented as

y = mx + c

Where m represents the slope and c represents the y-intercept

When the equation y = mx + c is compared to y = x + 5, we have

Slope, m = 1

y-intercept, c = 5

The equation y = mx + c can be rewritten as

y - mx = c

When the equation y - mx = c is compared to y + x = 5, we have

Slope, m = -1

y-intercept, c = 5

By comparing the properties of the functions, we have

The functions have the same y-intercept of 5The functions have the different slopes of 1 and -1

Hence, the different properties of the functions are their slopes

Read more about linear functions at

https://brainly.com/question/15602982

#SPJ1

4(px+1)=64The value of x when p is -5 is ?

Answers

Answer:

x = -3

Explanation:

Given the equation:

[tex]4\left(px+1\right)=64[/tex]

We are required to find the value of x when p is -5.

[tex]\begin{gathered} 4\left(px+1\right)=64\colon p=-5 \\ 4\left(-5x+1\right)=64 \\ -20x+4=64 \\ -20x=64-4 \\ -20x=60 \\ \text{Divide both sides by -20} \\ x=\frac{60}{-20} \\ x=-3 \end{gathered}[/tex]

Graph the solution to the following system of inequalities.y>3x+7y≤−3x-8

Answers

Step 1. Graphing the first inequality.

The first inequality is:

[tex]y>3x+7[/tex]

to graph this, we need to graph the line 3x+7, which compared with the slope-intercept equation

[tex]y=mx+b[/tex]

where m is the slope and b is the y-intercept, the line

[tex]y=3x+7[/tex]

is a line with a slope of 3 and a y-intercept at 7:

SInce the inequality is:

[tex]y>3x+7[/tex]

The solution just for this inequality are the values greater than the red line, but not including the red line so we represent is a dotted line and a shaded part above:

Step 2. Graph the second inequality.

The second inequality is:

[tex]y\le-3x-8[/tex]

As we did with the first inequality, we graph the line -3x-8 first.

comparing -3x-8 with the slope-intercept equation:

[tex]y=mx+b[/tex][tex]y=-3x-8[/tex]

we can see that the slope m is -3 and the y-intercept b is -8. This line is shown in blue in the following diagram along with our results for the previous inequality:

Since the inequality form is:

[tex]y\le-3x-8[/tex]

We shade the values below this blue line:

The final solution will be the intersection between the red part and the blue part:

A student worked 51 hr during a week one summer. The student earned $5. 10 per hour for the first 40 hr and $7.65 per hour for overtime. How much did the student earn during the week?

Answers

We will determine the earnings for the week as follows:

[tex]W=40(5.10)+11(7.65)\Rightarrow W=288.15[/tex]

So, the student earned $288.15 that week.

2) Katie and Jacob are enlarging pictures in a school yearbook on the copy machine. The ratio of the width to the length of the enlarged photo will be the same as the ratio of the width to the length of the original photo. 25 points One of the photographs that they want to enlarge is a 3" x 4"photo. katie says that she can enlarge the photo to a 9" x 12", but Jacob disagrees. He says it will be 11" x 12". Who is correct? Explain your reasoning in words. * Enlarged Photo Original Photo 3 inches 4 inches

Answers

The original picture Katie and Jacob want to enlarge is 3 by 4 photographs

This means that the initial length of the photograph is 3 and the intial width of the photographs is 4

If both of them want to enlarge the photograph, then the scaling factor must be the same for both the width and length

Katie enlarge the photo to a 9 x 12

The ratio of the original photograph is 3 to 4

That is, 3 : 4

Katie enlarge the photo to a 9 x 12

Ratio of the enlarged photo by katie is 9 to 12

That is, 9 : 12

Equate the two ratio together

3/4 = 9/12

Introduce cross multiplication

We have,

3 x 12 = 4 x 9

36 = 36

Therefore, the ratio which katie enlarged the photo results to a proportion

For Jacob

Jacob enlarged the photo to 11 x 12

Equating the two ratios

3/4 = 11/12

3 x 12 = 4 x 11

36 = 44

This does not give us a proportion

Therefore, Katie is correct while Jacob is wrong

Hello! I need some help with this homework question, please? The question is posted in the image below. Q7

Answers

SOLUTION

Since -3 is a zero of the function then x=-3

This implies

x+3 is a factor of the polynomial

Following the same procedure, since 2 and 5 are zeros then

x-2 and x-5 are factors

Hence the polynomial can be written as

[tex]y=a(x+3)(x-2)(x-5)[/tex]

Since the graph passes through the point (7,300)

Substitute x=7 and y=300 into the equation

This gives

[tex]300=a(7+3)(7-2)(7-5)[/tex]

Solve the equation for a

[tex]\begin{gathered} 300=a(10)(5)(2) \\ 300=100a \\ a=\frac{300}{100} \\ a=3 \end{gathered}[/tex]

Substitute a into the equation of the polynomial

[tex]y=3(x+3)(x-2)(x-5)[/tex]

Therefore the answer is

[tex]y=3(x+3)(x-2)(x-5)[/tex]

In ΔVWX, m∠V=(6x−4, m∠W=(x+12), and m∠X=(3x+2. Find m∠W.

