Factoring the polynomial 12g + 20h

Answers

Answer 1
[tex]\begin{gathered} 12g+20h \\ 4(3g+5h) \\ the\text{ polymomial after factoring is }4(3g+5h) \end{gathered}[/tex]


Related Questions

Ryan's car used 9 gallons to travel 396 miles. How many miles can the car go on one gallon of gas?On the double number line below, fill in the given values, then use multiplication or division to find the missing value.

Answers

Given:

At 9 gallons, it can travel 396 miles.

Find: At one gallon, it can travel ___ miles.

Solution:

First, let's fill in the number line with the information we have.

Then, to find the missing value ?, let's do cross multiplication.

[tex]\begin{gathered} ?\times9=1\times396 \\ ?\times9=396 \end{gathered}[/tex]

Then, divide both sides of the equation by 9.

[tex]\begin{gathered} \frac{?\times9}{9}=\frac{396}{9} \\ ?=44 \end{gathered}[/tex]

Therefore, on 1 gallon of gas, the car can travel 44 miles.

Let f(x) = 2x² + 14x – 16 and g(x) = x+8. Perform the function operation and then find the domain of the result.(x) = (simplify your answer.)

Answers

We need to find the following division of the functions f(x) and g(x):

[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{2x^2+14x-16}{x+8}[/tex]

We can note that the numerator can be rewritten as

[tex]2x^2+14x-16=2(x^2+7x-8)=2(x+8)(x-1)[/tex]

Then the division can be written as:

[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{2(x+8)(x-1)}{x+8}[/tex]

From this result, we can cancel out the term (x+8) from both sides and get,

[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}=2(x-1)[/tex]

Therefore, the result of the division is:

[tex]\frac{f}{g}(x)=2(x-1)[/tex]

which domain is all real numbers:

[tex]x\in(-\infty,\infty)[/tex]

help meeeeeeeeee pleaseee !!!!!

Answers

The values of the functions are determined as:

a. (f + g)(x) = 3x² + 2x

b. (f - g)(x) = -3x² + 2x

c. (f * g)(x) =  6x³

d. (f/g)(x) = 2/3x

How to Determine the Value of a Given Function?

To evaluate a given function, substitute the equation for each of the functions given in the expression that needs to be evaluated.

Thus, we are given the following functions as shown above:

f(x) = 2x

g(x) = 3x²

a. To find the value of the function (f + g)(x), add the equations for the functions f(x) and g(x) together:

(f + g)(x) = 2x + 3x²

(f + g)(x) = 3x² + 2x

b. To find the value of the function (f - g)(x), find the difference of the equations of the functions f(x) and g(x):

(f - g)(x) = 2x - 3x²

(f - g)(x) = -3x² + 2x

c. To find the value of the function (f * g)(x), multiply the equations of the functions f(x) and g(x) together:

(f * g)(x) =  2x * 3x²

(f * g)(x) =  6x³

d. To find the value of the function (f/g)(x), find the quotient of the equations of the functions f(x) and g(x):

(f/g)(x) = 2x/3x²

(f/g)(x) = 2/3x.

Learn more about evaluating functions on:

https://brainly.com/question/14723549

#SPJ1

Knowledge CheckUse the distributive property to remove the parentheses.--7(-5w+x-3)X 5

Answers

Explanation

The distributive property states that:

[tex]k\cdot\left(a+b+c\right?=k\cdot a+k\cdot b+k\cdot c.[/tex]

In this problem, we have the expression:

[tex]-7\cdot(-5w+x-3)=(-7)\cdot(-5w+x-3).[/tex]

Comparing this expression with the general expression of the distributive property, we identify:

• k = (-7),

,

• a = -5w,

,

• b = x,

,

• c = -3.

Using the general expression for the distributive property with these values, we have:

[tex]\left(-7\right)\cdot(-5w)+\left(-7\right)\cdot x+\left(-7\right)\cdot(-3).[/tex]

Simplifying the last expression, we get:

[tex]35w-7x+21.[/tex]Answer

Applying the distributive property to eliminate the parenthesis we get:

[tex]35w-7x+21[/tex]

Choose an equation that models the verbal scenario. The cost of a phone call is 7 cents to connect and an additional 6 cents per minute (m).

