Find the following. complete parts a-h. a. The first seven terms of the Fibonacci-like sequence with the seeds 0,3. *(parts b-h will appear as we answer this previous parts.) 7 parts in total for the question*

Find The Following. Complete Parts A-h. A. The First Seven Terms Of The Fibonacci-like Sequence With

Answers

Answer 1

Recall that in a Fibonacci-like sequence, the sum of two consecutive terms yields the third term.

Mathematically,

[tex]t_n=t_{n-2}+t_{n-1}[/tex]

Since we are given the first two terms, we can find the third term and so on...

F₁ = 0

F₂ = 3

[tex]\begin{gathered} F_3=F_2+F_1=3+0=3 \\ F_4=F_3+F_2=3+3=6 \\ F_5=F_4+F_3=6+3=9 \\ F_6=F_5+F_4=9+6=15 \\ F_7=F_6+F_5=15+9=24 \end{gathered}[/tex]


Related Questions

Simplify cot(t)/csc(t)-sin(t) to a single trig function

Answers

The single trig function that simplifies the function is sec(t)

How can we simplify the function?

Trigonometry deals with the functions of angles and how they're applied.

Given cot(t)/csc(t)-sin(t)

since csc(t) =  1/sin(t) , we have:

[tex]\frac{ cot(t)}{csc(t)-sin(t)} = \frac{cot(t)}{\frac{1}{sin(t)} - sin(t) }[/tex]

[tex]\frac{ cot(t)}{csc(t)-sin(t)} = \frac{cot(t)}{\frac{1-sin^{2}(t) }{sin(t)} }[/tex]

since:

cos²(t) = 1 - sin²(t)

Therefore we have:

cot(t) / csc(t)-sin(t) = cot(t)/ cos²(t)/sin(t)

cot(t) / csc(t)-sin(t) = cot(t) / cos(t).cos(t)/sin(t)

Since  cos(t) / sin(t) = 1/tan(t) = cot(t)

Therefore:

cot(t) / csc(t)-sin(t) = cot(t)/ cot(t)×cos(t)

cot(t) / csc(t)-sin(t) = 1/cos(t)

Since   1/cost = sec(t)

Finally, cot(t) / csc(t)-sin(t) is sec(t).

Learn more about trigonometry on:

https://brainly.com/question/24438369

#SPJ1

An isosceles right triangle has 6 cm legs . Find the length of the hypotenuse

Answers

Step-by-step explanation:

we have a right-angled triangle.

so, we can use Pythagoras

c² = a² + b²

c is the Hypotenuse, a and b are the legs.

in our case

c² = 6² + 6² = 36 + 36 = 72

c = Hypotenuse = sqrt(72) = 8.485281374... cm

Answer:

hypotenuse = √72 (or 8.49)

Step-by-step explanation:

An isosceles right triangle has 6 cm legs . Find the length of the hypotenuse

isosceles right triangle = 2 equal side and 2 equal angles

we use the Pythagorean theorem (In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides)

hypotenuse² = 6² + 6²

hypotenuse² = 36 + 36

hypotenuse² = 72

hypotenuse = √72 (or 8.49)

many solutions can be found for the system of linear equations represented on the graph?A. no solution B. one solution C. two solution D. Infinity many solutions

Answers

The lines are not intersecting. The system of linear equations has a solution only if the lines corresponding to the equations intersect.

The general linear equation is,

y=mx+c, where m is the slope.

The slopes of lines m=2.

Since the graphs are parallel or have the same slope and will never intersect, the system of linear equations have no solution.

Which number line shows the solutions to x > 5? O A. A. 3642 8 2 4 6 8 B. 8 -6 -4 -2 0 2 4 6 8 c. -6-4 2 0 2 4 6 8 D. 8 8 4 2 0 2 4 6 8

Answers

The answer is option C.

thats where there are intergers greater than 5.

can you please help me. I am running out of time and I really need this grade.

Answers

A system of equations is consistent if the system has a solution and it is inconsistent if it has no solution.

Since the lines intersect at a point, the system has a solution and the solution is unique.

If a system has a unique solution, then the system is independent.

Therefore, the given system of equations is consistent and independent. It has a unique solution.

The distance around a water fountian is 150 inches what is the distance from the edge of the fountian to the center

Answers

Answer:

The distance from the edge of the fountain to the centre is approximately 23.87 inches.

The water fountain forms a circle. The distance around the water fountain is the circumference of the circle formed.