Answers

The measure of angle W in the triangle is 29 degrees

How to determine the measure of angle W?

The definition of the angles are given as

m∠V=(6x−4, m∠W=(x+12), and m∠X=(3x+2)

Where the triangle is given as

Triangle VWX

The sum of angles in a triangle is 180 degrees

This means that

V + W + X = 180

Substitute the known values in the above equation

So, we have

6x - 4 + x + 12 + 3x + 2 =  180

Evaluate the like terms

10x = 170

Divide by 10

x = 17

Substitute x = 17 in m∠W=(x+12)

So, we have

m∠W=(17+12)

Evaluate

m∠W = 29

Hence, the angle W is 29 degrees

Read more about angles at

https://brainly.com/question/7620723

#SPJ1

Writing and evaluating a function modeling continuous exponential growth or decay given doubling time or half-life

Answers

We were given the following details:

Half-life = 11 minutes

Initial amount = 598.8 grams

[tex]\begin{gathered} y=a_0e^{kt} \\ where\colon \\ y=amount \\ a_0=Initial\text{ }Amount \\ e=euler^{\prime}s\text{ }constant \\ k=decay\text{ }constant \\ t=time \end{gathered}[/tex]

a)

We have the exact formula to be:

[tex]undefined[/tex]

Describe the transformation of f(x) that produce g(x). f(x)= 2x; g(x)= 2x/3+7Choose the correct answer below.

Answers

[tex]\begin{gathered} f(x)=2x \\ g(x)=\frac{2}{3}x+7 \end{gathered}[/tex]

The vertical translation involves shifting the graph either up or down on the y axis. For example.

[tex]\begin{gathered} y=f(x) \\ \text{translated upward }it\text{ will be } \\ y=f(x)+k \end{gathered}[/tex]

When a graph is vertically compressed by a scale factor of 1/3, the graph is also compressed by that scale factor. This implies vertical compression occurs when the function is multiplied by the scale factor. Therefore,

[tex]\begin{gathered} f(x)=2x \\ \text{The vertical compression by a scale of }\frac{1}{3}\text{ will be} \\ g(x)=\frac{1}{3}(2x)=\frac{2}{3}x \end{gathered}[/tex]

Finally, the vertical translation up 7 units will be as follows

[tex]g(x)=\frac{2}{3}x+7[/tex]

The answer is a. There is a vertical compression by a factor of 1/3 . Then there is a vertical translation up 7 units.

Dilate trianglesDraw the image of AABC under a dilation whose center is A and scale factor is

Answers

Since the dilation is centered at vertex A, the coordinates of A' are the same of A.

Then, to find the coordinates of B, let's multiply the distance AB by the scale factor:

[tex]\begin{gathered} AB=12.6\\ \\ A^{\prime}B^{\prime}=12.6\cdot\frac{1}{4}=3.15 \end{gathered}[/tex]

Doing the same for AC, we have:

[tex]A^{\prime}C^{\prime}=AC\cdot\frac{1}{4}=11.3\cdot\frac{1}{4}=2.825[/tex]

The points B' and C' are on the sides AB and AC, respectively.

Knowing this, let's draw the image A'B'C':

Since AB = BC, we also have A'B' = B'C' = 3.15.


Find the volume of a pyramid with a square base, where the side length of the base is
11 in and the height of the pyramid is 15.1 in. Round your answer to the nearest
tenth

Answers

Answer:

53.7 cubic inches

Step-by-step explanation:

Use the volume formula for a square pyramid:

[tex]V = \dfrac{1}{3} (A_{\mathrm{base}} \cdot h)\\\\\mathrm{or} \\\\A = \dfrac{l^2h}{3}[/tex]

where l is the side length of the base and h is the height of the pyramid.

Now substitute in the given values:

[tex]V = \dfrac{1}{3}((11 \, \mathrm{in})^2 \cdot 15.1 \, \mathrm{in})[/tex]

[tex]V = \dfrac{1}{3}(121 \, \mathrm{in}^2 \cdot 15.1 \, \mathrm{in})[/tex]

[tex]V = \dfrac{1}{3}(1,821 \, \mathrm{in}^3)[/tex]

[tex]V = 53.7 \, \mathrm{in}^3[/tex]

So, the volume of the pyramid is 53.7 cubic inches.