Answers

"The cost of a phone call is 7 cents to connect and an additional 6 cents per minute (m)"

If "C" indicates the total cost of a phone call and "m" corresponds to the number of minutes the phone call lasted.

The phone call costs 7 cents to connect, this means that regardless of the duration of the call, you will always pay this fee. This value corresponds to the y-intercept of the equation.

Then, the phone call costs 6 cents per minute, you can express this as "6m"

The total cost of the call can be calculated by adding the cost per minute and the fixed cost:

[tex]C=6m+7[/tex]

A lab assistant needs to create a 1000 ML mixture that is 5% hydroelectric acid. The assistant has solutions of 3.5% and 6% in supply at the lab. Using the variables x and y to represent the number of milliliters of the 3.5% solution and the number of milliliters of the 6% solution respectively, determine a system of equation that describes the situation the situation.Enter the equations below separated by a comma How many milliliters of the 3.5% solution should be used?How many milliliters of 6% solution should be used?

Answers

Given:

A lab assistant needs to create a 1000 ML mixture that is 5% hydroelectric acid.

The assistant has solutions of 3.5% and 6% in supply at the lab.

let the number of milliliters from the solution of 3.5% = x

And the number of milliliters from the solution of 6% = y

so, we can write the following equations:

The first equation, the sum of the two solutions = 1000 ml

So, x + y = 1000

The second equation, the mixture has a concentration of 5%

so, 3.5x + 6y = 5 * 1000

So, the system of equations will be as follows:

[tex]\begin{gathered} x+y=1000\rightarrow(1) \\ 3.5x+6y=5000\rightarrow(2) \end{gathered}[/tex]

Now, we will find the solution to the system using the substitution method:

From equation (1)

[tex]x=1000-y\rightarrow(3)[/tex]

substitute with (x) from equation (3) into equation (2):

[tex]3.5\cdot(1000-y)+6y=5000[/tex]

Solve the equation to find (y):

[tex]\begin{gathered} 3500-3.5y+6y=5000 \\ -3.5y+6y=5000-3500 \\ 2.5y=1500 \\ y=\frac{1500}{2.5}=600 \end{gathered}[/tex]

substitute with (y) into equation (3) to find x:

[tex]x=1000-600=400[/tex]

So, the answer will be:

Enter the equations below separated by a comma

[tex]x+y=1000,3.5x+6y=5000[/tex]

How many milliliters of the 3.5% solution should be used?

400 milliliters

How many milliliters of 6% solution should be used?

600 milliliters

Chase and his brother want to improve their personal information for when they startapplying to colleges of their choice. To accomplish this they decide to help the SalvationArmy with delivering hot meals to senior citizens. About a month ago, they decided tokeep track of how many successful deliveries they have each completed. As of today,Chase has successfully delivered 18 out of the 30 meals to senior citizens.Part AHow many more meals would Chase have to deliver in a row in order to have a 75%successful delivery record? Justify your answer.Part BHow many more meals would Chase have to deliver in a row in order to have a 90%successful delivery record? Justify your answer.PartAfter successfully delivering 18 out of 30 meals would Chase ever be able to reach a100% successful delivery record? Explain why or why not.

Answers

Part A.

Chase has successfully delivered 18 out of the 30 meals to senior citizens.

We have to calculate how many more meals (lets call it x) she has to deliver to have a 75% successful delivery record.

In order to do that, (18+x) meals have te be delivered successfully out of (30+x), and the successful meals (18+x) divided by (30+x) has to be 0.75:

[tex]\begin{gathered} \frac{18+x}{30+x}=0.75 \\ 18+x=0.75(30+x) \\ 18+x=22.5+0.75x \\ x-0.75x=22.5-18 \\ 0.25x=4.5 \\ x=\frac{4.5}{0.25} \\ x=18 \end{gathered}[/tex]

Chase has to deliver 18 more meals successfully in order to have a 75% success delivery record.

Part B.

We apply the same analysis but we replace 0.75 with 0.9 as the delivery record.

[tex]\begin{gathered} \frac{18+x}{30+x}=0.9 \\ 18+x=0.9(30+x) \\ 18+x=27+0.9x \\ (1-0.9)x=27-18 \\ 0.1x=9 \\ x=\frac{9}{0.1} \\ x=90 \end{gathered}[/tex]

Chase has to deliver 90 more meals successfully in order to have a 90% success delivery record.