Therefore,

circumference = 2πr

150 = 2πr

The distance from the edge of the fountain to the centre is the radius of the circle formed. Therefore,

75 = πr

r = 75 / 3.14159

r = 23.8732616287

r = 23.87 inches

The distance from the edge of the fountain to the centre is approximately 23.87 inches.

Can you please help me out with the a question

Answers

Arc XY = 2π • (PX)/ 4

. = 2π • 5/4

. = 6.28 • 5/4= 31.40/4 = 7.85

Then answer is

Option G) 7.854

Olivia goes out to lunch. The bill, before tax and tip, was $13.90. A sales tax of 6% was added on. Olivia tipped 23% on the amount after the sales tax was added. How much was the sales tax? Round to the nearest cent.

Answers

According to the information given in the exercise, the bill before the tax and tip was $13.90 and the sales tax of 6% was added to that amount.

By definition, you can write 6% as a Decimal number by dividing it by 100. Then, this is:

[tex]\frac{6}{100}=0.06[/tex]

Let be "t" the amount (in dollars) of the sales tax.

To find the value of "t", you can set up the following equation:

[tex]t=(13.90)(0.06)[/tex]

Finally, evaluating, you get that this is:

[tex]t=0.834[/tex]

Rounded to the nearest cent, this is:

[tex]t\approx0.83[/tex]

The answer is: $0.83

Triangle DEF is rotated 60⁰ clockwise about the vertex to obtain triangle LMN. if the m

Answers

EXPLANATION

The measure of the angle LMN is equal to 40 degrees, then the measure of the angle LMN is the same because the rotation does not modify the angle.

What value of t makes the following equation true?

5t−2=6t−7

Answers

After working out the problem, the answer is 5

find the missing lenghts, the triangle in each pair are similar.

Answers

Since the triangles are similar, we have that

[tex]\frac{50}{40}=\frac{x}{52}[/tex]

then

[tex]x=\frac{52\times50}{40}=65[/tex]then the answer will be D) 65

Use the fact that 521•73=38, 033.Enter the exact product of 5.21•7.3

Answers

Answer: 38.033

5.21 x 7.3

= 38.033

100 points!!!!
PLS WRITE IN SLOPE INTERCEPT FORM
–18y + 8 = 12x
SOLVE FOR Y

Answers

Answer: y = (-2/3)x + (4/9)

Step-by-step explanation:

y = mx + b is the form expected

-18y + 8 = 12x

subtract 8 from both sides

-18y = 12x - 8

divide both sides by -18

y = (12x/-18) - (8/-18)

Simplify the negatives and pull x out of the parenthesis (this only works if x is in the numerator).

y = (-12/18)x + 8/18

Simplify the fractions

y = (-2/3)x + 4/9

Answer:

The required value of y is,

y = -(2/3)x + (4/9)

Step-by-step explanation:

Given equation,

→ -18y + 8 = 12x

The slope-intercept form is,

→ y = mx + b

Let's rewrite the equation,

→ y = mx + b

→ -18y + 8 = 12x

→ -18y = 12x - 8

→ -y = (12x - 8)/18

→ -y = (2/3)x - (4/9)

→ y = -(2/3)x + (4/9)

Hence, this is the answer.

give two-sided of a triangle, find a range of a possible side length of the third side 24 and 52

Answers

For a triangle to be possible with 3 given lengths, the largest side must be lower than the sum of the two remaining sides.

Let L be the length of the third side. There are two cases:

If L is the largest side, then:

[tex]\begin{gathered} L<24+52 \\ \Rightarrow L<76 \end{gathered}[/tex]

If L is not the largest side, then the largest side has a measure of 52 and:

[tex]\begin{gathered} 52<24+L \\ \Rightarrow52-24Since both conditions should meet for a triangle to be formed, then:[tex]28Therefore, the range of possible values for L is:[tex]undefined[/tex]

nd the Geometry meand of 4 and 15.

Answers

we know that

the geometric mean is the product of all the numbers in a set, with the root of how many numbers there are

so

In this problem we have two numbers

so

the geometric mean is equal to

[tex]\begin{gathered} \sqrt[=]{4\cdot15} \\ \sqrt[]{60} \\ 2\sqrt[]{15} \end{gathered}[/tex]

The circle has center O. Its radius is 4 cm, and the central angle a measures 30°. What is the area of the shaded region?Give the exact answer in terms of pi, and be sure to include the correct unit in your answer

Answers

Explanation

The area of a portion of a circle with radius 'r' and central angle 'a' in radians is:

[tex]A_{\text{portion}}=\frac{1}{2}\cdot r^2\cdot a[/tex]

In this problem, the radius is r = 4cm, and the angle a = 30º.