I have 5 digits in my number. I do not have any tens. My digits add upto the product of 2 and 6. My biggest place has a value of 30,000. Myhundreds and thousands place adds up to three. The value of mythousands place is bigger than my hundreds. I only have one 0 in mynumber. The sum of my ten thousands, thousands, and hundredsequals the value of my ones place.

Answers

Let's begin by listing out the information given to us:

I have 5 digits in my number means the number is XXXXX (10,000 - 99,999)

No tens: the place value of 'tens' is zero

My digits add up to the product of 2 and 6: 2 * 6 = 12

[tex]\begin{gathered} \Sigma X=2\cdot6=12 \\ \Sigma X=12 \end{gathered}[/tex]

My biggest place has a value of 30,000: this restricts the number to lie between 10,000 - 30,000

My hundreds and thousands place adds up to three: this can either be 2 + 1 or 1 + 2 or 0 + 3 or 3 + 0

The value of my thousands place is bigger than my hundreds: this implies that it is 2 + 1 or 3 + 0

I only have one 0 in my number: this cannot be in the 'ten thousands' place, it is the 'tens' place value (I do not have any tens)

The sum of my ten thousands, thousands, and hundreds equals the value of my ones place: the value of the 'ones' place is 6, the value of the 'ten thousands' is 2, the value of the 'thousands' is 3, the value of the 'hundreds' is 1

Hence, the number is 23,106 (remember that "My biggest place has a value of 30,000")

Find the equation of the line containing the following: (0,10) and (-5,0)

Answers

A linear equation in the slope-intercep form is y = mx + b.

To find the equation, follow the steps below.

Step 01: Substitute the point (0, 10) in the equation.

[tex]\begin{gathered} y=mx+b \\ 10=m\cdot0+b \\ 10=b \end{gathered}[/tex]

Then,

[tex]y=mx+10[/tex]

Step 02: Substitute the point (-5, 0).

[tex]0=-5m+10[/tex]

Subtract 10 from both sides:

[tex]\begin{gathered} 0-10=-5m+10-10 \\ -10=-5m \end{gathered}[/tex]

And divide both sides by -5:

[tex]\begin{gathered} \frac{-10}{-5}=\frac{-5}{-5}m \\ 2=m \end{gathered}[/tex]

Step 03: Write the linear equation.

[tex]y=2x+10[/tex]

Answer:

[tex]y=2x+10[/tex]

I have the area of the circle but having trouble find the area of the triangle

Answers

To calculate the area of the triangle we need the length of the base and the height, being the height perpendicular to the base.

The base of the triangle has a length that is equal to the diameter of the circle. It can also be expressed as 2 times the radius r. So the base is:

[tex]b=2\cdot r=2\cdot4=8\operatorname{cm}[/tex]

The height is the segment perpendicular to the base that goes up to the vertex at the top. as it goes from the center of the circle to the border of the circle, it has a length that is equal to the radius r:

[tex]h=r=4\operatorname{cm}[/tex]

Then, we can calculate the area of the triangle as:

[tex]A=\frac{b\cdot h}{2}=\frac{8\cdot4}{2}=\frac{32}{2}=16\operatorname{cm}^2[/tex]

We can calculate the area of the circle as:

[tex]A_c=\pi r^2\approx3.14\cdot4^2=3.14\cdot16=50.24[/tex]

The probability that a randomly selected point within the circle falls in the white area is equal to the ratio of white area to the area of the circle.

The white area is equal to the area of the circle minus the area of the triangle.

Then, we can calculate the probability as:

[tex]p=\frac{A_w}{A_c}=\frac{A_c-A_t}{A_c}=\frac{50.24-16}{50.24}=\frac{34.24}{50.24}\approx0.68=68\%[/tex]

Answer: The probability is p=0.68.

What percent of 120 is 30?

Answers

To find what percent of 120 is 30.

We will use the relationship

[tex]\frac{is}{of}\times100\text{ \%}[/tex]

In our case

[tex]\begin{gathered} is=30 \\ of=120 \end{gathered}[/tex]

[tex]\frac{30}{120}\times100\text{ \%=25\%}[/tex]

Thus, the answer is 25%

solve the system by addition method x + 4y = 34x + 5y = - 10

Answers

y = 2

so,

x + 4 * 2 = 3

x = 3 - 4 * 2 = 3 - 8 = -5

so,

x = -5 and y = 2

I NEED HELP WITH THIS ASAP ILL MARK YOU BRAINLIEST Put each set of numbers from greatest to least

Answers

Every number is equivalent to:

[tex]\begin{gathered} 7.18\times10^{-3}=0.00718 \\ \sqrt{\frac{25}{49}}=\frac{5}{7}=0.7143 \\ \frac{7}{10}=0.7 \\ 0.\bar{8}=0.8888 \\ \frac{3}{4}=0.75 \\ 80\text{ \% = 0.8} \end{gathered}[/tex]

So, each number from greatest to least is:

[tex]0.\bar{8},80\text{ \%, }\frac{3}{4},\sqrt{\frac{25}{49}},\frac{7}{10},7.18\times10^{-3}[/tex]

A country with 16 states and a population of 615529 contains 128 seats in a House of Representatives.What is the average number of seats assigned per state?