Part C.

She won't be able to achieve 100% successful delivery record. We can prove it mathematically, but we already know as there are 12 meals that weren't successfully delivered, so we can get close to 100% but it can't never be reached.

Mathematically we have:

[tex]\begin{gathered} \frac{18+x}{30+x}=1 \\ 18+x=30+x \\ x-x=30-18 \\ 0=12 \end{gathered}[/tex]

This solution is not valid, so there is no valid solution for x.

What is the divisibility rule for 4
A. Last two digits divisible by 4
B. Add all of the digits and divide by 4
C. Last 3 digits divisible by 4
D. Even number​

Answers

Answer :- A) Last two digits divisible by 4.

For the compound inequalities below (5-7), determine whether the inequality results in an overlapping region or a combined region. Then determine whether the circles are open are closed. Finally, graph the compound inequality. Simplify if needed. x-1>_5 and 2x<14

Answers

The inequalities are:

[tex]x-1\ge5\text{ and }2x<14[/tex]

So, we need to solve for x on both inequalities as:

[tex]\begin{gathered} x-1\ge5 \\ x-1+1\ge5+1 \\ x\ge6 \end{gathered}[/tex][tex]\begin{gathered} 2x<14 \\ \frac{2x}{2}<\frac{14}{2} \\ x<7 \end{gathered}[/tex]

Now, we can model the inequalities as:

So, the region that results is an overlapping region and it is written as:

6 ≤ x < 7

So, the lower limit 6 is closed and the upper limit 7 is open.

Answer: The region is overlaping and it is 6 ≤ x < 7

What is the equation of the following line written in slope-intercept form? Oy=-3/2x-9/2
Oy=-2/3x+9/2
Oy=3/2x-9/2​

Answers

The equation of the line in slope-intercept form is: C. y = -3/2x - 9/2

How to Write the Equation of a Line?

If we determine the slope value, m, and the y-intercept value of the line, b, we can write the equation of a line in slope-intercept form as y = mx + b by substituting the values.

Slope of a line (m) = change in y / change in x.

y-intercept of a line is the point on the y-axis where the value of x = 0, and the line cuts the y-axis.

Slope of the line in the diagram, m = -3/2

y-intercept of the line, b = -9/2.

Substitute m = -3/2 and b = -9/2 into y = mx + b:

y = -3/2x - 9/2 [equation in slope-intercept form]

Learn more about slope-intercept form on:

https://brainly.com/question/1884491

#SPJ1

Hi, can you help me to solve thisexercise, please!!For cach polynomial, LIST all POSSIBLE RATIONAL ROOTS•Find all factors of the leading coefficient andconstant value of polynonnal.•ANY RATIONAL ROOTS =‡ (Constant Factor over Leading Coefficient Factor)6x^3+7x^2-3x-1

Answers

[tex]\begin{gathered} Possible\: Roots\colon\pm1,\pm\frac{1}{2},\pm\frac{1}{3},\pm\frac{1}{6} \\ Actual\: Rational\: Roots\colon\: None \end{gathered}[/tex]

1) We can do this by listing all the factors of -1, and the leading coefficient 6. So, we can write them as a ratio this way:

[tex]\frac{p}{q}=\pm\frac{1}{1,\:2,\:3,\:6}[/tex]

Note that p stands for the constant and q the factors of that leading coefficient

2) Now, let's test them by plugging them into the polynomial. If it is a rational root it must yield zero:

[tex]\begin{gathered} 6x^3+7x^2-3x+1=0 \\ 6(\pm1)^3+7(\pm1)^2-3(\pm1)+1=0 \\ 71\ne0,5\ne0 \\ \frac{1}{2},-\frac{1}{2} \\ 6(\pm\frac{1}{2})^3+7(\pm\frac{1}{2})^2-3(\pm\frac{1}{2})+1=0 \\ 2\ne0,\frac{7}{2}\ne0 \\ \\ 6(\pm\frac{1}{3})^3+7(\pm\frac{1}{3})^2-3(\pm\frac{1}{3})+1=0 \\ 1\ne0,\frac{23}{9}\ne0 \\ \frac{1}{6},-\frac{1}{6} \\ 6(\frac{1}{6})^3+7(\frac{1}{6})^2-3(\frac{1}{6})+1=0 \\ \frac{13}{18}\ne0,-\frac{5}{3}\ne0 \end{gathered}[/tex]

3) So the possible roots are:

[tex]\pm1,\pm\frac{1}{2},\pm\frac{1}{3},\pm\frac{1}{6}[/tex]

But there are no actual rational roots.

hey there mr or ms could you please help me out here?