First we have to express the angle in radians:

[tex]a=30º\cdot\frac{\pi}{180º}=\frac{1}{6}\pi[/tex]

And now we can find the area of the shaded region:

[tex]\begin{gathered} A=\frac{1}{2}\cdot(4\operatorname{cm})^2\cdot\frac{1}{6}\pi \\ A=\frac{1}{2}\cdot16\operatorname{cm}^{2}\cdot\frac{1}{6}\pi=\frac{4}{3}\pi \end{gathered}[/tex]

Answer

The area of the shaded region is:

[tex]A=\frac{4}{3}\pi cm^{2}[/tex]

What should you do to finish solving this equation?6y + 4y + 90 = 36010y + 90 = 360Add 90 then divide by 102 subtract 90 then multiply by 10Add 10 then multiply by 904Subtract 90 then divide by 10O 102O 304h

Answers

answer is substract 90 then divide by 10

9) Write an equation of a line that is steeper than y- 6x + 2

Answers

[tex]\begin{gathered} y=-6x+2 \\ y^{^{\prime}}=-6 \\ \end{gathered}[/tex]

A cake is cut into 12 equal slices. After 3 days Jake has eaten 5 slices. What is his weekly rate of eating the cake?
5
36
35
36
cakes/week
cakes/week
1
1 cakes/week
35
01. cakes/week
4

Answers

Answer:

11.2 Slices / Week

Step-by-step explanation:

We know that Jake has eaten 5 slices of cake in 3 days. You can divide 5 / 3 to get an average of 1.6 slices of cake being eaten per day. The question asks what the weekly rate or eating the cake will be, do you need to multiple 1.6 x 7 for the total amount of cake eaten per week, which is 11.2 slices!

Answer:

11.6

explanation

we have 7 days.

7days-3days =4

in 3 days he has eaten 5 slices

again 4-3 days=1

so in 6 days he has eaten 10 slices

we have 1 day left.so if he eats 5 slices in 3 day,how many he eat slices in 1 day?5/3=1.6

10+1.6=11.6

I inserted a picture of the question please state whether the answer is a b c or d PLEASE GIVE A VERY VERY SHORT EXPLANATION

Answers

The 30-60-90 triangle is given by

AS we can note , the hypotenuse is twice as long as the shorter leg. Additionally, the longer leg is square root of 3 tines as long as the shorter leg. Therefore, the answer is option C and F

Identify whether the following real world examples should be modeled by a linear quadratic or exponential function

Answers

Solution

- Linear:

The general form of a linear function is

[tex]\begin{gathered} y=ax+b \\ where, \\ a,\text{ and b are constants} \end{gathered}[/tex]

- Quadratic:

The general form of a quadratic function is:

[tex]\begin{gathered} y=ax^2+bx+c \\ where, \\ a,b,c\text{ are constants} \end{gathered}[/tex]

- Exponential:

The general form of an exponential function is:

[tex]\begin{gathered} y=ab^x \\ where, \\ a,b\text{ are constants} \end{gathered}[/tex]

- Now that we know the general forms of these functions, we can proceed to solve the question.

- The amount a person is paid per hour in wages is the amount that the person collects for every hour that he works

- Let us imagine that a person receives $a for every hour worked.

- This means that:

After 1 hour, the person makes $a

After 2 hours, the person makes $a + $a = $2a

After 3 hours, the person makes $a + $a +$a = $3a

- We can therefore generalize as follows:

Thus, after x hours, the person makes:

[tex]x\times a=\$ax[/tex]

- Thus, the function representing the amount a person makes per hour of work is given by:

[tex]y=ax[/tex]

- Comparing this result with the 3 function definitions above, we can see that this corresponds to a Linear function

Final Answer

The answer is Linear

Find how many years it would take for an investment of $4500 to grow to $7900 at an annual interest rate of 4.7% compounded daily.

Answers

To answer this question, we need to use the next formula for compound interest:

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

From the formula, we have:

• A is the accrued amount. In this case, A = $7900.

,

• P is the principal amount. In this case, $4500.

,

• r is the interest rate. In this case, we have 4.7%. We know that this is equivalent to 4.7/100.

,

• n is the number of times per year compounded. In this case, we have that n = 365, since the amount is compounded daily.