Answers

Since there are 128 seats available and these 128 seats will be filled in by people from 16 states, we will divide 128 by 16 to get the average number of seats assigned per state.

[tex]128\div16=8[/tex]

Therefore, the average number of seats assigned per state is 8.

how many ones equal 4 tens

Answers

We have to find the number of ones in 4 tens.

As we know that, there are 10 ones in a 10.

Therefore, in 4 tens, the total number of ones would be 1 x 4 x 10 = 40

Find P (A and B) for the following. P(A) = .65 and P(B) =.69 and P(A and B) =.48P(A and B)

Answers

We know that

[tex]\begin{gathered} P(A)=0.65 \\ P(B)=0.69 \end{gathered}[/tex]

The probability of the intersection of the two events is:

[tex]P(AandB)=0.48[/tex]

Answer:

GIven , P(A) = 0.65 P(B) = 0.69

Other Questions
P(3,-3) Q(8,7) R(5,-2)Given S(11,1) is a point which lies on the extended line PR where QS is a perpendicular line to PRS. Find the area of triangle PQR. A triangular road sign has a base of 30 inches and a height of 40 inches. What is its area? Two numbers sum to 61. Twice the first subtracted from the second is 1. Find the numbers. 40) Climbing the Empire State Building A new record for running the stairs of the Empire State Building was set on February 4, 2003. The 86 flights, with a total of 1576 steps, was run in 9 minutes and 33 seconds. If the height gain of each step was 0.20 m, and the mass of the runner was 70.0 kg, what was his average power output during the climb? Give your answer in both watts and horsepower. Find the distance between A(5,-4) and B(5,-5) PLEASE HELP I WILL MARK BRAINLIEST!!Which of the following equations is a linear function?A) 2x + 3y = 6B) y = x^2 + 1C) y=x^3D) x^2 + y^2 = 9 Which of the following is required for osmosis to occur?A. An enzymeB. A fully permeable membrane.C. ATPD. A salute concentration gradient. In 2001, Rodney Hampton earned $75,200 as a self-employed worker. He also earned $41,350 as an employee. How much FICA tax did he pay for both earnings? Note:Self-employed tax rate is 15.3% and the employee tax rate is 7.65%.$14,668.88$14,577.25$14,324.09$14,225.50None of these choices are correct. inflation is an increase in group of answer choices the overall price level. real gross national product. the price of one item. the average income level. pete works for a telecommunications firm. his job is to go out and try to find new customers, which can also involve acquiring existing customers from competitors. pere's type of sales position is most accurately described as a(n) Which sentence most accurately describes the daily growth rate of plants?A- average plant height divided by total number of plantsB- sum of individual plant heights divided by number of daysC- sum of individual plant heights , divided by , total number of plantsD- average change in plant height, divided by, number of daysI will give BRAINLIEST to whoever answers first, AND answers correctly which of the following must be considered when applying the gross profit method? (select all that apply.) multiple select question. the shipping terms utilized for the purchase and sale of inventory items. the inventory cost flow assumption used by the company. conditions that may have changed the current year gross profit margin. I need help with the question below please:A painter must thin some paint for use in a sprayer. If the recommended rate is 1/9 pint of water per gallon of paint, how many total gallons will there be after thinning 36 gallons of paint? Hi, can you help me answer this question please, thank you! .Spoke Latin in their religious services..Used unleavened bread in communion..Believed the Bishop of Rome was the head of the Church..These describe the beliefs and practices of the Question 7 options:Roman Catholic ChurchOrthodox ChurchRussian Orthodox ChurchThe Protestant Church A point is chosen at random in the square shown below. Find the probability that the point is in the shaded circular region. Each side of the square is 6in, and the radius of the circle is 3in.Use the value 3.14 for . Round your answer to the nearest hundredth. How are principles of limited government, checks and balances, and individual rights related to each other? Marginal cost _____ over the range of increasing marginal returns and _____ over the range of diminishing marginal returns. name the quatity whose SI unit is j/kg/c Calculate the kinetic energy of a roller coaster that has a mass of 1,778.6 kg and is traveling with a velocity to 24.5 m/s at the bottom of the first hill.