Answers

The two triangles have a common side, RQ.

Also, given the two sides (left and right) are equal.

Also, the angle between the two sides (one side given and bottom side) is given as 90 degrees.

Thus,

we have

2 sides AND 1 angle congruent in each triangle

That is:

Side-Angle-Side, which is

SAS

THe triangles are congruent according to SAS, option B

Use the binomial expression (p+q)^n to calculate abinomial distribution with n = 5 and p = 0.3.

Answers

ANSWER :

The binomial distributions are :

0.16807

0.36015

0.3087

0.1323

0.02835

0.00243

EXPLANATION :

In a binomial distribution of (p + q)^n :

n = 5

p = 0.3 and

q = 1 - p = 1 - 0.3 = 0.7

[tex]_nC_x(p)^x(q)^{n-x}[/tex]

We are going to get the values from x = 0 to 5

[tex]\begin{gathered} _5C_0(0.3)^5(0.7)^{5-0}=0.16807 \\ _5C_1(0.3)^5(0.7)^{5-1}=0.36015 \\ _5C_2(0.3)^5(0.7)^{5-2}=0.3087 \\ _5C_3(0.3)^5(0.7)^{5-3}=0.1323 \\ _5C_4(0.3)^5(0.7)^{5-4}=0.02835 \\ _5C_5(0.3)^5(0.7)^{5-5}=0.00243 \end{gathered}[/tex]

there are 3 members on a hockey team (including all goalie) at the end of a hockey game each member if the team shakes hands with each member of the opposing team. how many handshakes occur?

Answers

[tex]\begin{gathered} \text{There are 2 teams, so:} \\ \text{Total of members=6} \\ C(n,k)=nCk=\frac{n!}{k!(n-k)!} \\ n=6 \\ k=2 \\ C(6,2)=6C2=\frac{6!}{2!(4)!}=\frac{720}{48}=15 \end{gathered}[/tex]

Needing assistance with question in the photo (more than one answer)

Answers

By definition, the probability of an event has to be between 0 and 1.

Given that definition the options 1.01, -0.9, -5/6 and 6/5 cannot be the probability of an event.

What is the value of 3/8 dividend by 9/10
A) 3
B 5/12
C 27/80
D 2/3

Answers

Answer:

B 5/12 (im stupi d)

Step-by-step explanation:

(3/8)/(9/10) = (3/8) * (10/9) = 5/12

Answer:

B) [tex]\frac{5}{12}[/tex]

Step-by-step explanation:

Apply the fractions rule a/b ÷c/b = a/b × d/c

= 3/8 x 10/9

Multiply fractions a/b x c/d = [tex]\frac{axc}{b x d}[/tex]

Multiply the numbers: 3 x 10 = 30

= 3/10 8 x 9

Multiply the numbers: 8 x 9 = 72

= 30/72

Cancel the common factor: 6

5/12

A box contains six red pens, four blue pens, eight green pens, and some black pens. Leslie picks a pen and returns it to the box each time. The outcomes are recorded in the table.a. what is the experimental probability of drawing a green pen?b. if the theoretical probability of drawing a black pen is 1/10, how many black pens are in the box

Answers

given the follwing parameters,

number of times a Red Pen is picked is 8

numbr o f times the Blue Pen is picked is 5

Number of times the Green Pen is picked is 14

Number of times the Black Pen is picked is 3

so,

(a) to get the experimental probability of drawing a Green Pen is,

P = favoured results/all obtained

then,

14/(8+5+14+3)

= 14/30 that is a

(

could you please help me answer this please and thank you it's about the rectangular prism....

Answers

ANSWER:

[tex]A_T=8+8+20+20+40+40[/tex]

STEP-BY-STEP EXPLANATION:

In this case, what we must do is calculate the face area and then add each face, like this:

The area of each area is the product between its length and its width, therefore

[tex]\begin{gathered} A_1=2\cdot4=8 \\ A_2=10\cdot4=40 \\ A_3=10\cdot2=20_{} \\ A_4=10\cdot4=40 \\ A_5=10\cdot2=20_{} \\ A_6=2\cdot4=8 \end{gathered}[/tex]

The total area would be the sum of all the areas, if we organize it would be like this:

[tex]A_T=8+8+20+20+40+40[/tex]

I need some help. Could someone explain it to me?