Now, we can substitute each of the corresponding values into the formula as follows:

[tex]A=P(1+\frac{r}{n})^{nt}\Rightarrow7900=4500(1+\frac{\frac{4.7}{100}}{365})^{365t}[/tex]

And we need to solve for t to find the number of years, as follows:

1. Divide both sides by 4500:

[tex]\frac{7900}{4500}=(1+\frac{0.047}{365})^{365t}[/tex]

2. Applying natural logarithms to both sides (we can also apply common logarithms):

[tex]\ln \frac{7900}{4500}=\ln (1+\frac{0.047}{365})^{365t}\Rightarrow\ln \frac{7900}{4500}=365t\ln (1+\frac{0.047}{365})[/tex]

3. Then, we have:

[tex]\frac{\ln\frac{7900}{4500}}{\ln(1+\frac{0.047}{365})}=365t\Rightarrow4370.84856503=365t[/tex]

4. And now, we have to divide both sides by 365:

[tex]\frac{4370.84856503}{365}=t\Rightarrow t=11.9749275754[/tex]

If we round the answer to two decimals, we have that t is equal to 11.97 years.

what is 9/36 simplified?

Answers

Answer:

1/4

Step-by-step explanation:

it can be simplified by dividing both the numerator and denominator with 9.

Solution -:

[tex] \displaystyle \large{ \sf{ \frac{9}{36}}} [/tex]

[tex]\displaystyle \large{ \sf{ \frac{9}{36} = \frac{ \cancel9}{ \cancel3 \cancel6} }}[/tex]

[tex]\displaystyle \large{ \bf{ = \frac{1}{4} }}[/tex]

simplest form is 1/4

If the area of a rectangular field is x2 – 3x + 4 units and the width is 2x – 3, then find the length of the rectangular field.x2- 3 x + 42 x − 3 unitsx2 - 3x + 4 units2x - 3 units3x + 4 units

Answers

Solution

We are given the following

[tex]\begin{gathered} Area=x^2-3x+4 \\ \\ Width=2x-3 \\ \\ Length=? \end{gathered}[/tex]

Using the Area of a Rectangle we have

[tex]\begin{gathered} Area=lw \\ \\ l=\frac{A}{w} \\ \\ l=\frac{x^2-3x+4}{2x-3} \end{gathered}[/tex]

Therefore, the answer is

[tex]\frac{x^{2}-3x+4}{2x-3}units[/tex]

Deter mine the intervals for which the function shown below is increasing

Answers

Answer:

The interval at which the function is increasing is from x = -2 to x = 0. In interval notation, it is (-2, 0).

Explanation:

See the graph below for the pattern of the function.

As you can see above, from x = -∞ until x = -2, the value of the function decreases from y = +∞ to y = -7.

Then, starting at x = -2 to x = 0, the value of the function increases from y = -7 to y = -3.

Lastly, starting at x = 0 to +∞, the value of the function decreases again from y = -3 to -∞.

Hence, the interval at which the function is increasing is at (-2, 0).

Evaluate 7a - 5b when a = 3 and b = 4 .

Answers

[tex]\begin{gathered} \text{ When evaluating, just substitute the values given assigned to the variable} \\ a=3,b=4 \\ 7a-5b \\ =7(3)-5(4) \\ =21-20 \\ =1 \end{gathered}[/tex]

Last year, Kevin had $10,000 to invest. he invested some of it in an account that paid 6% simple interest per year, and he invested the rest in an account that paid 10% simple interest per year. after one year, he received a total of $920 in interest. how much did he invest in each account?first account:second account:

Answers

Simple interest is represented by the following expression:

[tex]\begin{gathered} I=\text{Prt} \\ \text{where,} \\ I=\text{ interest} \\ P=\text{principal} \\ r=\text{interest rate in decimal form} \\ t=\text{ time (years)} \end{gathered}[/tex]

We need to create a system of equations:

Let x be the money invested in the account that paid 6%

Let y be the money invested in the account that paid 10%

So, he received a total of $920 in interest, then:

[tex]920=0.06x+0.1y\text{ (1)}[/tex]

And we know that money invested must add together $10,000:

[tex]x+y=10,000\text{ (2)}[/tex]

Then, we can isolate y in equation (2):

[tex]y=10,000-x[/tex]

Now, let's substitute y=10,000-x in the equation (1):

[tex]\begin{gathered} 920=0.06x+0.1(10,000-x) \\ 920=0.06x+1000-0.1x \\ 0.1x-0.06x=1,000-920 \\ 0.04x=80 \\ x=\frac{80}{0.04} \\ x=2,000 \end{gathered}[/tex]

That means, he invested $2,000 in the account that paid 6% simple interest. Now, having x, we are going to substitute x in the second equation (2):

[tex]\begin{gathered} y=10,000-x \\ y=10,000-2,000 \\ y=8,000 \end{gathered}[/tex]

He invested $8,000 in the account that paid 10% simple interest per year.

