Answer: The theoretical mass of [tex]Na_2SO_4[/tex] is, 514 grams.
Explanation : Given,
Mass of [tex]H_2SO_4[/tex] = 355 g
Molar mass of [tex]H_2SO_4[/tex] = 98 g/mol
First we have to calculate the moles of [tex]H_2SO_4[/tex].
[tex]\text{Moles of }H_2SO_4=\frac{\text{Given mass }H_2SO_4}{\text{Molar mass }H_2SO_4}[/tex]
[tex]\text{Moles of }H_2SO_4=\frac{355g}{98g/mol}=3.62mol[/tex]
Now we have to calculate the moles of [tex]Na_2SO_4[/tex]
The balanced chemical equation is:
[tex]2NaOH+H_2SO_4\rightarrow Na_2SO_4+2H_2O[/tex]
From the reaction, we conclude that
As, 1 mole of [tex]H_2SO_4[/tex] react to give 1 mole of [tex]Na_2SO_4[/tex]
So, 3.62 mole of [tex]H_2SO_4[/tex] react to give 3.62 mole of [tex]Na_2SO_4[/tex]
Now we have to calculate the mass of [tex]Na_2SO_4[/tex]
[tex]\text{ Mass of }Na_2SO_4=\text{ Moles of }Na_2SO_4\times \text{ Molar mass of }Na_2SO_4[/tex]
Molar mass of [tex]Na_2SO_4[/tex] = 142 g/mole
[tex]\text{ Mass of }Na_2SO_4=(3.62moles)\times (142g/mole)=514g[/tex]
Therefore, the theoretical mass of [tex]Na_2SO_4[/tex] is, 514 grams.
Choose the species that is incorrectly matched with its electronic geometry.
1. BeBr2 : linear
2. CF4 : tetrahedral
3. NH3 : tetrahedral
4. H2O : tetrahedral
5. PF3 : trigonal bipyramidal
Answer:
PF3 : trigonal bipyramidal
Explanation:
PF3 has 4 domains around the central phosphorus (3 shared pairs and one lone pair of electrons), thus the electron geometry that has 4 domains is tetrahedral not trigonal bipyramidal
From the options the specie that is incorrectly matched is ( 5 ) ; PF₃ : trigonal bipyramidal
The specie PF₃ is composed of 3 shared pairs and one unshared pair of electrons ( i.e. It has 4 domains ) as seen in the Lewis structure of PF₃. therefore when writing its electronic geometry, it should expressed/written as tetrahedral and not trigonal bipyramidal.
Hence we can conclude that The specie that is incorrectly matched is PF3 : trigonal bipyramidal
Learn more : https://brainly.com/question/6903970