Answers

Problem

We have the following table given:

x y

0 2

1 6

4 -9

8 8

Solution

We know that the domain correspond to the value of x in the relationship and then the correct answer for this case would be:

2

0

Jusrt 2,9 are the values in the domain of the function

Which of the following is not a correct way to name the plane.

Answers

For this case the first option is correct Plane P

Use U-Subscription to solve the following polynomial. Compare the imaginary roots to the code breaker guide. Hi this is a project and this is one of the questions, I have the guide so ignore the code piece part.

Answers

We will substitute the variable x with the variable u using the following relation:

[tex]u=x^2[/tex]

Then, we can convert the polynomial as:

[tex]4x^4+2x^2-12=4u^2+2u-12[/tex]

We can use the quadratic equation to calculate the roots of u:

[tex]\begin{gathered} u=\frac{-2\pm\sqrt[]{2^2-4\cdot4\cdot(-12)}}{2\cdot4} \\ u=\frac{-2\pm\sqrt[]{4+192}}{8} \\ u=\frac{-2\pm\sqrt[]{196}}{8} \\ u=\frac{-2\pm14}{8} \\ u_1=\frac{-2-14}{8}=-\frac{16}{8}=-2 \\ u_2=\frac{-2+14}{8}=\frac{12}{8}=1.5 \end{gathered}[/tex]

We have the root for u: u = -2 and u = 1.5.

As u = x², we have two roots of x for each root of u.

For u = -2, we will have two imaginary roots for x:

[tex]\begin{gathered} u=-2 \\ x^2=-2 \\ x=\pm\sqrt[]{-2} \\ x=\pm\sqrt[]{2}\cdot\sqrt[]{-1} \\ x=\pm\sqrt[]{2}i \end{gathered}[/tex]

For u = 1.5, we will have two real roots:

[tex]\begin{gathered} u=1.5 \\ x^2=1.5 \\ x=\pm\sqrt[]{1.5} \end{gathered}[/tex]

Then, for x, we have two imaginary roots: x = -√2i and x = √2i, and two real roots: x = -√1.5 and x = √1.5.

Answer:

Let u = x²

Equation using u: 4u² + 2u - 12

Solve for u: u = -2 and u = 1.5

Solve for x: x = -√2i, x = √2i, x = -√1.5 and x = √1.5

Imaginary roots: x = -√2i and x = √2i

Real roots: x = -√1.5 and x = √1.5

The function table below is intended to represent the relationship y=-2x-5. However, one of the entries for y does not correctly fit the relationship with x.

Answers

x = 1 , f(x) = -2•1 - 5 = -7

Then it doesnt corresponds to f(1) = 6

Answer is OPTION E)

i need help in this please

Answers

The isosceles right is given in the diagram below

We are to rotate clockwise about point B as the origin

Rotating ABC 180° Clockwisely, we have

Rotating ABC 270° clockwise about B, we have

We now combine the four triangles together in the diagram below

May I please get help with this. I have tried multiple times but still could not get the correct or at least accurate answers

Answers

step 1

Find out the value of y

we have that

y+75=180 degrees ------> by same side ineterior angle

Identity two angles that are marked congruent to each other on the diagram below.(Diagram is not to scale.)Mthth& congruent toSub Arwwer

Answers

Congruency in this context is a term that describes a pair of angles as being identical.

In our shape, we have a parallelogram and

Two wheelchair ramps, each 10 feet long, lead to the two ends of the entrance porch of Mr. Bell's restaurant. The two ends of the porch are at the same height from the ground, and the start of each ramp is the same distance from the base of the porch. The angle of the first ramp to the ground is 24°.Which statement must be true about the angle of the second ramp to the ground?A. It could have any angle less than or equal to 24°.B. It must have an angle of exactly 24°.C. It could have any angle greater than or equal to 24°.D. Nothing is known about the angle of the second ramp.