The length of a rectangle is 6 cm more than the width. If the perimeter is 52 cm. What are the dimensions of the rectangle?

Answers

LA rectangle has two pairs of sides of the same length. If we call W to the width of the rectangle, we know that the length is 6cm more. If we call L the length of the rectangle:

[tex]L=W+6[/tex]

The perimeter of a rectangle is twice the length plus twice the width:

[tex]Perimeter=2L+2W[/tex]

Since we know that the perimeter is 52 cm, we can write the system of equations:

[tex]\begin{cases}L={W+6} \\ 2L+2W=52{}\end{cases}[/tex]

We can substitute the first equation into the second one:

[tex]2(W+6)+2W=52[/tex]

And solve:

[tex]2W+12+2W=52[/tex][tex]\begin{gathered} 4W=52-12 \\ . \\ W=\frac{40}{4}=10\text{ }cm \end{gathered}[/tex]

We know that W = 10cm, we can now find L:

[tex]L=10+6=16\text{ }cm[/tex]

Thus, the dimensions of the rectangle are:

Length: 16 cm

Width: 10 cm

I have a practice problem in the calculus subject, I’m having trouble solving it properly

Answers

The limit of a function is the value that a function approaches as that function's inputs get closer and closer to some number.

The question asks us to estimate from the table:

[tex]\lim _{x\to-2}g(x)[/tex]

To find the limit of g(x) as x tends to -2, we need to check the trend of the function as we head towards -2 from both negative and positive infinity.

From negative infinity, the closest value we can get to before -2 is -2.001 according to the values given in the table. The value of g(x) from the table is:

[tex]\lim _{x\to-2^+}g(x)=8.02[/tex]

From positive infinity, the closest value we can get to before -2 is -1.999 according to the values given in the table. The value of g(x) from the table is:

[tex]\lim _{x\to-2^-}g(x)=8.03[/tex]

From the options, the closest estimate for the limit is 8.03.

The correct option is the SECOND OPTION.

3. Trapezoid JKLM with vertices J(-4, 3), K(-2, 7),L(2,7), and M(3, 3) in the line y = 1.what would the reflection coordinates be

Answers

First, we graph the trapezoid and the line

If we reflect the figure across the line y = 1, then we get the following figure

As you can observe in the graph, the vertices would be J'(-4,-1), K'(-2,-5), L'(2,-5), and M'(3,-1).

Other Questions
Find the average value of the following numbers 87, 79, 84, 70, 90 if i get a 60% on a math test then what would my final grade be overallits an 80% rn May someone please help me solve this and explain? thanks:) HELP ASAPwrite an expression to represent:"the sum of a number b and 24" Which inequalities are correct? Select all that apply. 33. Let f(x) = 5x2 - 4 and g(x) = 3x + 1. Find f(x) + g(x): A line passes through the points (5, 1) and (7, 11). Which equation represents the line? Describe how to create a list with bullets how can I covert this 0.688= to a fraction Directions:For questions 12-16 simplify using the given replacement valued. There should be no decimals, convert all decimals to fractions. (Do not change whole numbers)I need help with 14 9. Which of the following shows whose model?a. Bohrb. Daltonc. Rutherfordd. Thomson Which words can replace the imprecise phrase some brake things with domain-specific language?(1 point)Responsessome parts that wore outsome parts that wore outsome important partssome important partsthe wheel cylindersthe wheel cylindersthings that stop the car What is the probability that a random selected yard will have fewer than 6 trees In the book Metamorphosis Describe how Gregor feels about his job, what evidence supports your response? What page number or paragraph number. I will mark the person with the best answer as Brainly G(x) = 1/x^10 g(x)= Which of the following formulas represent valid ionic compounds that can be made from these six elements: Al, Be, F, Li, N, and S? Select all that apply. A. AlN B. BeS C. AlLi D. LiF Help asap.1. What is the structure of the brain that helps coordinate the movement of muscles in the body?A.cerebellumB.midbrainC.hypothalamusD.pons can anyone help on this -3+(-17) 8.5 cm 6.5 cm 2.25 cm Which measurement is closest to the surface area of the triangular prism in square centimeters? Mr. Rodriguez is preparing photos for an international client. The client has requested a photo that is 20 cm by 15 cm. Mr. Rodriguez knows that the formula c = 2.54n can be used to convert n inches to c centimeters. Which formula can he use to convert centimeters to inches?