Answers

Given statement

The ramps have

- the same height

- the same angle measure relative to the ground

- the two ends of the porch are at the same height from the ground

- the start of each ramp is the same distance from the base of the porch

A pictorial description of the problem is shown below:

Since the two ramps have similar descriptions, the angle measure of the second ramp to the ground would be exactly 24 degrees

Answer: Option B

option  b your welcome

You choose a marble from the bag. What is the probability you will NOT choose blue?1/25/72/72

Answers

Given a sample and required to get the probability of a particular outcome, we make a couple of considerations including:

- Sample Space: The universal set

- Required Outcome

We can identify these variables as:

Sample space: total number of marbles = 7

Required outcome: Not blue = 7 - 2 = 5

Probability is given as:

[tex]\begin{gathered} P=\text{ }\frac{\text{number of required outcome}}{Sample\text{ space}}=\frac{5}{7} \\ P=\frac{5}{7} \end{gathered}[/tex]

I need help with some problems on my assignment please help

Answers

The circumcenter of a triangle is the center of a circumference where the three vertex are included. So basically we must find the circumference that passes through points O, V and W. The equation of a circumference of a radius r and a central point (a,b) is:

[tex](x-a)^2+(y-b)^2=r^2[/tex]

We have three points which give us three pairs of (x,y) values that we can use to build three equations for a, b and r. Using point O=(6,5) we get:

[tex](6-a)^2+(5-b)^2=r^2[/tex]

Using V=(0,13) we get:

[tex](0-a)^2+(13-b)^2=r^2[/tex]

And using W=(-3,0) we get:

[tex](-3-a)^2+(0-b)^2=r^2[/tex]

So we have a system of three equations and we must find three variables: a, b and r. All equations have r^2 at their right side. This means that we can take the left sides and equalize them. Let's do this with the second and third equation:

[tex]\begin{gathered} (0-a)^2+(13-b)^2=(-3-a)^2+(0-b)^2 \\ a^2+(13-b)^2=(-3-a)^2+b^2 \end{gathered}[/tex]

If we develop the squared terms:

[tex]a^2+b^2-26b+169=a^2+6a+9+b^2[/tex]

Then we substract a^2 and b^2 from both sides:

[tex]\begin{gathered} a^2+b^2-26b+169-a^2-b^2=a^2+6a+9+b^2-a^2-b^2 \\ -26b+169=6a+9 \end{gathered}[/tex]

We substract 9 from both sides:

[tex]\begin{gathered} -26b+169-9=6a+9-9 \\ -26b+160=6a \end{gathered}[/tex]

And we divide by 6:

[tex]\begin{gathered} \frac{-26b+160}{6}=\frac{6a}{6} \\ a=-\frac{13}{3}b+\frac{80}{3} \end{gathered}[/tex]

Now we can replace a with this expression in the first equation:

[tex]\begin{gathered} (6-a)^2+(5-b)^2=r^2 \\ (6-(-\frac{13}{3}b+\frac{80}{3}))^2+(5-b)^2=r^2 \\ (\frac{13}{3}b-\frac{62}{3})^2+(5-b)^2=r^2 \end{gathered}[/tex]

We develop the squares:

[tex]\begin{gathered} (\frac{13}{3}b-\frac{62}{3})^2+(5-b)^2=r^2 \\ \frac{169}{9}b^2-\frac{1612}{9}b+\frac{3844}{9}+b^2-10b+25=r^2 \\ \frac{178}{9}b^2-\frac{1702}{9}b+\frac{4069}{9}=r^2 \end{gathered}[/tex]

So this expression is equal to r^2. This means that is equal

Which statement best reflects the solution(s) of the equation? X/ x-1 - 1/ x-2 = 2x-5/x^2-3x+2 There is only one solution: x=4. The solution x=1 is an extraneous solution. There are two solutions: x=2 and x=3. There is only one solution: x=3. The solution x=2 is an extraneous solution. There is only one solution: x=3. The solution x=1 is an extraneous solution.

Answers

The best reflects solution of the equation is, There is only one solution: x = 3. The solution x = 2 is an extraneous solution.

What is extraneous solution?

An extraneous solution is a root of a converted equation that is not a root of the original equation because it was left out of the original equation's domain is referred to as a superfluous solution.

We are given the following equation,

(x / x - 1) - (1 / x - 2) = (2x - 5)/(x^2 - 3x + 2)

Solving the given equation we have,

(x^2 - 3x + 1) / (x^2 - 3x + 2) = (2x - 5) / (x^2 - 3x + 2)

x^2 - 3x + 1 = 2x - 5

x^2 - 5x + 6 = 0

x^2 - 3x - 2x + 6 = 0

x(x - 3) - 2(x - 3) = 0

(x - 3)(x - 2) = 0

(x - 3) = 0, (x - 2) = 0

x = 3, x = 2

At x = 2 the denominator of the equation will be 0. So solution of the equation is not valid at x = 2.

Therefore, x = 3 is the only one solution. The solution x = 2 is an extraneous solution.

To know more about the extraneous solution, click on the link

https://brainly.com/question/7280154

#SPJ13

True or False-Choose "A" for true or "B" for false.40. The inverse property of addition states that a number added to its reciprocal equals one.41. The associative properties state that the way in which numbers are grouped does notaffect the answer.42. The identity property of addition states that zero added to any number equals thenumber.43. The distributive property is the shortened name for the distributive property ofmultiplication over addition.44. The commutative property of addition states that two numbers can be added in anyorder and the sum will be the same.45. is the multiplicative inverse of35346. One is the identity element for addition.

Answers

Given

Statements

Find

Correctness of statements

Explanation

40) False (sum of number and its opposite is 0)

41)True

42) True

43) True

44) True

45) True

46) False (One is Identity Element for multiplication)

Final Answer

40) False

41)True

42) True

43) True

44) True

45) True

46) False

Other Questions
A baseball has a mass of 2.5 kilograms. If the acceleration due to gravity is 9.8 m/s2 , what is the weight of the baseball in newtons?A. 20.0 NB. 3.9 NC. 10.5 ND. 24.5 N Of the three carotenoids that can be converted to retinol in the body, ______ is the only one that can be sufficiently absorbed and converted into retinol in the body. The graph shows the first four ordered pairs formed by the corresponding terms of two patterns. Which ordered pair would be the fifth point on this graph? (4,12) (12,4) (12,8) (10, 4) Q1 6 7 8 9 10 11 12 If triangle ABD = triangle CBD,angle ABD = 99 and angle CBD = 9x - 9 2) A humane society claims that 30% of U.S. households own a cat. In a random sample of 210 U.S. households, 80 say they own a cat. Is there enough evidence to show this percent has changed? Use a level of significance of 0.05. mobile devices, fitness trackers, and apps are now widely available to assist individuals with behavior change. what behavioral strategy do mobile devices mainly impact? In a system of 2 large round objects, R1 and R2 (R1 is larger), what properties will affect the force of gravity between them? (select all that apply) (1 point) A variable of a population has a mean of I = 250 and a standard deviation of o = 49. When Felix started his paper route, he had 25 customers. Every second week he gained 2 new customers. Every third week he lost a customer. How many customers did he have in the seventh week? pls help Discuss the role of legal profession in development of law in Kenya y= -2x - 7x - y = -8 Where did general washington camp the continental army for training over the bitter winter of 1777-8?. Simplify the following expressions by combining like terms, if possible. The same set of data has been fit using two different functions. The following images show the residual plots of each function. Consider the following line:The pigs did not actually work, but directed and supervised the others. How does this compare to Old Majors complaint against Man? you find a zero coupon bond with a par value of $10,000 and 18 years to maturity. the yield to maturity on this bond is 5 percent. assume semiannual compounding periods. what is the dollar price of the bond?(do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Where do our ideas of different people come from PLSSSSSSSSS HELP DUE SOON!!! How are metaphase II and anaphase II different from metaphase I and anaphase lI? I don't know if the second anaphase was suppost to be anaphase or anaphase II. I don't know if my typed this up on accident teacher or if she meant to do that I'm not sure. you might need to watch Meiosis (updated) amoeba sisters. I couldn't find the answer. Select the correct answer. the compound 1-butene is modeled here. a bond line structure of a compound having a structure as follows (h) c (h) double bond c (h) single bond c (h) 2 single bond c h 3. what would need to happen for molecules of this compound to transform into polybutene? a. covalent bonds would need to form between the molecules. b. each molecule would need to gain at least one oxygen atom. c. more double bonds would need to form in each molecule. d. hydrogen atoms would need to be transferred between molecules.